Design, Luminescent properties and Application of Cr³⁺

doped ScTaO₄: a broadband near-infrared phosphor

Shan Wang^{a,b}, Su Zhang^{b*}, Shuang Liu^{a,b}, Songlin Han^c, Xiaodong Li^{a*}, Chaowei Wang^{b,c}, Chengyu Li^b

a School of materials science and engineering, Jilin Architecture University, Jilin, 130118. b State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, 130022 c Zhongke rare earth changchun Co., Ltd, Changchun, Jilin, 130012

Fig. S1. (a) The excitation and emission spectrum of $ScTaO_4:0.02Cr^{3+}$ at 7 K (b) Normalized emission spectrum at 298 K and at 7 K

We measured the lifetime at 7 K. The decay curve can be well fitted with the single-order exponential decay model, expressed by the following equation:

 $I = I_0 + A \exp(-t/\tau)$

here I₀ represents the initial emission intensity, A is a constant, and τ is the lifetime. The single-exponential decay model indicates that the Cr³⁺ ions only occupy one type of lattice site in ScTaO₄:0.02Cr³⁺.

Fig. S2. The PL decay curves of the ScTaO4:0.02Cr^{3+} at 7 K ($\lambda_{ex}{=}516~\text{nm})$

Fig. S3. Time resolved spectroscopy of the ScTaO₄:0.02Cr³⁺ sample excited at 516 nm