Electronic Supplementary Information (ESI) II – structures, CV, UV-vis spectroscopy and DFT calculations

for

Isoelectronic Pt(II) Complexes of Cyclometalating C^N^N Ligands with Phenyl/(Benzo)thiophenyl/Pyridyl/(Benzo)thiazole Moieties

Maren Krause,^a Joshua Nicolas Friedel,^a Stefan Buss,^b Dana Brünink,^c Annemarie Berger,^a Cristian A. Strassert,^{b,*} Nikos L. Doltsinis,^{c,*}Axel Klein^{a,*}

* to whom the correspondence should be addressed: e-mail: <u>axel.klein@uni-koeln.de</u>

Contents

Photophysical characterisation

Supporting Figures

Fig. S1 Crystal structure of [Pt(th(ppy)py)Cl]·CD₂Cl₂ (**10**·CH₂Cl₂)viewed along the crystallographic *b* and *c* axes.

Fig. S2 Crystal structure of [Pt(ph(tbppy)bzt)CCPh] (9) viewed along the crystallographic *a* axis.

Fig. S3 Crystal structure of [Pt(ph(tbppy)bzt)CCPh] (9) viewed along the crystallographic c axis.

Fig. S4 Intermolecular π -stacking interactions in [Pt(ph(tbppy)bzt)CCPh] (9).

Fig. S5 Cyclic voltammograms of [Pt(ph(ppy)tz)Cl] (1).

Fig. S6 Cyclic voltammograms of [Pt(ph(tbppy)tz)Cl] (2).

Fig. S7 Cyclic voltammograms of [Pt(ph(tbppy)tz)CCPh] (3).

Fig. S8 Cyclic voltammograms of [Pt(ph(tbppy)tz)CCC₆F₅] (4).

Fig. S9 Cyclic voltammograms of [Pt(na(tbppy)tz)Cl] (5).

Fig. S10 Cyclic voltammograms of [Pt(na(tbppy)tz)CCPh] (6).

Fig. S11 Cyclic voltammograms of [Pt(ph(ppy)btz)Cl] (7).

Fig. S12 Cyclic voltammograms of [Pt(ph(tbppy)btz)Cl] (8).

 $Fig. \ S13 \ Cyclic \ voltammograms \ of \ [Pt(ph(tbppy)btz)CCPh] \ (9) \ and \ [Pt(th(tbppy)tz)CCPh] \ (18).$

Fig. S14 Cyclic voltammograms of [Pt(th(ppy)py)Cl] (10).

Fig. S15 Cyclic voltammograms of [Pt(th(tbppy)py)Cl] (11).

Fig. S16 Cyclic voltammograms of [Pt(th(tbppy)py)CCPh] (12).

Fig. S17 Cyclic voltammograms of [Pt(th(tbppy)py)CCC₆F₅] (13).

Fig. S18 Cyclic voltammograms of [Pt(bth(ppy)py)Cl] (14).

Fig. S19 Cyclic voltammograms of [Pt(bth(tbppy)py)Cl] (15).

Fig. S20 Cyclic voltammograms of [Pt(bth(tbppy)py)CCPh] (16).

Fig. S21 Cyclic voltammograms of [Pt(th(tbppy)tz)Cl] (17).

Fig. S22 Cyclic voltammograms of [Pt(th(ppy)tz)Cl].

Fig. S23 Cyclic voltammograms of Hth(ppy)py, Hth(tbppy)py, and Hbth(ppy)py.

Fig. S24 Cyclic voltammograms of Hbth(tbppy)py, Hph(ppy)tz, and Hph(tbppy)tz.

Fig. S25 Cyclic voltammograms of Hna(ppy)tz and Hna(tbppy)tz.

Fig. S26 Cyclic voltammograms of Hph(ppy)btz, Hph(tbppy)btz, and Hth(tbppy)tz.

Fig. S27 DFT-optimised geometries of complexes from **class A** with coligand X = Cl and $R^1 = H$ and $R^1 = 3,5-tBu_2$.

Fig. S28 DFT-optimised geometries of complexes from classes A and B with coligands X = CCPh, Cl, CCC₆F₅ and R¹ =3,5-*t*Bu₂.

Fig. S29 DFT-calculated compositions of LUMO and HOMO of [Pt(th(tbppy)py)Cl] (11) and [Pt(th(tbppy)py)CCPh] (12).

Fig. S30 UV-vis absorption spectra of protoligands with 4-phenyl-pyridyl (Hppy) and 3,5-tBu2-phenyl-pyridyl (Htbppy).

Fig. S31 UV-vis absorption spectra of [Pt(ph(tbppy)tz)(Cl/R)] (R = CCPh, CCC₆F₅) (**2**, **3**, **4**) and [Pt(th(tbppy)py)(Cl/R)] (R = CCPh, CCC₆F₅) (**11**, **12**, **13**).

Fig. S32 UV-vis absorption spectra of [Pt(th(ppy)py)Cl] (10) and [Pt(bth(ppy)py)Cl] (14) and [Pt(ph(ppy)tz)Cl] (1) and [Pt(ph(ppy)btz)Cl] (7).

Fig. S33 UV-vis absorption spectra of [Pt(ph(tbppy)btz)Cl] (8), [Pt(ph(tbppy)btz)(CCPh)] (9), [Pt(bth(tbppy)py)Cl] (15), and [Pt(bth(tbppy)py)(CCPh)] (16).

Fig. S34 UV-vis absorption spectra of [Pt(th(tbppy)tz)Cl] **(17)**, [Pt(th(tbppy)tz)(CCPh)] **(18)**, and [Pt(na(tbppy)tz)(CCPh)] **(6)**. **Fig. S35** TD-DFT-calculated UV-vis absorption spectra (THEO, red) compared to experimental spectra (EXP, black) of [Pt(ph(ppy)tz)Cl] **(1)** and [Pt(ph(tbppy)tz)Cl] **(2)**.

Fig. S36 TD-DFT-calculated UV-vis absorption spectra (THEO, red) of compared to experimental spectra (EXP, black) of [Pt(th(tbppy)py)C=CPh] (**1**2), [Pt(ph(tbppy)tz)Cl] (**2**), and $[Pt(th(tbppy)py)C=CC_6F_5]$ (**13**).

Fig. S37 UV-vis absorption and emission spectra of [Pt(th(tbppy)py)(CCPh)] **(12)** and [Pt(bth(tbppy)py)(CCPh] **(16)** in CH₂Cl₂ at 298 K.

Fig. S38 UV-vis absorption and emission spectra of [Pt(th(ppy)py)Cl] (10) and [Pt(ph(ppy)py)Cl] in CH₂Cl₂ at 298 K.

Fig. S39 UV-vis absorption and emission spectra of [Pt(th(tbppy)py)Cl] (11) and [Pt(bth(tbppy)py)Cl] (15) in CH₂Cl₂ at 298 K.

Fig. S40 UV-vis absorption and emission spectra of [Pt(th(tbppy)py)X] (**11**, **12**, **13**) with X = Cl, CCPh, or CCC₆F₅ in CH₂Cl₂ at 298 K.

Fig. S41 UV-vis absorption and emission spectra of [Pt(ph(tbppy)tz)X] (2, 3, 4) with X = Cl, CCPh, or CCC₆F₅ in CH₂Cl₂ at 298 K.

Fig. S42 UV-vis absorption and emission spectra of [Pt(ph(ppy)py)Cl] and [Pt(ph(ppy)tz)Cl] (1) in CH₂Cl₂ at 298 K.

Fig. S43 UV-vis absorption and emission spectra of [Pt(ph(tbppy)tz)Cl] (2) and [Pt(na(tbppy)tz)Cl] (5) in CH₂Cl₂ at 298 K.

Fig. S44 UV-vis absorption and emission spectra of [Pt(ph(tbppy)tz)Cl] (2) and [Pt(ph(tbppy)btz)Cl] (8) in CH2Cl2 at 298 K.

Fig. S45 Normalised photoluminescence spectra of [Pt(th(tbppy)py)Cl] (11), [Pt(ph(tbppy)tz)Cl] (2), [Pt(th(tbppy)tz)Cl] (17), [Pt(th(tbppy)py)CCPh] (12), [Pt(ph(tbppy)tz)CCPh] (3) and [Pt(th(tbppy)tz)CCPh] (18) in CH₂Cl₂ at 298 K or frozen glassy CH₂Cl₂/MeOH matrices at 77 K.

Fig. S46 Normalised photoluminescence spectra of [Pt(ph(tbppy)tz)CCPh] **(3)**, [Pt(na(tbppy)tz)CCPh] **(6)** and [Pt(ph(tbppy)btz)CCPh] **(9)** in CH₂Cl₂ at 298 K and in frozen glassy CH₂Cl₂/MeOH matrices (V:V = 1:1) at 77 K.

Fig. S47 Normalised photoluminescence spectra of [Pt(th(tbppy)py)CCPh] **(12)** and [Pt(bth(tbppy)py)CCPh] **(16)** in CH₂Cl₂ at 298 K and in frozen glassy CH₂Cl₂/MeOH matrices (V:V = 1:1) at 77 K.

Fig. S48 Normalised photoluminescence spectra of [Pt(th(tbppy)py)CCPh] **(12)**, [Pt(ph(tbppy)tz)CCPh] **(3)** and [Pt(th(tbppy)tz)CCPh] **(18)** in CH₂Cl₂ at 298 K and in frozen glassy CH₂Cl₂/MeOH matrices (V:V = 1:1) at 77 K.

Fig. S49 Normalised emission spectra of [Pt(ph(ppy)tz)Cl] (1), [Pt(th(ppy)py)Cl] (10) and [Pt(th(ppy)tz)Cl] in CH₂Cl₂ at 298 K. **Fig. S50** Normalised emission spectra of, [Pt(bth(tbppy)py)Cl] (15), [Pt(bth(ppy)py)Cl] (14), and [Pt(ph(ppy)btz)Cl] (7) and [Pt(na(ppy)tz)Cl] in CH₂Cl₂ at 298 K.

Fig. S51 Normalised emission spectra of [Pt(ph(tbppy)btz)(CCPh)] (9), [Pt(ph(tbppy)btz)Cl] (8), [Pt(na(tbppy)tz)Cl] (5) and [Pt(na(tbppy)tz)(CCPh)] (6) in CH₂Cl₂ at 298 K.

Fig. S52 Normalised emission spectra of [Pt(ph(tbppy)tz)X] with X = Cl, CCPh, or CCC₆F₅ (2), (3) and (4) in glassy frozen CH₂Cl₂/MeOH (1:1) matrix at 77 K.

Fig. S53 Excitation and emission spectra of [Pt(ph(tbppy)tz)(CCPh)] **(3)** at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S54 Time-resolved photoluminescence decay of [Pt(ph(tbppy)tz)CCPh] (3) in CH2Cl2 at 298 K (air-equilibrated).

Fig. S55 Time-resolved photoluminescence decay of [Pt(ph(tbppy)tz)CCPh] (3) in CH₂Cl₂ at 298 K (Ar-purged).

Fig. S56 Time-resolved photoluminescence decay of [Pt(ph(tbppy)tz)CCPh] (3) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S57 Excitation and emission spectra of $[Pt(ph(tbppy)tz)(CCC_6F_5)]$ (4) at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S58 Time-resolved photoluminescence decay of [Pt(ph(tbppy)tz)CC₆F₅] (4) in CH₂Cl₂ at 298 K (air-equilibrated).

Fig. S59 Time-resolved photoluminescence decay of [Pt(ph(tbppy)tz)CC6F5] (4) in CH2Cl2 at 298 K (Ar-purged).

Fig. S60 Time-resolved photoluminescence decay of $[Pt(ph(tbppy)tz)CC_6F_5]$ (4) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S61 Excitation and emission spectra of [Pt(na(tbppy)tz)(CCPh)] **(6)** at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S62 Time-resolved photoluminescence decay of [Pt(na(tbppy)tz)CCPh] (6) in CH₂Cl₂ at 298 K (air-equilibrated).

Fig. S63 Time-resolved photoluminescence decay of [Pt(na(tbppy)tz)CCPh] (6) in CH₂Cl₂ at 298 K (Ar-purged).

Fig. S64 Time-resolved photoluminescence decay of [Pt(na(tbppy)tz)CCPh] **(6)** in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S65 Excitation and emission spectra of [Pt(ph(tbppy)btz)Cl] (8) at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S66 Time-resolved photoluminescence decay of [Pt(ph(tbppy)btz)Cl] (8) in CH₂Cl₂ at 298 K (air-equilibrated).

Fig. S67 Time-resolved photoluminescence decay of [Pt(ph(tbppy)btz)Cl] (8) in CH2Cl2 at 298 K (Ar-purged).

Fig. S68 Time-resolved photoluminescence decay of [Pt(ph(tbppy)btz)Cl] **(8)** in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S69 Excitation and emission spectra of [Pt(ph(tbppy)btz)CCPh] (9) at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S70 Time-resolved photoluminescence decay of [Pt(ph(tbppy)btz)CCPh] (9) in CH₂Cl₂ at 298 K (air-equilibrated).

Fig. S71 Time-resolved photoluminescence decay of [Pt(ph(tbppy)btz)CCPh] (9) in CH₂Cl₂ at 298 K (Ar-purged).

Fig. S72 Time-resolved photoluminescence decay of [Pt(ph(tbppy)btz)CCPh] (9) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S73 Excitation (dotted line) and emission spectra (solid line) of [Pt(th(ppy)py)Cl] (10) (λ_{exc} = 350 nm; λ_{em} = 600 nm) at 298 K (black) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S74 Time-resolved photoluminescence decay of [Pt(th(ppy)py)Cl] (10) in CH₂Cl₂ at 298 K (Ar-purged).

Fig. S75 Time-resolved photoluminescence decay of [Pt(th(ppy)py)Cl] (10) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S76 Excitation and emission spectra of [Pt(th(tbppy)py)Cl] (11) at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S77 Time-resolved photoluminescence decay of [Pt(th(tbppy)py)Cl] (11) in CH2Cl2 at 298 K (air-equilibrated).

Fig. S78 Time-resolved photoluminescence decay of [Pt(th(tbppy)py)Cl] (11) in CH₂Cl₂ at 298 K (Ar-purged).

Fig. S79 Time-resolved photoluminescence decay of [Pt(th(tbppy)py)Cl] (11) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S80 Excitation and emission spectra of [Pt(th(tbppy)py)CCPh] (12) at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S81 Time-resolved photoluminescence decay of [Pt(th(tbppy)py)CCPh] (12) in CH2Cl2 at 298 K (air-equilibrated).

Fig. S82 Time-resolved photoluminescence decay of [Pt(th(tbppy)py)CCPh] (12) in CH2Cl2 at 298 K (Ar-purged).

Fig. S83 Time-resolved photoluminescence decay of [Pt(th(tbppy)py)CCPh] (12) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S84 Excitation and emission spectra of $[Pt(th(tbppy)py)CCC_6F_5]$ (13) at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S85 Time-resolved photoluminescence decay of [Pt(th(tbppy)py)CCC₆F₅] (13) in CH₂Cl₂ at 298 K (air-equilibrated).

Fig. S86 Time-resolved photoluminescence decay of [Pt(th(tbppy)py)CCC₆F₅] (13) in CH₂Cl₂ at 298 K (Ar-purged).

Fig. S87 Time-resolved photoluminescence decay of [Pt(th(tbppy)py)CC₆F₅] **(13)** in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S88 Excitation and emission spectra of [Pt(bth(ppy)py)Cl] (14) at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S89 Time-resolved photoluminescence decay of [Pt(bth(ppy)py)Cl] (14) in CH₂Cl₂ at 298 K (Ar-purged).

Fig. S90 Time-resolved photoluminescence decay of [Pt(bth(ppy)py)Cl] (14) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S91 Excitation and emission spectra of [Pt(bth(tbppy)py)Cl] (15) at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S92 Time-resolved photoluminescence decay of [Pt(bth(tbppy)py)Cl] (15) in CH₂Cl₂ at 298 K (air-equilibrated).

Fig. S93 Time-resolved photoluminescence decay of [Pt(bth(tbppy)py)Cl] (15) in CH₂Cl₂ at 298 K (Ar-purged).

Fig. S94 Time-resolved photoluminescence decay of [Pt(bth(tbppy)py)Cl] (15) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S95 Excitation and emission spectra of [Pt(bth(tbppy)py)CCPh] (16) at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S96 Time-resolved photoluminescence decay of [Pt(bth(tbppy)py)CCPh] (16) in CH2Cl2 at 298 K (air-equilibrated).

Fig. S97 Time-resolved photoluminescence decay of [Pt(bth(tbppy)py)CCPh] (16) in CH2Cl2 at 298 K (Ar-purged).

Fig. S98 Time-resolved photoluminescence decay of [Pt(bth(tbppy)py)CCPh] (16) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S99 Excitation and emission spectra of [Pt(th(tbppy)tz)Cl] (17) at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S100 Time-resolved photoluminescence decay of [Pt(th(tbppy)tz)Cl] (17) in CH2Cl2 at 298 K (air-equilibrated).

Fig. S101 Time-resolved photoluminescence decay of [Pt(th(tbppy)tz)Cl] (17) in CH₂Cl₂ at 298 K (Ar-purged).

Fig. S102 Time-resolved photoluminescence decay of [Pt(th(tbppy)tz)Cl] (17) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S103 Excitation and emission spectra of [Pt(th(tbppy)tz)CCPh] **(18)** at 298 K in CH₂Cl₂ and at 77 K in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1).

Fig. S104 Time-resolved photoluminescence decay of [Pt(th(tbppy)tz)CCPh] (18) in CH₂Cl₂ at 298 K (air-equilibrated).

Fig. S105 Time-resolved photoluminescence decay of [Pt(th(tbppy)tz)CCPh] (18) in CH₂Cl₂ at 298 K (Ar-purged).

Fig. S106 Time-resolved photoluminescence decay of [Pt(th(tbppy)tz)CCPh] **(18)** in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K.

Fig. S107 TD-DFT-calculated emission spectra (THEO, red) compared to experimental spectra at 77 K (EXP, black). Theoretical 0–0 transitions are shown as vertical dashed green lines. Upper panel: complex **1** [Pt(ph(ppy)tz)Cl]. Lower panel complex **2** [Pt(ph(tbppy)tz)Cl].

Fig. S108 TD-DFT-calculated emission spectra (THEO, red) compared to experimental spectra (EXP, black) for complexes of **class A** at 77 K. Theoretical 0–0 transitions are shown as vertical dashed green lines. Upper panel: complex **3** [Pt(ph(tbppy)tz)C=CPh]. Middle panel: complex **2** [Pt(ph(tbppy)tz)Cl]. Lower panel: complex **4** [Pt(ph(tbppy)tz)C=CC₆F₅].

Fig. S109 TD-DFT-calculated emission spectra (THEO, red) of **class B** complexes compared to experimental spectra (EXP, black) at 77 K. Calculated 0–0 transitions are shown as vertical dashed green lines. Upper panel: complex **12** [Pt(th(tbppy)py)C=CPh]. Middle panel: complex **11** [Pt(th(tbppy)py)Cl]. Lower panel: complex **13** [Pt(th(tbppy)py)C=CC₆F₅].

Fig. S110 Left: Decomposition of the emissive *T*¹ states into MLCT, LMCT, LC, LLCT, and MC contributions of complexes **3**, **6**, **9** (top), and **12**, **16**, **18** (bottom). Right: Molecular partitioning used for the example of complex **3**, all other complexes were partitioned in an analogous manner.

Fig. S111 Decomposition of the emissive *T*¹ states into MLCT, LMCT, LC, LLCT, and MC contributions of [Pt(ph(ppy)tz)Cl] (1) and [Pt(ph(tbppy)tz)Cl] (2).

Fig. S112 Decomposition of the emissive *T*¹ states into MLCT, LMCT, LC, LLCT, and MC contributions for **class A** complexes (**3**) [Pt(ph(tbppy)tz)CCPh], (**2**) [Pt(ph(tbppy)tz)Cl], and (**4**) [Pt(ph(tbppy)tz)CCC₆F₅]).

Fig. S113 Decomposition of the emissive *T*¹ states into MLCT, LMCT, LC, LLCT, and MC contributions for **class B** complexes (**12**) [Pt(th(tbppy)py)(C≡CPh)], (**11**) [Pt(th(tbppy)py)Cl], and (**13**) [Pt(th(tbppy)py)(C≡CC₆F₅)].

Fig. S114 Molecular orbitals of complex (1) with the largest contributions to the emissive *T*₁ state.

Fig. S115 Molecular orbitals of complex (3) with the largest contributions to the emissive *T*₁ state.

Fig. S116 Molecular orbitals of complex (**4**) with the largest contribitons to the emissive *T*₁ state.

Fig. S117 Molecular orbitals of complex (9) with the largest contribitons to the emissive *T*₁ state.

Fig. S118 Molecular orbitals of complex (11) with the largest contributions to the emissive *T*₁ state.

Fig. S119 Molecular orbitals of complex (12) with the largest contributions to the emissive T₁ state.

Fig. S120 Molecular orbitals of complex (16) with the largest contributions to the emissive T_1 state.

Fig. S121 Molecular orbitals of complex (18) with the largest contributions to the emissive *T*₁ state.

Supporting Tables

 Table S1
 Selected structure solution and refinement data for [Pt(th(ppy)py)Cl]·CH2Cl2 (10·CH2Cl2) and [Pt(ph(tbppy)btz)(CCPh)] (9).

 $\label{eq:construction} Table \ S2 \ Selected \ structural \ data \ for \ [Pt(th(ppy)py)Cl] \ CH_2Cl_2 \ (10 \ CH_2Cl_2) \ and \ [Pt(ph(tbppy)btz)(CCPh)] \ (9).$

Table S3 Redox potentials of the HC^N^N protoligands.

Table S4 Redox potentials of the [Pt(C^N^N)X] complexes.

Table S5 UV-vis absorption maxima of HC^N^N protoligands.

Table S6 UV-vis absorption maxima of the $[Pt(C^N^N)X]$ complexes.

Table S7 Complete emission data and PLYQs and exited state lifetime data in CH₂Cl₂ (298 K) and in frozen glassy CH₂Cl₂/MeOH matrix at 77 K.

Table S8 TDDFT calculated transitions contributing to the emissive *T*₁ state.

Photophysical characterisation

Steady-state excitation and emission spectra were recorded on a FluoTime300 spectrometer from PicoQuant equipped with a 300 W ozone-free Xe lamp (250-900 nm), a 10 W Xe flash-lamp (250-900 nm, pulse width < 10 µs) with repetition rates of 0.1 to 300 Hz, an excitation monochromator (Czerny-Turner 2.7 nm/mm dispersion, 1200 grooves/mm, blazed at 300 nm), diode lasers (pulse width < 80 ps) operated by a computer-controlled laser driver PDL-820 (repetition rate up to 80 MHz, burst mode for slow and weak decays), two emission monochromators (Czerny-Turner, selectable gratings blazed at 500 nm with 2.7 nm/mm dispersion and 1200 grooves/mm, or blazed at 1250 nm with 5.4 nm/mm dispersion and 600 grooves/mm), Glan-Thompson polarisers for excitation (Xe-lamps) and emission, a Peltier-thermostatised sample holder from Quantum Northwest (-40 °C to 105 °C), and two detectors, a PMA Hybrid 40 (transit time spread FWHM < 120 ps, 300 to 720 nm) and a R5509-42 NIR-photomultiplier tube (transit time spread FWHM 1.5 ns, 300-1400 nm) with external cooling (-80 °C) from Hamamatsu.

Steady-state and fluorescence lifetimes were recorded in TCSPC mode by a PicoHarp 300 (minimum base resolution 4 ps). Phosphorescence lifetimes were recorded in MCS mode by a TimeHarp 300 (minimum base resolution 250 ps). Emission

and excitation spectra were corrected for source intensity (lamp and grating) by standard correction curves.

Lifetime analysis was performed using the commercial FluoFit software. The quality of the fit was assessed by minimizing the reduced chi squared function (χ^2) and visual inspection of the weighted residuals and their autocorrelation.

Luminescence quantum yields (PLQY) were measured with a Hamamatsu Photonics absolute PL quantum yield measurement system (C9920-02) equipped with a L9799-01 CW Xenon light source (150 W), monochromator, C7473 photonic multi-channel analyser, integrating sphere and employing U6039-05 PLQY measurement software (Hamamatsu Photonics, Ltd., Shizuoka, Japan). The used dichloromethane was of spectroscopic grade (Uvasol[®]).

Supporting Figures

Fig. S1 Crystal structure of [Pt(th(ppy)py)Cl]·CD₂Cl₂ (10·CH₂Cl₂) viewed along the crystallographic b (left) and c (right) axes.

Fig. S2 Crystal structure of [Pt(ph(tbppy)bzt)CCPh] (9) viewed along the crystallographic *a* axis.

Fig. S3 Crystal structure of [Pt(ph(tbppy)bzt)CCPh] (9) viewed along the crystallographic *c* axis.

Fig. S4 Intermolecular π -stacking interactions in [Pt(ph(tbppy)bzt)CCPh] (9).

Fig. S5 Cyclic voltammograms of [Pt(ph(ppy)tz)Cl] (1) in 0.1 M *n*Bu₄NPF₆/THF (left) and 0.1 M /CH₂Cl₂ (right, Pt working electrode).

Fig. S6 Cyclic voltammograms of [Pt(ph(tbppy)tz)Cl] (2) in 0.1 M nBu4NPF6/THF (left) and /CH2Cl2 (right).

Fig. S7 Cyclic voltammograms of [Pt(ph(tbppy)tz)(CCPh)] (3) in 0.1 M nBu₄NPF₆/THF (left) and /CH₂Cl₂ (right).

Fig. S8 Cyclic voltammograms of [Pt(ph(tbppy)tz)(CCC₆F₅)] (4) in 0.1 M nBu₄NPF₆/THF (left) and /CH₂Cl₂ (right).

Fig. S9 Cyclic voltammograms of [Pt(na(tbppy)tz)Cl] (5) in 0.1 M nBu₄NPF₆/THF (left) and /CH₂Cl₂ (right).

Fig. S10 Cyclic voltammograms of [Pt(na(tbppy)tz)(CCPh)] (6) in 0.1 M nBu4NPF6/THF (left) and /CH2Cl2 (right).

Fig. S11 Cyclic voltammograms of [Pt(ph(ppy)btz)Cl] (7) in 0.1 M nBu₄NPF₆/THF (left) and /CH₂Cl₂ (right).

Fig. S12 Cyclic voltammograms of [Pt(ph(tbppy)btz)Cl] (8) in 0.1 M nBu₄NPF₆/THF (left) and /CH₂Cl₂ (right).

Fig. S13 Cyclic voltammograms of [Pt(ph(tbppy)btz)(CCPh)] **(9)** (left) and [Pt(th(tbppy)tz)(CCPh)] **(18)** (right) in 0.1 M *n*Bu₄NPF₆/CH₂Cl₂.

Fig. S14 Cyclic voltammograms of [Pt(th(ppy)py)Cl] (10) in 0.1 M nBu4NPF6/THF (left) and /DMF (right).

Fig. S15 Cyclic voltammograms of [Pt(th(tbppy)py)Cl] (11) in 0.1 M nBu4NPF6/THF (left) and 0.1 M /CH2Cl2 (right).

Fig. S16 Cyclic voltammograms of [Pt(th(tbppy)py)CCPh] (12) in 0.1 M nBu₄NPF₆/THF (left) and /CH₂Cl₂ (right).

Fig. S17 Cyclic voltammograms of [Pt(th(tbppy)py)CCC₆F₅] (13) in 0.1 M nBu₄NPF₆/THF (left) and /CH₂Cl₂ (right).

Fig. S18 Cyclic voltammograms of [Pt(bth(ppy)py)Cl] (14) in 0.1 M nBu4NPF6/THF (left) and /DMF (right).

Fig. S19 Cyclic voltammograms of [Pt(bth(tbppy)py)Cl] (15) in 0.1 M nBu₄NPF₆/THF (left) and /CH₂Cl₂ (right).

Fig. S20 Cyclic voltammograms of [Pt(bth(tbppy)py)CCPh] (16) in 0.1 M nBu4NPF6/THF (left) and /CH2Cl2 (right).

Fig. S21 Cyclic voltammograms of [Pt(th(tbppy)tz)Cl] (17) in 0.1 M nBu₄NPF₆/CH₂Cl₂.

Fig. S22 Cyclic voltammograms of [Pt(th(ppy)tz)Cl] in 0.1 M nBu4NPF6/THF (left) and /CH2Cl2 (right).

Fig. S23 Cyclic voltammograms of Hth(ppy)py (left), Hth(tbppy)py (middle), and Hbth(ppy)py (right) in 0.1 M *n*Bu₄NPF₆/THF.

Fig. S24 Cyclic voltammograms of Hbth(tbppy)py (left), Hph(ppy)tz (middle), and Hph(tbppy)tz (right) in 0.1 M *n*Bu₄NPF₆/THF.

Fig. S25 Cyclic voltammograms of Hna(ppy)tz (left) and Hna(tbppy)tz (right) in 0.1 M nBu4NPF6/THF.

Fig. S26 Cyclic voltammograms of Hph(ppy)btz (left), Hph(tbppy)btz (middle), and Hth(tbppy)tz (right) in 0.1 M *n*Bu₄NPF₆/THF.

Fig. S27 DFT-optimised geometries of complexes from **class A** with coligand X = Cl and $R^1 = H$ (left) and $R^1 = 3,5-tBu_2$ (right).

Fig. S28 DFT-optimised geometries of complexes from **classes A** and **B** with coligands X = CCPh, Cl, CCC₆F₅ (from left to right) and R¹=3,5-*t*Bu₂.

Fig. S29 DFT-calculated compositions of the lowest unoccupied molecular orbitals (LUMO) and highest occupied molecular orbitals (HOMO) of [Pt(th(tbppy)py)Cl] **(11)** and [Pt(th(tbppy)py)(CCPh)] **(12)** calculated on B3LYP level using def2-TZV(P) for C, H, N, S und LAN-L2DZ basis sets for Pt (ECP: Hay/Wadt (n = 1)), isosurface at 0.05.

Fig. S30 UV-vis absorption spectra of HC^N^N protoligands with 4-phenyl-pyridyl (Hppy) (left) and 3,5-*t*Bu₂-phenyl-pyridyl (Htbpy) (right) in CH₂Cl₂ (298 K).

Fig. S31 UV-vis absorption spectra of [Pt(ph(tbppy)tz)(Cl/R)] (R = CCPh, CCC₆F₅) (**2**, **3**, **4**) (left) and [Pt(th(tbppy)py)(Cl/R)] (R = CCPh, CCC₆F₅) (**11**, **12**, **13**) (right) in CH₂Cl₂ (298 K).

Fig. S32 UV-vis absorption spectra of [Pt(th(ppy)py)Cl] (10) and [Pt(bth(ppy)py)Cl] (14) (left) and [Pt(ph(ppy)tz)Cl] (1) and [Pt(ppy)btz)Cl] (7) (right) in CH₂Cl₂ (298 K).

Fig. **S33** UV-vis absorption spectra of [Pt(ph(tbppy)btz)Cl] **(8)** and [Pt(ph(tbppy)btz)(CCPh)] **(9)** (left) and [Pt(bth(tbppy)py)Cl] **(15)** and [Pt(bth(tbppy)py)(CCPh)] **(16)** (right) in CH₂Cl₂ (298 K).

Fig. S34 UV-vis absorption spectra of [Pt(th(tbppy)tz)Cl] (17) and [Pt(th(tbppy)tz)(CCPh)] (18) (left) and [Pt(na(tbppy)tz)(CCPh)] (6) (right) in CH₂Cl₂ (298 K).

Fig. S35 TD-DFT-calculated UV-vis absorption spectra (THEO, red) compared to experimental spectra (EXP, black) of [Pt(ph(ppy)tz)Cl] (1) and [Pt(ph(tbppy)tz)Cl] (2).

Fig. S36 TD-DFT-calculated UV-vis absorption spectra (THEO, red) of compared to experimental spectra (EXP, black) of [Pt(th(tbppy)py)C≡CPh] (12), [Pt(ph(tbppy)tz)Cl] (2), and [Pt(th(tbppy)py)C≡CC₆F₅] (13).

Fig. S37 UV-vis absorption spectra (left) and normalised emission spectra (right) of [Pt(th(tbppy)py)CCPh] (12) and [Pt(bth(tbppy)py)CCPh] (16) in CH₂Cl₂ at 298 K upon excitation at 350 nm.

Fig. S38 UV-vis absorption spectra (left) and normalised emission spectra (right) of [Pt(th(ppy)py)Cl] (10) and [Pt(ph(ppy)py)Cl] in CH₂Cl₂ at 298 K upon excitation at 350 nm.

Fig. S39 UV-vis absorption spectra (left) and normalised emission spectra (right) of [Pt(th(tbppy)py)Cl] (11) and [Pt(bth(tbppy)py)Cl] (15) in CH₂Cl₂ at 298 K upon excitation at 350 nm.

Fig. S40 UV-vis absorption spectra (left) and normalised emission spectra (right) of [Pt(th(tbppy)py)X] with X = Cl, CCPh, or CCC₆F₅ (**11, 12, 13**) in CH₂Cl₂ at 298 K upon excitation at 350 nm.

Fig. S41 UV-vis absorption spectra (left) and normalised emission spectra (right) of [Pt(ph(tbppy)tz)X] with X = Cl, CCPh, or CCC₆F₅ (2, 3, 4) in CH₂Cl₂ at 298 K upon excitation at 350 nm.

Fig. S42 UV-vis absorption spectra (left) and normalised emission spectra (right) of [Pt(ph(ppy)py)Cl] and [Pt(ph(ppy)tz)Cl] (1) in CH₂Cl₂ at 298 K upon excitation at 350 nm.

Fig. S43 UV-vis absorption spectra (left) and normalised emission spectra (right) of [Pt(ph(tbppy)tz)Cl] (2) and [Pt(na(tbppy)tz)Cl] (5) in CH₂Cl₂ at 298 K upon excitation at 350 nm.

Fig. S44 UV-vis absorption spectra (left) and normalised emission spectra (right) of [Pt(ph(tbppy)tz)Cl] (2) and [Pt(ph(tbppy)btz)Cl] (8) in CH₂Cl₂ at 298 K upon excitation at 350 nm.

Fig. S45 Normalised photoluminescence spectra (λ_{exc} = 350 nm) with focus on the influence of the periphal ring; top: [Pt(th(tbppy)py)Cl] (11) (black), [Pt(ph(tbppy)tz)Cl] (2) (blue) and [Pt(th(tbppy)tz)Cl] (17) (red); bottom: [Pt(th(tbppy)py)CCPh] (12) (black), [Pt(ph(tbppy)tz)CCPh] (3) (red) and [Pt(th(tbppy)tz)CCPh] (18) (blue). Measured in CH₂Cl₂ at 298 K (left) or frozen glassy CH₂Cl₂/MeOH matrices at 77 K (right).

Fig. S46 Normalised photoluminescence spectra (λ_{exc} = 350 nm) involving the main ligands used for **class A** complexes (see Table 1); [Pt(ph(tbppy)tz)CCPh] (3) (black), [Pt(na(tbppy)tz)CCPh] (6) (red) and [Pt(ph(tbppy)btz)CCPh] (9) (blue) in CH₂Cl₂ at 298 K (left) and in frozen glassy CH₂Cl₂/MeOH matricx (V:V = 1:1) at 77 K (right).

Fig. S47 Normalised photoluminescence spectra (λ_{exc} = 350 nm) involving the main ligands used for **class B** complexes (see Table 1) [Pt(th(tbppy)py)CCPh] (12) (black) and [Pt(bth(tbppy)py)CCPh] (16) (red) in fluid CH₂Cl₂ at 298 K (left) and in frozen glassy CH₂Cl₂/MeOH matrices (V:V = 1:1) at 77 K (right).

Fig. S48 Normalised photoluminescence spectra (λ_{exc} = 350 nm) of [Pt(th(tbppy)py)CCPh] (12) (black), [Pt(ph(tbppy)tz)CCPh] (3) (red) and [Pt(th(tbppy)tz)CCPh] (18) (blue) in CH₂Cl₂ at 298 K (left) and in frozen glassy CH₂Cl₂/MeOH matrices (V:V = 1:1) (right) at 77 K.

Fig. S49 Normalised emission spectra of [Pt(ph(ppy)tz)Cl] (1) (blue), [Pt(th(ppy)py)Cl] (10) (red) and [Pt(th(ppy)tz)Cl] (violet) in CH₂Cl₂ at 298 K upon excitation at 350 nm.

Fig. S50 Normalised emission spectra of, [Pt(bth(tbppy)py)Cl] **(15)**, [Pt(bth(ppy)py)Cl] **(14)** (left), and [Pt(ph(ppy)btz)Cl] **(7)**, [Pt(na(ppy)tz)Cl] (right), in CH₂Cl₂ at 298 K upon excitation with 350 nm.

Fig. S51 Normalised emission spectra of (left), [Pt(ph(tbppy)btz)(CCPh)] **(9)**, [Pt(ph(tbppy)btz)Cl] **(8)** (left), and [Pt(na(tbppy)tz)Cl] **(5)**, [Pt(na(tbppy)tz)(CCPh)] **(6)** (right), in CH₂Cl₂ at 298 K upon excitation with 350 nm.

Fig. S52 Normalised emission spectra of [Pt(ph(tbppy)tz)X] with X = Cl, CCPh, or CCC₆F₅ (2), (3) and (4) in glassy frozen CH₂Cl₂/MeOH (1:1) matrix at 77 K upon excitation at 350 nm.

Fig. S53 Excitation (dotted line) and emission spectra (solid line) of [Pt(ph(tbppy)tz)(CCPh)] (3) ($\lambda_{exc} = 350 \text{ nm}$; $\lambda_{em} = 590 \text{ nm}$ at 298 K, $\lambda_{em} = 560 \text{ nm}$ at 77 K) at 298 K with the UV/Vis-detector (black) and with IR-detector (blue) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Fig. S54 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(ph(tbppy)tz)CCPh] (3) in CH₂Cl₂ at 298 K (air-equilibrated), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 630 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S55 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(ph(tbppy)tz)CCPh] (3) in CH₂Cl₂ at 298 K (Ar-purged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 630 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S56 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(ph(tbppy)tz)CCPh] (3) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 560 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S57 Excitation (dotted line) and emission spectra (solid line) of $[Pt(ph(tbppy)tz)(CCC_6F_5)]$ (4) ($\lambda_{exc} = 350 \text{ nm}$; $\lambda_{em} = 580 \text{ nm}$ at 298 K, $\lambda_{em} = 560 \text{ nm}$ at 77 K) at 298 K with the UV/Vis-detector (black) and with IR-detector (blue) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A ₁ [Cnts]	9215.6	-49.2	+49.2	Fitting
τ ₁ [μs]	0.31946	-0.00123	+0.00123	Fitting
Bkgr. Dec [Cnts]	2.306	-0.574	+0.574	Fitting

Average Lifetime:

 $\tau_{Av.1}$ =0.31946 µs (intensity weighted)

 $\tau_{Av.2}$ =0.31946 µs (amplitude weighted)

Fig. S58 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(ph(tbppy)tz)CC_6F_5]$ (4) in CH₂Cl₂ at 298 K (air-equilibrated), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S59 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(ph(tbppy)tz)CC_6F_5]$ (4) in CH₂Cl₂ at 298 K (Ar-purged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S60 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(ph(tbppy)tz)CC_6F_5]$ (4) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 560 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S61 Excitation (dotted line) and emission spectra (solid line) of [Pt(na(tbppy)tz)(CCPh)] (6) ($\lambda_{exc} = 350 \text{ nm}$; $\lambda_{em} = 590 \text{ nm}$ at 298 K, $\lambda_{em} = 550 \text{ nm}$ at 77 K) at 298 K with the UV/Vis-detector (black) and with IR-detector (blue) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Fig. S62 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(na(tbppy)tz)CCPh] **(6)** in CH₂Cl₂ at 298 K (air-equilibrated), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 620 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S63 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(na(tbppy)tz)CCPh] **(6)** in CH₂Cl₂ at 298 K (Ar-purged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 620 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S64 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(na(tbppy)tz)CCPh] **(6)** in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 550 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S65 Excitation (dotted line) and emission spectra (solid line) of [Pt(ph(tbppy)btz)Cl] (8) (λ_{exc} = 350 nm; λ_{em} = 600 nm) at 298 K with the UV/Vis-detector (black) and with IR-detector (blue) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Fig. S66 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(ph(tbppy)btz)Cl] (8) in CH₂Cl₂ at 298 K (air-equilibrated), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 630 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S67 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(ph(tbppy)btz)Cl] (8) in CH₂Cl₂ at 298 K (Arpurged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 630 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S68 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(ph(tbppy)btz)Cl] (8) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S69 Excitation (dotted line) and emission spectra (solid line) of [Pt(ph(tbppy)btz)CCPh] **(9)** (λ_{exc} = 350 nm; λ_{em} = 610 nm at 298 K, λ_{em} = 600 nm at 77 K) at 298 K with the UV/Vis-detector (black) and with IR-detector (blue) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Fig. S70 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(ph(tbppy)btz)CCPh] (9) in CH₂Cl₂at 298 K (air-equilibrated), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 640 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S71 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(ph(tbppy)btz)CCPh] (9) in CH₂Cl₂ at 298 K (Ar-purged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 640 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S72 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(ph(tbppy)btz)CCPh] (9) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S73 Excitation (dotted line) and emission spectra (solid line) of [Pt(th(ppy)py)Cl] (10) (λ_{exc} = 350 nm; λ_{em} = 600 nm) at 298 K (black) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Normalised to the highest intensity.

Fig. S74 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(ppy)py)Cl] (10) in CH₂Cl₂ at 298 K (Arpurged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 620 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S75 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(ppy)py)Cl] (10) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S76 Excitation (dotted line) and emission spectra (solid line) of [Pt(th(tbppy)py)Cl] **(11)** (λ_{exc} = 350 nm; λ_{em} = 600 nm) at 298 K (black) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Fig. S77 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)py)Cl] **(11)** in CH₂Cl₂ at 298 K (air-equilibrated), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 620 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S78 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)py)Cl] (11) in CH₂Cl₂ at 298 K (Arpurged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 620 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S79 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)py)Cl] (11) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S80 Excitation (dotted line) and emission spectra (solid line) of [Pt(th(tbppy)py)CCPh] (12) (λ_{exc} = 350 nm; λ_{em} = 600 nm) at 298 K (black) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Fig. S81 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)py)CCPh] (12) in CH₂Cl₂ at 298 K (air-equilibrated), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 620 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S82 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)py)CCPh] (12) in CH₂Cl₂ at 298 K (Ar-purged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 620 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S83 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)py)CCPh] (12) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S84 Excitation (dotted line) and emission spectra (solid line) of [Pt(th(tbppy)py)CCC₆F₅] **(13)** (λ_{exc} = 350 nm; λ_{em} = 600 nm) at 298 K (black) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Fig. S85 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)py)CCC₆F₅] **(13)** in CH₂Cl₂ at 298 K (air-equilibrated), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 620 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S86 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)py)CCC₆F₅] **(13)** in CH₂Cl₂ at 298 K (Ar-purged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 620 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S87 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)py)CC₆F₅] **(13)** in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S88 Excitation (dotted line) and emission spectra (solid line) of [Pt(bth(ppy)py)Cl] **(14)** (λ_{exc} = 350 nm; λ_{em} = 650 nm at 298 K; λ_{em} = 660 nm at 77 K) at 298 K (black) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Fig. S89 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(bth(ppy)py)Cl] (14) in CH₂Cl₂ at 298 K (Arpurged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 670 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S90 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(bth(ppy)py)Cl] (14) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 660 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S91 Excitation (dotted line) and emission spectra (solid line) of [Pt(bth(tbppy)py)Cl] **(15)** (λ_{exc} = 350 nm; λ_{em} = 650 nm at 298 K; λ_{em} = 660 nm at 77 K) at 298 K (black) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Fig. S92 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(bth(tbppy)py)Cl] (**15**) in CH₂Cl₂ at 298 K (air-equilibrated), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 670 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S93 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(bth(tbppy)py)Cl] (15) in CH₂Cl₂ at 298 K (Arpurged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 670 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S94 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(bth(tbppy)py)Cl] **(15)** in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 660 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S95 Excitation (dotted line) and emission spectra (solid line) of [Pt(bth(tbppy)py)CCPh] **(16)** (λ_{exc} = 350 nm; λ_{em} = 650 nm at 298 K; λ_{em} = 660 nm at 77 K) at 298 K (black) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Fig. S96 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(bth(tbppy)py)CCPh] **(16)** in CH₂Cl₂ at 298 K (air-equilibrated), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 675 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S97 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(bth(tbppy)py)CCPh] **(16)** in CH₂Cl₂ at 298 K (Ar-purged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 675 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S98 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(bth(tbppy)py)CCPh] **(16)** in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 660 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S99 Excitation (dotted line) and emission spectra (solid line) of [Pt(th(tbppy)tz)Cl] (17) (λ_{exc} = 350 nm; λ_{em} = 620 nm at 298 K, λ_{em} = 600 nm at 77 K) at 298 K (black) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Fig. S100 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)tz)Cl] (17) in CH₂Cl₂ at 298 K (air-equilibrated), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 650 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S101 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)tz)Cl] (17) in CH₂Cl₂ at 298 K (Arpurged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 650 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S102 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)tz)Cl] (17) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S103 Excitation (dotted line) and emission spectra (solid line) of [Pt(th(tbppy)tz)CCPh] **(18)** (λ_{exc} = 350 nm; λ_{em} = 620 nm at 298 K, λ_{em} = 600 nm at 77 K) at 298 K (black) in CH₂Cl₂ and at 77 K (red) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1). All solutions were optically diluted (A < 0.1). Spectra normalised to the highest intensity.

Fig. S104 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)tz)CCPh] **(18)** in CH₂Cl₂ at 298 K (air-equilibrated), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 650 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S105 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)tz)CCPh] (18) in CH₂Cl₂ at 298 K (Ar-purged), including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 650 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S106 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(th(tbppy)tz)CCPh] (18) in a frozen glassy CH₂Cl₂/MeOH matrix (V:V = 1:1) at 77 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S107 TD-DFT-calculated emission spectra (THEO, red) compared to experimental spectra at 77 K (EXP, black). Theoretical 0–0 transitions are shown as vertical dashed green lines. Upper panel: complex **1** [Pt(ph(ppy)tz)Cl]. Lower panel complex **2** [Pt(ph(tbpy)tz)Cl].

Fig. S108 TD-DFT-calculated emission spectra (Theor, red) compared to experimental spectra (EXP, black) for complexes of **class A** complexes at 77 K. Theoretical 0–0 transitions are shown as vertical dashed green lines. Upper panel: complex **3** [Pt(ph(tbppy)tz)C=CPh]. Middle panel: complex **2** [Pt(ph(tbppy)tz)C]. Lower panel: complex **4** [Pt(ph(tbppy)tz)C=CC₆F₅].

Fig. S109 TD-DFT-calculated emission spectra (Theor, red) of **class B** complexes compared to experimental spectra (EXP, black) at 77 K. Calculated 0–0 transitions are shown as vertical dashed green lines. Upper panel: complex **12** [Pt(th(tbppy)py)C=CPh]. Middle panel: complex **11** [Pt(th(tbppy)py)C]. Lower panel: complex **13** [Pt(th(tbppy)py)C=CC₆F₅].

Fig. S110 Left: Decomposition of the emissive *T*₁ states into MLCT, LMCT, LC, LLCT, and MC contributions of complexes **3**, **6**, **9** (top), and **12**, **16**, **18** (bottom). Right: Molecular partitioning used for the example of complex **3**, all other complexes were partitioned in an analogous manner.

Fig. S111 Decomposition of the emissive *T*₁ states into MLCT, LMCT, LC, LLCT, and MC contributions of [Pt(ph(ppy)tz)Cl] (1) and [Pt(ph(tbppy)tz)Cl] (2).

Fig. S112 Decomposition of the emissive *T*¹ states into MLCT, LMCT, LC, LLCT, and MC contributions for **class A** complexes (black: complex (**3**) [Pt(ph(tbppy)tz)CCPh], red: complex (**2**) [Pt(ph(tbppy)tz)CC], blue: complex (**4**) [Pt(ph(tbppy)tz)CCC₆F₅]).

Fig. S113 Decomposition of the emissive *T*₁ states into MLCT, LMCT, LC, LLCT, and MC contributions for **class B** complexes (black: [Pt(th(tbppy)py)(C=CPh)] (**12**), red: [Pt(th(tbppy)py)Cl] (**11**), blue: [Pt(th(tbppy)py)(C=CC₆F₅)] (**13**).

Fig. S116 Molecular orbitals of complex (4) with the largest contribitons to the emissive T_1 state.

Fig. S117 Molecular orbitals of complex (9) with the largest contribitons to the emissive *T*₁ state.

Fig. S118 Molecular orbitals of complex (**11**) with the largest contributions to the emissive *T*₁ state.

Fig. S119 Molecular orbitals of complex (12) with the largest contributions to the emissive *T*₁ state.

Fig. S120 Molecular orbitals of complex (16) with the largest contributions to the emissive *T*₁ state.

Fig. S121 Molecular orbitals of complex (18) with the largest contributions to the emissive *T*₁ state.

Supporting Tables

 Table S1
 Selected structure solution and refinement data for [Pt(th(ppy)py)Cl]·CD2Cl2 (10·CH2Cl2) and [Pt(ph(tbppy)btz)(CCPh)] (9).

Complex	[Pt(th(ppy)py)Cl] CH ₂ Cl ₂ (10 CH ₂ Cl ₂)	[Pt(ph(tbppy)btz)(CCPh)] (9) a
Formula	$C_{20}H_{13}N_2SPtCl\cdot CD_2Cl_2$	C40H36N2PtS
Molecular weigth	1253.67	771.86
Temperature	170(2) K	100(2) K
Radiation wavelenght	0.71073 Å	0.56076 Å (synchrotron)
Crystal system	triclinic	Monoclinic
Space group	<i>P</i> 1̄ (No. 2)	<i>P</i> 21/c (No. 14)
Cell parameters	a = 7.9533(7) Å	a = 13.1805(4) Å
	b = 9.8707(8) Å	b = 37.3146(19) Å
	c = 14.3097(11) Å	c = 6.7184(2) Å
	$\alpha = 102.887(6)^{\circ}$	
	$\beta = 103.515(6)^{\circ}$	$\beta = 100.192(3)^{\circ}$
	$\gamma = 102.960(6)^{\circ}$	
Volume	1018.48(15) Å ³	3252.1(2) Å ³
Ζ	2	4
Density calculated	2.052 g/cm ³	1.576 g/cm ³
Absorption coefficient	7.397 mm ⁻¹	2.400 mm ⁻¹
F(000)	601	1536
Theta range for data collection	2.213 to 29.293°	1.729 to 25.650°.
Index ranges	–10≤h≤10, –12≤k≤13, –19≤l≤19	–20≤h≤20, –53≤k≤53, –8≤l≤8
Reflections collected	13115	45728
Independent reflections	$5443 [R_{int} = 0.0794]$	10542 [<i>R</i> _{int} = 0.0982]
Completeness to theta	theta = 19.661°: 99.8%	theta = 19.661°: 97.0%
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	5443 / 0 / 254	10542 / 0 / 404
Goodness-of-fit on F ²	0.982	1.064
Final R indices [I>2sigma(I)]	$R_1 = 0.0493$, w $R_2 = 0.1175$	$R_1 = 0.00736$, w $R_2 = 0.1626$
R indices (all data)	$R_1 = 0.0709, wR_2 = 0.1300$	$R_1 = 0.1287, wR_2 = 0.1854$
Extinction coefficient	0.0082(9)	0.0015(3)
Largest diff. peak and hole	1.96 and –2.29 e.Å ⁻³	3.90 and -4.21 e.Å ⁻³
CCDC	2081667	2084095

The dataset for 9 is generally poor and A alerts appeared in the checkcif. The problem is due to poor quality of the crystal.

Table S2 Selected structural data for [Pt(th(ppy)py)Cl]·CH₂Cl₂ (10·CH₂Cl₂) and [Pt(ph(tbppy)btz)(CCPh)] (9).

distances (Å)	[Pt(th(ppy)py)Cl] CD2Cl2 (10 CH2Cl2)	distances (Å)	[Pt(ph(tbppy)btz)(CCPh)] (9)
Pt-C1	1.983(7)	Pt-C1	1.99(1)
Pt-N1	1.957(6)	Pt-N1	2.00(7)
Pt–N2	2.109(5)	Pt-N2	2.13(7)
Pt–Cl	2.293(3)	Pt-C33	1.98(1)
C4–C20	1.45(1)	C12-C11	1.46(1)
C30–C24	1.49(1)	C6-C7	1.47(1)
angles (°)		angles (°)	
Cl-Pt-N1	178.8(2)	C33-Pt-N1	175.3(4)
C1-Pt-N2	161.3(3)	C1-Pt-N2	159.1(3)
C1-Pt-N1	82.2(3)	C1-Pt-N1	81.4(3)
N1-Pt-N2	79.1(2)	N1-Pt-N2	77.6(3)
Cl-Pt-C1	98.6(3)	C33-Pt-C1	93.9(4)
Cl-Pt-N2	100.0(2)	C33-Pt-N2	107.1(4)
C3–S1–C4	90.4(4)	C14-S1-C12	89.3(5)
C1-C4-C20-C21	176.7(9)	C1-C6-C7-C8	175.8(9)
N2-C30-C24-C23	178.0(8)	N2-C12-C11-C10	179.5(9)
C2-C1-C4-C20	175.0(8)	C13-N2-C12-C11	179.6(8)
C21-C22-C40-C45	38.8(11)	С8-С9-С19-С24	33.2(14)
Sum of angles around Pt	360		360

Table S3 Redox potentials of the HC^N^N protoligands.^a

	E1/2 (Red1)	$E_{\rm pc}$ (Red2)	$E_{\rm pc}$ (Red3)
Hth(ppy)py	-2.53	-3.28	
Hth(tbppy)py	-2.57	-3.39	
Hbth(ppy)py	-2.58	-3.04	-3.18
Hbth(tbppy)py	-2.51	-2.92	-3.05
Hph(ppy)tz	-2.44	-3.22	
Hph(tbppy)tz	-2.50	-2.75	-3.43
Hna(ppy)tz	-2.44	-3.02	
Hna(tbppy)tz	-2.45	-3.07	
Hth(tbppy)tz	-2.41		
Hph(ppy)btz	-2.26	-2.76	-3.19
Hph(tbppy)btz	-2.31	-2.89	-3.27

^a Electrochemical potentials [V], $E_{1/2}$ for reversible redox waves, E_{pc} for irreversible reduction waves, measured in 0.1 M n Bu₄NPF₆/THF at 298 K, scan rate 100 mV/s.

Table S4 Selected redox potentials of [Pt(C^N^N)(Cl/R)] complexes.^a

			Ox (in CH ₂ Cl ₂) Red (Red (in THF))		ΔE
C^N^N	Х	Number	$E_{\rm pa} {\rm ox} 2$	$E_{\rm pa} { m ox} 1$	<i>E</i> _{1/2} red 1	<i>E</i> _{1/2} red 2	red 2–red 1	ox 1–red 1
ph(ppy)tz	Cl	(1)	-	0.46	-1.64	-2.32	0.68	2.10
ph(tbppy)tz	Cl	(2)	1.14	0.67	-1.64	-2.34	0.70	2.31
ph(tbppy)tz	CCPh	(3)	0.60	0.39	-1.66	-2.33	0.67	2.05
ph(tbppy)tz	CCC ₆ F ₅	(4)	1.02	0.55	-1.62	-2.25	0.63	2.17
na(ppy)tz	Cl	(5)	1.08	0.40	-1.63	-2.28	0.65	2.03
na(tbppy)tz	CCPh	(6)	0.62	0.34	-1.66	-2.33	0.67	2.00
ph(ppy)btz	Cl	(7)	1.16	0.53	-1.48	-2.13	0.65	2.01
ph(tbppy)btz	Cl	(8)	1.16	0.61	-1.51	-2.17	0.66	2.12
ph(tbppy)btz	CCPh	(9)	0.57	0.17	-1.54 ^b	-2.20 b	0.66	1.71
th(ppy)py	Cl	(10)	-	0.55	-1.76	-2.40	0.64	2.28
th(tbppy)py	Cl	(11)	1.22	0.86	-1.76	-2.42	0.66	2.62
th(tbppy)py	CCPh	(12)	0.74	0.42	-1.74	-2.38	0.64	2.16

th(tbppy)py	CCC ₆ F ₅	(13)	0.91	0.32	-1.72	-2.30	0.58	2.04
bth(ppy)py	Cl	(14)	-	0.48	-1.65	-2.30	0.62	2.16
bth(tbppy)py	Cl	(15)	1.09	0.55	-1.70	-2.35	0.65	2.25
bth(tbppy)py	CCPh	(16)	0.42	0.19	-1.71	-2.33	0.62	1.90
th(tbppy)tz	Cl	(17)	0.75	0.59	-1.64	-2.33	0.69	2.23
th(tbppy)tz	CCPh	(18)	0.76	0.40	-1.64	-2.32	0.68	2.04

^a Plots in Figs S5-S26, this ESI. Electrochemical potentials [V] with an accuracy of ±0.003 V, vs ferrocene/ferrocenium; $E_{1/2}$ for reversible redox waves, E_{Pc} for irreversible reduction waves and E_{Pa} for irreversible oxidation waves; measured in 0.1 M *n*Bu₄NPF₆/CH₂Cl₂ or THF at 298 K, scan rate 100 mV/s, oxidations measured in CH₂Cl₂, reductions in THF. ^b Measured in CH₂Cl₂.

Table S5 UV-vis absorption maxima of HC^N^N protoligands.^a

HC^N^N	λ1 (ε)	λ2 (ε)	λ3 (ε)	$\lambda_4(\varepsilon)$	λ5 (ε)	λ6 (ε)
Hph(ppy)tz	257sh (2.96)	266 (3.42)	-	299sh (1.20)	325 (1.13)	344sh (0.46)
Hph(tbppy)tz	-	273 (3.65)	-	-	325 (1.21)	340sh (0.74)
Hna(tbppy)tz	-	266 (4.02)	286 (3.48)	299sh (2.71)	333 (1.14)	347sh (0.69)
Hph(ppy)btz	257 (4.25)	271 (3.99)	-	286sh (3.22)	329 (2.29)	342 (2.05)
Hph(tbppy)btz	258 (2.88)	275 (3.19)	-	-	329 (1.70)	341 (1.60)
Hth(ppy)py	250 (3.67)	280 (3.18)	-	306sh (1.88)	328 (1.46)	350sh (0.56)
Hth(tbppy)py	252 (1.98)	282 (2.63)	-	-	328 (0.92)	350sh (0.27)
Hbth(ppy)py	255 (2.53)	284 (2.22)	-	317sh (1.82)	327 (1.82)	353sh (0.75)
Hbth(tbppy)py	261 (2.39)	284 (2.85)	-	318sh (1.72)	327 (1.69)	354sh (0.44)
Hth(tbppy)tz	-	280 (3.15)	-	-	326 (1.16)	349 (0.45)

^a Measured in CH₂Cl₂ (298 K), sh = shoulder, wavelength λ in nm, extinction coefficients ϵ in 10⁴ M⁻¹cm⁻¹.

Table S6 UV-vis absor	ption maxima of the	$[Pt(C^N^N)X]$	complexes. ^a
-----------------------	---------------------	----------------	-------------------------

C^N^N	Х		λ1 (ε)	λ2 (ε)	λз (ε)	$\lambda_4(\varepsilon)$	λ5 (ε)	λ6 (ε)	λ7 (ε)	λs (ε)	λ9 (ε)	λ10 (ε)
ph(ppy)tz	Cl	(1)		-	296	321sh	337	373	-	426sh	447	501sh
					(2.82)	(1.71)	(1.86)	(1.25)		(0.49)	(0.44)	(0.09)
ph(tbppy)tz	Cl	(2)	271sh		297		338	373	-	425sh	448	499sh
			(1.99)		(2.81)		(2.02)	(1.04)		(0.36)	(0.40)	(0.05)
	CCPh	(3)	273sh	285	298		339	377	-	444sh	466	545sh
			(4.04)	(4.24)	(4.14)		(2.22)	(1.58)		(0.67)	(0.75)	(0.07)
	CCC ₆ F ₅	(4)		274sh	298		338	371	-	435sh	454	509sh
				(2.88)	(3.29)		(1.95)	(1.39)		(0.66)	(0.68)	(0.06)
na(tbppy)tz	Cl	(5)	250		297		337	369		430sh	445	500sh
			(2.61)		(2.96)		(2.19)	(1.22)		(0.44)	(0.49)	(0.02)
	CCPh	(6)		284	300	308sh	331sh	369	398sh	413sh	463	527sh
				(5.09)	(5.29)	(5.12)	(3.02)	(1.88)	(1.32)	(0.81)	(0.88)	(0.18)
ph(ppy)btz	Cl	(7)		-	305	320sh	352	384	-	440sh	466	515sh
					(2.86)	(2.48)	(2.46)	(1.26)		(0.32)	(0.35)	(0.08)
ph(tbppy)btz	Cl	(8)		271sh	306	323sh	350	382sh	-	438sh	466	514sh
				(3.58)	(4.34)	(3.07)	(3.87)	(1.91)		(0.46)	(0.51)	(0.10)
	CCPh	(9)		270	301	323sh	348	384	-	476	505	574sh
				(3.54)	(3.16)	(2.28)	(2.28)	(1.51)		(0.56)	(0.52)	(0.05)
th(ppy)py	Cl	(10)		-	287sh	298	335sh	367	384sh	-	435	491sh
					(3.39)	(3.58)	(1.86)	(1.51)	(1.35)		(0.41)	(0.04)
th(tbppy)py	Cl	(11)		-	284	310	336sh	366	380sh	-	435	489sh
					(2.23)	(2.66)	(1.59)	(1.19)	(1.11)		(0.33)	(0.04)
	CCPh	(12)		273	290	306	323sh	373	-	440	467sh	517sh
				(2.42)	(2.40)	(2.19)	(1.85)	(1.26)		(0.51)	(0.45)	(0.04)
	CCC ₆ F ₅	(13)		270sh	285	313	341sh	371	-	424sh	443	501sh
				(2.71)	(3.23)	(2.87)	(1.89)	(1.72)		(0.76)	(0.79)	(0.05)

bth(ppy)py	Cl	(14)	-	291		351	385	-	-	439	495sh
				(3.64)		(1.97)	(1.66)			(0.27)	(0.06)
bth(tbppy)py	Cl	(15)	-	287	310	349	387	-	-	440	496
				(3.96)	(3.43)	(2.50)	(1.96)			(0.34)	(0.07)
	CCPh	(16)	272sh	287	296	355	381	-	407	469	541sh
			(2.98)	(3.02)	(2.91)	(1.64)	(1.53)		(1.28)	(0.43)	(0.02)
th(tbppy)tz	Cl	(17)	-	290sh	306	327sh	359	380sh	-	436	505sh
				(2.48)	(2.92)	(2.15)	(1.64)	(1.15)		(0.35)	(0.05)
	CCPh	(18)	286	299	300	318sh	367	381sh	441	468	560sh
			(2.86)	(2.80)	(2.79)	(2.21)	(2.18)	(1.55)	(0.68)	(0.63)	(0.06)

^a Measured in CH₂Cl₂ (298 K), sh = shoulder, wavelength λ in nm, extinction coefficients ϵ in 10⁴ M⁻¹cm⁻¹.

Table S7 Complete emission data and PLYQs, as well as exited state lifetime data for each complex in CH₂Cl₂ at 298 K and in frozen glassy matrix of CH₂Cl₂/MeOH (V:V = 1:1) at 77 K. For multiexponential decays, the amplitude-weighted average lifetimes are given as well as the different components in square brackets with relative amplitudes as percentages in parentheses.

clas s	Complex	Medium (T/K)	λ em	$\lambda_{ m exc}$	Tav ^a	$\Phi \pm 0.02/\pm$ 0.05
		CH ₂ Cl ₂ , air (298)		241 450	n.d.	< 0.02
	[Pt(th(ppy)py)Cl] (10)	CH2Cl2, Ar (298)	621, 660 SN	341, 450	5.04 ± 0.24 [5.49 \pm 0.06 (89); 1.3 \pm 0.6 (11)]	0.05
		glassy matrix (77)	598, 650, 710	320, 367, 426	$11.0 \pm 0.4 \ [12.34 \pm 0.10 \ (79);$ $6.1 \pm 0.5 \ (21)]$	0.39
		CH2Cl2, air (298)		250, 400, 450-h	n.d.	< 0.02
	[Pt(bth(ppy)py)Cl] (14)	CH2Cl2, Ar (298)	675, 745	350, 400, 450sn	$1.022 \pm 0.029 [3.0 \pm 0.7 (1);$ $1.015 \pm 0.009 (99)]$	0.02
		glassy matrix (77)	655, 720, 800	373, 400	$4.71 \pm 0.17 $ [5.60 $\pm 0.10 $ (35); $4.23 \pm 0.06 $ (65)]	0.23
	[Pt(th(tbppy)py)Cl] (11)	CH2Cl2, air (298)	617 660 sh	215 270 440	0.3393 ± 0.0022	< 0.02
В		CH2Cl2, Ar (298)	617, 660 SH	515, 570, 440	1.809 ± 0.013	0.07
		glassy matrix (77)	595, 645, 700	375, 425, 470sh, 490sh	$11.6 \pm 0.9 \ [13.17 \pm 0.14 \ (59);$ $9.32 \pm 0.26 \ (41)]$	0.58
		CH2Cl2, air (298)	675 720	250, 295, 440ch	0.3019 ± 0.0025	< 0.02
	[Pt(bth(tbppy)py)Cl] (15)	CH2Cl2, Ar (298)	075,750	550, 575, 440SH	1.069 ± 0.008	0.03
		glassy matrix (77)	655, 720, 745	375, 480	$4.16 \pm 0.16 \ [5.64 \pm 0.12 \ (21);$ $3.76 \pm 0.05 \ (79)]$	0.13
		CH2Cl2, air (298)	620 660ch	300, 373, 440,	0.3146 ± 0.0020	0.04
	[Pt(th(tbppy)py)CCPh] (12)	CH2Cl2, Ar (298)	020, 000311	475sh	1.628 ± 0.012	0.14
		glassy matrix (77)	590, 640, 700sh	360, 425sh, 460	8.2 ± 0.3 [9.69 ± 0.15 (37); 7.39 ± 0.11 (63)]	0.79
	[Pt/hth(thnny)ny)CCPh]	CH2Cl2, air (298)	675 740	360, 380sh,	0.2772 ± 0.0021	< 0.02
	[Pt(bth(tbppy)py)CCPh] (16)	CH2Cl2, Ar (298)	070,740	405sh, 475	1.110 ± 0.008	0.04
		glassy	650, 720, 785	365, 400sh, 460	3.57 ± 0.13 [6.00 \pm 0.23 (8);	0.24

		matrix (77)			3.34 ± 0.03 (92)]	
		CH ₂ Cl ₂ , air		212 270 425 sh	0.3513 ± 0.0023	0.03
	[Pt(th(tbppy)py)CC ₆ F ₅]	(298) CH ₂ Cl ₂ , Ar	620, 660 sh	445 370, 425sn,	2.178 ± 0.016	0.15
	(13)	glassy matrix (77)	595, 650, 705	350-375, 430	8.7 ± 0.3 [10.08 ± 0.09 (71); 5.5 ± 0.3 (29)]	0.79
		CH ₂ Cl ₂ M, air (298)	()5 (75-h	252 464	0.1832 ± 0.0014	< 0.02
	[Pt(ph(tbppy)btz)Cl] (8)	CH2Cl2, Ar (298)	635, 675SN	353, 464	0.2057 ± 0.0018	< 0.02
		glassy matrix (77)	600, 656, 710sh	346, 425, 452	1.59 ± 0.06 [1.871 ± 0.022 (53); 1.28 ± 0.03 (47)]	0.07
		CH2Cl2, air (298)	626 645sh	302, 346, 380, 443sh 473	0.1891 ± 0.0014	0.03
	[Pt(ph(tbppy)tz)CCPh] (3)	CH2Cl2, Ar (298)	020,010011	495sh	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.06
		glassy matrix (77)	558, 605, 660sh	336, 370, 425, 438, 468	$\begin{array}{r} 3.50 \ \pm \ 0.12 \ [5.59 \ \pm \ 0.24 \ (8); \\ 3.31 \ \pm \ 0.03 \ (92)] \end{array}$	0.62
	[Pt(na(tbppy)tz)CCPh] (6)	CH2Cl2, air (298)	635	311, 335sh, 370,	$\begin{array}{c} 0.200 \pm 0.007 \ [0.2105 \pm 0.0016 \\ (84); \ 0.147 \pm 0.011 \ (16)] \end{array}$	0.05
Α		CH2Cl2, Ar (298)		398, 420sh, 468	$\begin{array}{c} 0.407 \pm 0.014 \ [0.97 \pm 0.07 \ (2); \\ 0.395 \pm 0.004 \ (98)] \end{array}$	0.10
		glassy matrix (77)	555, 595, (650sh)	330, 395, 437, 463	$\begin{array}{r} 3.97 \pm 0.16 \ [4.29 \pm 0.04 \ (67); \\ 3.33 \pm 0.12 \ (33)] \end{array}$	0.82
		CH2Cl2, air (298)	655	360, 470, 500sh	0.089 ± 0.003 [0.116 ± 0.004 (14); 0.0844 ± 0.0008 (86)]	< 0.02
	[Pt(ph(tbppy)btz)CCPh] (9)	CH2Cl2, Ar (298)			$\begin{array}{c} 0.112 \pm 0.004 \ [0.262 \pm 0.019 \\ (2); 0.1085 \pm 0.0010 \ (98)] \end{array}$	< 0.02
		glassy matrix (77)	600, 650, 700sh	360, 470, 500sh	$\begin{array}{l} 1.70 \pm 0.06 \ [2.25 \pm 0.04 \ (25); \\ 1.52 \pm 0.02 \ (75)] \end{array}$	0.18
		CH2Cl2, air (298)	605, 635sh	345, 370, 445sh,	0.3195 ± 0.0025	0.05
	[Pt(ph(tbppy)tz)CC ₆ F ₅] (4)	CH2Cl2, Ar (298)	,	465	0.91 ± 0.03 [2.7 ± 0.4 (1); 0.899 ± 0.008 (99)]	0.12
		glassy matrix (77)	555, 600, 655sh, 725sh	340, 365, 420, 445	$3.53 \pm 0.12 \ [4.61 \pm 0.14 \ (13); \\ 3.37 \pm 0.03 \ (87)]$	0.49
	[Pt(th(tbppy)tz)Cl]	CH ₂ Cl ₂ , air (298)	655	368, 450	0.1351 ± 0.0009	< 0.02
	(17)	CH2Cl2, Ar (298)		,	$\begin{array}{c} 0.220 \pm 0.010 \ [0.8 \pm 0.8 \ (0.4); \\ 0.2173 \pm 0.0020 \ (99.6)] \end{array}$	< 0.02
с		glassy matrix (77)	610, 660, 725sh	364, 430, 503sh	$\begin{array}{l} 4.17 \pm 0.15 \ [6.25 \pm 0.07 \ (35); \\ 3.04 \pm 0.06 \ (65)] \end{array}$	0.13
_		CH2Cl2, air (298)	658	375, 470	0.1361 ± 0.0009	< 0.02
	[Pt(th(tbppy)tz)CCPh] (18)	CH2Cl2, Ar (298)			0.2474 ± 0.0016	< 0.02
	、 /	glassy matrix (77)	604, 657, 725sh	365, 425, 454	4.19 ± 0.14 [5.40 ± 0.06 (45); 3.22 ± 0.06 (55)]	0.35

^a We attribute the biexponential lifetimes in fluid solution to different conformations that can be thermally accessed while possessing comparable excited-state character yet different deactivation rates. Moreover, diverse emitting states could coexist in thermal equilibrium, which might be influenced by the microenvironment affecting the excited states' character (particularly in frozen glassy matrices or in solid samples).

class	complex	λ em (nm)	τ (μs)	$\Phi_L{}^b$
	[Pt(ph(tbppy)2-quin)Cl]	624	<0.2 µs	< 0.001
D	[Pt(ph(tbppy)1-isoquin)Cl]	621	<0.2	< 0.001
	[Pt(ph(tbppy)3-isoquin)Cl]	530, 566(sh)	7.6	0.78
	[Pt(ph(tbppy)3-isoquin)(CCC ₆ F ₅)]	521, 556(sh)	7.6	0.99
	[Pt(2,4-F2ph(tbppy)3-isoquin)Cl] ^c	528, 565(sh)	2.0	0.14
	[Pt(2-MeOph(tbppy)3-isoquin)Cl] ^c	585	3.3	0.23
	[Pt(2-CF3ph(tbppy)3-isoquin)Cl] ^c	534, 569(sh)	8.9	0.63
Ε	[Pt(2,3F2ph(tbppy)3-isoquin)Cl] ^c	529, 565(sh)	8.9	0.65
	[Pt(1,3-F2ph(tbppy)3-isoquin)Cl] ^c	529, 561(sh)	10.1	0.69
	[Pt(1-F,3-MeOph(tbppy)3-isoquin)Cl] ^c	529, 561(sh)	9.5	0.73
	[Pt(2-NO2ph(tbppy)3-isoquin)Cl] °	529, 565, 622 (sh)	6.7	0.79
	[Pt(th(tbppy)3-isoquin)Cl]	588, 632, 687(sh)	10.1	0.25
	[Pt(th(tbppy)3-isoquin)(CCC ₆ F ₅)]	591, 636, 680(sh)	8.7	0.66
	[Pt(bth(tbppy)3-isoquin)Cl]	644, 701, 780(sh)	4.5	0.033
	[Pt(bth(tbppy)3-isoquin)(CCC ₆ F ₅)]	653, 710(sh)	4.6	0.082
F	[Pt(na(tbppy)py]	561, 597(sh)	0.7	0.10
	[Pt(ph(tbppy)3-isoquin)(CC4-tolyl)]	573	3.5	0.27

Table S8. Selected photophysical properties of previously reported Pt(II)-complexes.^a

^a From ref. 1, measured in CH₂Cl₂ solution at 298 K; quin = 2-quinolinyl, 3-isoquin = 3-isoquinolinyl, 1-isoquin = 1-isoquinolyl. ^b Φ_L measured by the optical dilute method with [Ru(bpy)₃](PF₆)₂ (bpy = 2,2'-bipyridine) in degassed CH₃CN as standard (Φ_L = 0.062) and calculated by: $\Phi_{Ls} = \Phi_{Lr} (B_r/B_s)(n_s/n_r)^2(D_s/D_r)$, s and r refer to sample and reference, *n* is the refractive index of the solvents, *D* is the integrated intensity and Φ_L is the emission quantum yield. The excitation intensity *B* is calculated by: B = 1– 10^{-ad} , where *a* is the absorbance at the excitation wavelength and *d* is the optical path length (*d* = 1 cm in all cases). Errors for Φ_L values (+/–10%) are estimated. ^c Nomenclature: 1 represents the position *ortho* to the Pt bound C atom.

Table S9 TDDFT calculated transitions contributing to the emissive *T*¹ state.^a

complex	transitions	contribution [%]
1	HOMO-7 → LUMO	22.6
	HOMO → LUMO	61.3
2	HOMO-7 → LUMO	19.9
	HOMO-1 → LUMO	28.5
	HOMO → LUMO	27.3
3	HOMO-8 → LUMO	20.5
	HOMO-4 → LUMO	10.4
	HOMO-1 → LUMO	22.7
	HOMO → LUMO	31.2
4	HOMO-7 → LUMO	28.0
	HOMO-1 → LUMO	29.2
	HOMO → LUMO	21.4
6	HOMO-8 → LUMO	25.4
	HOMO-3 → LUMO	17.4
	HOMO → LUMO	35.2
9	HOMO-7 → LUMO	15.2
	HOMO-2 → LUMO	57.6
11	HOMO → LUMO	56.1
	HOMO → LUMO+1	37.9
12	HOMO → LUMO	53.7

	HOMO → LUMO+1	35.0
13	HOMO → LUMO	56.7
	HOMO → LUMO+1	35.1
16	HOMO → LUMO	63.9
	HOMO → LUMO+1	31.9
18	HOMO-8 → LUMO	21.6
	HOMO-1 → LUMO	44.5
	HOMO → LUMO	14.6

^a Based on the optimised *T*₁ geometry. Only contributions with a weight > 10% are listed.

References

 P.-K. Chow, G. Cheng, G. S. M. Tong, W.-P.g To, W.-L. Kwong, K.-H. Low, C.-C. Kwok, C. Ma, C.-M. Che, Luminescent Pincer Platinum(II) Complexes with Emission Quantum Yields up to Almost Unity: Photophysics, Photoreductive C–C Bond Formation, and Materials Applications, *Angew. Chem. Int. Ed.* 2015, 54, 2084–2089.