Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Stannylene Cyanide and its Use as Cyanosilylation Catalyst

Vivek Kumar Singh, Prakash Chandra Joshi, Hemant Kumar, Rahul Kumar Siwatch, Chandan Kumar Jha, and Selvarajan Nagendran*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

CONTENTS

		Page no.			
Chart S1	Low-valent main group catalysts for the hydroboration of carbonyl compounds	4			
Chart S2	Low-valent main group catalysts for the cyanosilylation of carbonyl compounds				
Figures S1-S16	NMR spectra of compounds 2-6				
Figure S17	IR spectrum of compound 5				
Table S1	Crystal data and structure refinement for compounds 2-4 and 6				
	General procedure for the cyanosilylation of aldehydes using compound 5 as a catalyst	25			
Figures S18-S30	¹ H NMR spectra for the entries in Table 1				
	NMR data for the cyanosilylated products reported in Table 2	38-43			
Figures S31-S76	¹ H and ¹³ C NMR spectra of the cyanosilylated products in Table 2				
	General procedure for the intermolecular chemoselective cyanosilylation using catalyst 5 (eqns 1-3)	90			
Figures S77-S82	¹ H and ¹³ C NMR spectra of the reactions shown in eqns 1-3				
Figure S83	The ¹ H NMR spectrum of the equimolar reaction of compound 5 with acetophenone. The spectrum was recorded after 4 h of adding acetophenone				
Table S2	The equimolar reactions of catalyst 5 with hexanaldehyde, benzaldehyde, 4-chlorobenzaldehyde, and 2,6- dichlorobenzaldehyde to afford cyanostannylated products S1 , S2 , S3 , and S4 , respectively				
Figures S84-S91	The ¹ H and ¹¹⁹ Sn NMR spectra of compounds S1-S4				
Figure S92	The ¹ H NMR spectrum of the reaction of benzaldehyde with TMSCN at 50 °C in the presence of 0.5 mol% of compound $\bf 6$				
Figures S93-S96	The plots of In[A] versus t for the benzaldehyde cyanosilylation done at four different temperatures (40, 50, 60, and 70 °C)				

Figure S97	The Arrhenius plot of $ln(k)$ versus $1/T$	111
Figure S98	¹ H NMR spectrum of the reaction of compound 6 with TMSCN to afford cyanosilylated product 7 and catalyst 5 . The spectrum was recorded after 0.5 h from adding a slight excess TMSCN to compound 6	112

Chart S1. Low-valent main group catalysts for the hydroboration of carbonyl compounds.

Chart S2. Low-valent main group catalysts for the cyanosilylation of carbonyl compounds.

NMR spectra of compounds 2-6

Figure S1. ¹H NMR spectrum of compound 2.

Figure S2. ¹³C NMR spectrum of compound 2.

Figure S3. ¹¹⁹Sn NMR spectrum of compound 2.

Figure S4. ¹H NMR spectrum of compound 3.

Figure S5. ¹³C NMR spectrum of compound 3.

Figure S6. ²⁹Si NMR spectrum of compound 3.

Figure S7. ¹¹⁹Sn NMR spectrum of compound **3**.

Figure S8. ¹H NMR spectrum of compound **4**.

Figure S9. ¹³C NMR spectrum of compound 4.

Figure S10. ¹¹⁹Sn NMR spectrum of compound **4**.

Figure S11. ¹H NMR spectrum of compound 5.

Figure S12. ¹³C NMR spectrum of compound 5.

Figure S13. ¹¹⁹Sn NMR spectrum of compound 5.

Figure S144. ¹H NMR spectrum of compound 6.

Figure S155. ¹³C NMR spectrum of compound 6.

Figure S166. ¹¹⁹Sn NMR spectrum of compound 6.

IR spectrum of compound 5

Agilent Resolutions Pro

Figure S177. IR spectrum of compound 5.

Table S1. Crystal data and structure refinement for compounds 2-4 and6

	2	3	4	6
Empirical formula	$C_{15}H_{23}CIN_2Sn$	$C_{21}H_{41}N_3Si_2Sn$	$C_{19}H_{27}N_3Sn$	$C_{17}H_{25}N_3OSn$
Formula weight	385.49	510.461	416.16	812.22
Temperature, K	273(2)	100(2)	100(2)	298(2)
Wavelength, Å	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Triclinic	Orthorhombic
Space group	P2 ₁ /n	<i>P</i> -1	<i>P</i> -1	Pbca
	<i>a</i> = 11.035(2) Å	<i>a</i> = 8.6894(4) Å	<i>a</i> = 9.766(2) Å	<i>a</i> = 7.1880(8) Å
	<i>b</i> = 11.668(2) Å	<i>b</i> = 11.1113(5) Å	<i>b</i> = 10.098(2) Å	<i>b</i> = 18.634(2) Å
Unit cell	<i>c</i> = 13.378(2) Å	<i>c</i> = 15.0434(7) Å	<i>c</i> = 10.208(2) Å	<i>c</i> = 27.924(3) Å
dimensions	<i>α</i> = 90°	α = 96.817(3)°	lpha = 97.537(7)°	<i>α</i> = 90°
	β=98.890(6)°	β = 105.219(2)°	β = 106.002(7)°	β = 90°
	γ= 90°	γ=107.753(2)°	γ= 96.018(7)°	γ= 90°
Volume, Å ³	1701.8(5)	1303.18(11)	948.8(3)	3740.2(7)
Z	4	2	2	4
Density				
(calculated),	1.505	1.301	1.457	1.442
Mg/m ³				
Absorption	1 (10	1 002	1 250	1 272
coefficient, mm ⁻¹	1.649	1.083	1.350	1.372
F(000)	776.0	532.0	422.9	1648.0
Crystal size, mm ³		0.36 × 0.24 ×	0.43 x 0.21 x	0.48 × 0.23 ×
	0.32 × 0.21 × 0.12	0.18	0.12	0.17

heta range for data collection, °	4.46 to 56.772	3.94 to 56.68	4.22 to 56.72	4.6 to 56.6
	-14 ≤ <i>h</i> ≤ 14,	-11 ≤ <i>h</i> ≤ 11,	-13 ≤ <i>h</i> ≤ 13,	$-9 \le h \le 9,$
Limiting indices	$-15 \le k \le 15,$	$-14 \le k \le 14,$	$-13 \le k \le 13,$	$-24 \le k \le 24,$
	-17 ≤ <i>l</i> ≤ 17	-20 ≤ <i>l</i> ≤ 20	-13 ≤ <i>l</i> ≤ 13	-37 ≤ l ≤ 37
Reflections collected	29101	33549	26574	81165
Indonondont	4256 [<i>R</i> _{int} =	6526 [<i>R</i> _{int} =	4707 [<i>R</i> _{int} =	4656 [<i>R</i> _{int} =
rofloctions	0.0943, R _{sigma} =	0.0387, R _{sigma} =	0.0548, R _{sigma} =	0.0586, <i>R</i> _{sigma} =
Absorption	0.0776]	0.0279]	0.0357]	0.0232]
	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
	from equivalents	from	from	from
Refinement		equivalents	equivalents	equivalents
	Full-matrix least-	Full-matrix	Full-matrix	Full-matrix
		least-squares on	least-squares on	least-squares
method	squares on F ²	F2	F2	on F ²
Data / restraints / parameters	4256/0/176	6526/0/254	4707/0/212	4656/0/203
Goodness-of-fit on F ²	0.983	1.055	1.036	1.060
Final <i>R</i> indices	$R_1 = 0.0444,$	$R_1 = 0.0257,$	$R_1 = 0.0250,$	$R_1 = 0.0311,$
[<i>l</i> >2ơ(<i>l</i>)]	$wR_2 = 0.0637$	$wR_2 = 0.0602$	$wR_2 = 0.0703$	wR ₂ = 0.0649
Pindings (all dats)	$R_1 = 0.1299,$	$R_1 = 0.0304,$	$R_1 = 0.0260,$	$R_1 = 0.0558,$
k indices (all data)	$wR_2 = 0.0795$	wR ₂ = 0.0631	wR ₂ = 0.0717	wR ₂ = 0.0766
Largest diff. peak and hole, eÅ ⁻³	0.38 and -0.34	0.70 and -0.68	0.55 and -0.45	1.23 and -0.90

General procedure for the cyanosilylation of aldehydes using compound 5 as a catalyst

Aldehyde (1 mmol), TMSCN (1.1 mmol), and [(*i*-Bu)₂ATISnCN] (**5**) (0.1–2 mol%) were taken in a Schlenk flask. The reaction mixture was stirred at room temperature/50 °C for the required period (see table 2). The progress of the reaction was monitored by ¹H NMR spectroscopy; after the completion of the reaction, the cyanosilylated product was also characterized by ¹³C NMR spectroscopic techniques.

¹H NMR spectra for the entries in Table 1

Figure S18. ¹H NMR spectrum for the cyanosilylation of C_6H_5CHO with TMSCN without a catalyst for 6 h at rt [IS (Internal standard) = hexamethyl benzene].

Figure S19. ¹H NMR spectrum for the cyanosilylation of C_6H_5 CHO with TMSCN without a catalyst for 4 h at 50 °C.

Figure S20. ¹H NMR spectrum for the cyanosilylation of C_6H_5 CHO with TMSCN using a catalyst (5) loading of 0.5 mol% for 0.33 h at rt.

Figure S21. ¹H NMR spectrum for the cyanosilylation of C_6H_5 CHO with TMSCN using a catalyst (5) loading of 0.5 mol% for 1 h at rt.

Figure S22. ¹H NMR spectrum for the cyanosilylation of C_6H_5 CHO with TMSCN using a catalyst (5) loading of 2.0 mol% for 1 h at rt.

Figure S23. ¹H NMR spectrum for the cyanosilylation of C_6H_5 CHO with TMSCN using a catalyst (5) loading of 2.0 mol% for 2 h at rt.

Figure S24. ¹H NMR spectrum for the cyanosilylation of C_6H_5 CHO with TMSCN using a catalyst (5) loading of 0.5 mol% for 0.25 h at 50 °C.

Figure S25. ¹H NMR spectrum for the cyanosilylation of C_6H_5 CHO with TMSCN using a catalyst (5) loading of 0.5 mol% for 0.33 h at 50 °C.

Figure S26. ¹H NMR spectrum for the cyanosilylation of C_6H_5CHO with TMSCN using a catalyst (ATIH) loading of 0.5 mol% for 0.33 h at rt.

Figure S27. ¹H NMR spectrum for the cyanosilylation of C_6H_5 CHO with TMSCN using a catalyst (**2**) loading of 0.5 mol% for 0.33 h at rt.

Figure S28. ¹H NMR spectrum for the cyanosilylation of C_6H_5 CHO with TMSCN using a catalyst (**3**) loading of 0.5 mol% for 0.33 h at 50 °C.

Figure S29. ¹H NMR spectrum for the cyanosilylation of C_6H_5 CHO with TMSCN using a catalyst (4) loading of 0.5 mol% for 0.33 h at 50 °C.
Entry 13

Figure S30. ¹H NMR spectrum for the cyanosilylation of C_6H_5 CHO with TMSCN using a catalyst (5) loading of 0.5 mol% for 0.33 h at 50 °C. This reaction was carried out on a large scale; benzaldehyde (5.0 mmol) and TMSCN (5.5 mmol).

NMR data for the cyanosilylated products reported in Table 2

Entry 1. CH₂(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.21 (s, 9H, Si(CH₃)₃), 2.24 (s, C₆(CH₃)₆), 4.35 (s, 2H, CH₂OSi(CH₃)₃) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.78 (Si(CH₃)₃), 16.93 C₆(CH₃)₆), 48.97 (CH₂OSi(CH₃)₃), 117.65 (CN) 132.14 C₆(CH₃)₆) ppm.

Entry 2. CH₃(CH₂)₄(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.20 (s, 9H, Si(CH₃)₃), 0.89 (t, ³J_{HH} = 7.0 Hz, 3H, CH₂CH₃), 1.31-1.35 (m, 4H, (CH₂)₂CH₃), 1.42-1.48 (m, 2H, (CH₂)₂CH₂), 1.75-1.79 (q, ³J_{HH} = 6.75 Hz, 2H, CH₂CH₂), 2.21 (s, C₆(CH₃)₆), 4.38 (t, ³J_{HH} = 6.6 Hz, 1H, CHOSi(CH₃)₃)) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.26 (Si(CH₃)₆), 14.05 (CH₃), 16.91 C₆(CH₃)₆), 22.51 (CH₂), 24.35 (CH₂), 31.21 (CH₂), 36.32 (CH₂), 61.62 (CHOSi(CH₃)₃), 120.28 (CN), 132.13 C₆(CH₃)₆) ppm.

Entry 3. $CH_3(CH_2)_6(CN)(OTMS)$:

¹H NMR (500 MHz, CDCl₃): δ 0.19 (s, 9H, Si(CH₃)₃), 0.87 (t, ³J_{HH} = 7.0 Hz, 3H, CH₂CH₃), 1.26-1.30 (m, 8H, (CH₂)₄CH₃), 1.40-1.44 (m, 2H, (CH₂)₂CH₂), 1.74-1.78 (q, ³J_{HH} = 6.45 Hz, 2H, CH₂CH₂), 2.17 (s, C₆(CH₃)₆), 4.37 (t, ³J_{HH} = 6.6 Hz, 1H, CHOSi(CH₃)₃) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.31 (Si(CH₃)₃), 14.13 (CH₃), 16.85 C₆(CH₃)₆), 22.68 (CH₂), 24.64 (CH₂), 28.99 (CH₂), 29.14 (CH₂), 31.78 (CH₂), 36.33 (CH₂), 61.57 (CHOSi(CH₃)₃), 120.21 (CN), 132.07 C₆(CH₃)₆) ppm.

Entry 4. C₆H₅CH₂CH₂CH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.23 (s, 9H, Si(CH₃)₃), 2.12-2.16 (m, 2H, CH₂), 2.26 (s, C₆(CH₃)₆), 2.82 (t, ³J_{H,H} = 7.8 Hz, 2H, CH₂), 4.39 (t, ³J_{H,H} = 6.55 Hz, 1H, CHOSi(CH₃)₃), 7.21-7.26 (m, 3H, Ar), 7.31-7.34 (m, 2H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.36 (Si(CH₃)₃), 16.88 C₆(CH₃)₆), 30.71

(CH₂), 37.72 (CH₂), 60.71 (CHOSi(CH₃)₃), 119.97 (CN), 126.49 (C_{Ar}), 128.48 (C_{Ar}), 128.70 (C_{Ar}), 132.10 C₆(CH₃)₆), 140.04 (C_{Ar}) ppm.

Entry 5. $C_6H_5CHCHCH(CN)(OTMS)$:

¹H NMR (500 MHz, CDCl₃): δ 0.24 (s, 9H, Si(CH₃)₃), 2.19 (s, C₆(CH₃)₆), 5.09 (d, ³J_{H,H} = 6.0 Hz, 1 H, CH), 6.14 (dd, ³J_{H,H} = 6.0 and 16.0 Hz, 1 H, CH), 6.77 (d, ³J_{H,H} = 16.0 Hz, 1 H, CH), 7.27-7.38 (m, 5H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = -0.07 (Si(CH₃)₃), 16.72, C₆(CH₃)₆), 62.27, (CHOSi(CH₃)₃), 118.48 (CN), 123.62 (C_{Ar}), 127.02 (C_{Ar}), 128.80 (CH), 128.84 (C_{Ar}), 132.00 C₆(CH₃)₆), 133.97 (C_{Ar}), 135.08 (CH), ppm.

Entry 6. $C_6H_5CH(CN)(OTMS)$:

¹H NMR (500 MHz, CDCl₃): δ 0.25 (s, 9H, Si(CH₃)₃), 2.22 (s, C₆(CH₃)₆), 5.52 (s, 1H, CHOSi(CH₃)₃), 7.38-7.50 (m, 5H, Ph) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 0.18 (Si(CH₃)₃), 16.72, C₆(CH₃)₆), 63.73 (CHOSi(CH₃)₃), 119.29 (CN), 126.44 (C_{Ar}), 129.02 (C_{Ar}), 129.42 (C_{Ar}), 132.02 C₆(CH₃)₆), 136.36 (C_{Ar}).

Entry 7. 4-FC₆H₄CH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.23 (s, 9H, Si(CH₃)₃), 2.22 (s, C₆(CH₃)₆), 5.49 (s, 1 H, CHOSi(CH₃)₃), 7.08-7.12 (m, 2 H, Ar), 7.45-7.47 (m, 2 H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.24 (Si(CH₃)₃), 16.84 C₆(CH₃)₆), 63.06 (CHOSi(CH₃)₃), 115.94 (d, ¹J_{C-F} = 20.0 Hz, *p*-CF), 119.12 (CN), 128.34 (d, ²J_{C-F} = 9.0 Hz, *m*-CH), 132.02 C₆(CH₃)₆), 132.38 (d, ²J_{C-F} = 3.0 Hz, *m*-CH), 162.24 (C_{Ar}), 164.22 (C_{Ar}) ppm.

Entry 8. 4-ClC₆H₄CH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.24 (s, 9H, Si(CH₃)₃), 2.22 (s, C₆(CH₃)₆), 5.47 (s, 1H, CHOSi(CH₃)₃), 7.38-7.42 (m, 4H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.15 (Si(CH₃)₃), 16.89 C₆(CH₃)₆), 63.12 (*C*HOSi(CH₃)₃), 118.93 (*C*N), 127.82 (*C*_{Ar}), 129.30 (*C*_{Ar}), 132.08 *C*₆(CH₃)₆), 134.99 (*C*_{Ar}), 135.47 (*C*_{Ar}) ppm.

Entry 9. 4-BrC₆H₄CH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.24 (s, 9H, Si(CH₃)₃), 2.21 (s, C₆(CH₃)₆), 5.45 (s, 1H, CHOSi(CH₃)₃), 7.34 (d, ³J_{H,H} = 10.5 Hz, 2H, Ar), 7.54 (d, ³J_{H,H} = 10.5 Hz, 2H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.13 (Si(CH₃)₃), 16.86 C₆(CH₃)₆), 63.17 (CHOSi(CH₃)₃), 118.85 (CN), 123.63 (C_{Ar}), 128.08 (C_{Ar}), 132.07 C₆(CH₃)₆), 132.26 (C_{Ar}), 135.50 (C_{Ar}) ppm.

Entry 10. 3-BrC₆H₄CH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.26 (s, 9H, Si(CH₃)₃), 2.21 (s, C₆(CH₃)₆), 5.46 (s, 1H, CHOSi(CH₃)₃), 7.29 (t, ³J_{H,H} = 9.8 Hz, 1H, Ar), 7.39 (d, ³J_{H,H} = 9.6 Hz, 1H, Ar), 7.52 (d, ³J_{H,H} = 9.8 Hz, 1H, Ar), 7.63 (s, 1H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.16 (Si(CH₃)₃), 17.08 C₆(CH₃)₆), 62.96 (CHOSi(CH₃)₃), 118.82 (CN), 123.10 (C_{Ar}), 124.97 (C_{Ar}), 129.49 (C_{Ar}), 130.63 (C_{Ar}), 132.16 C₆(CH₃)₆), 132.58 (C_{Ar}), 138.47 (C_{Ar}) ppm.

Entry 11. 4-CNC₆H₄CH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.24 (s, 9H, Si(CH₃)₃), 2.19 (s, C₆(CH₃)₆), 5.56 (s, 1H, CHOSi(CH₃)₃), 7.58-7.71 (m, 4H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.35 (Si(CH₃)₃), 16.88 C₆(CH₃)₆), 62.64 (CHOSi(CH₃)₃), 113.34 (C_{Ar}), 118.14 (CN), 118.32 (CN), 126.90 (C_{Ar}), 131.99 C₆(CH₃)₆), 132.88 (C_{Ar}), 141.20 (C_{Ar}) ppm.

Entry 12. 4-NO₂C₆H₄CH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.28 (s, 9H, Si(CH₃)₃), 2.22 (s, C₆(CH₃)₆), 5.60 (s, 1H, CHOSi(CH₃)₃), 7.66 (d, ³J_{H,H} = 8.6 Hz, 2H, Ar), 8.27 (d, ³J_{H,H} = 8.8 Hz, 2H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.21 (Si(*C*H₃)₃), 16.90 C₆(*C*H₃)₆), 62.76 (*C*HOSi(CH₃)₃), 118.27 (*C*N), 124.31 (*C*_{Ar}), 127.24 (*C*_{Ar}), 132.12 C₆(CH₃)₆), 143.01 (*C*_{Ar}), 148.57 (*C*_{Ar}) ppm.

Entry 13. 3-NO₂C₆H₄CH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.28 (s, 9H, Si(CH₃)₃), 2.20 (s, C₆(CH₃)₆), 5.61 (s, 1H, CHOSi(CH₃)₃), 7.63 (t, ³J_{H,H} = 8.0 Hz, 1H, Ar), 7.82 (d, ³J_{H,H} = 7.6 Hz, 1H, Ar), 8.24 (d, ³J_{H,H} = 8.1 Hz, 1H, Ar), 8.34 (s, 1H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.36 (Si(CH₃)₃), 16.91 C₆(CH₃)₆), 62.62 (CHOSi(CH₃)₃), 118.39 (*C*N), 121.37 (*C*_{Ar}), 124.33 (*C*_{Ar}), 130.23 (*C*_{Ar}), 132.06 C₆(CH₃)₆), 132.16 (*C*_{Ar}), 138.53 (*C*_{Ar}), 148.58 (*C*_{Ar}) ppm.

Entry 14. $2-NO_2C_6H_4CH(CN)(OTMS)$:

¹H NMR (500 MHz, CDCl₃): δ 0.27 (s, 9H, Si(CH₃)₃), 2.19 (s, C₆(CH₃)₆), 6.21 (s, 1H, CHOSi(CH₃)₃), 7.59 (t, ³J_{H,H} = 8.0 Hz, 1H, Ar), 7.77 (t, ³J_{H,H} = 7.4 Hz, 1H, Ar), 8.01 (d, ³J_{H,H} = 7.9 Hz, 1H, Ar), 8.14(d, ³J_{H,H} = 8.2 Hz, 1H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.36 (Si(CH₃)₃), 16.80 C₆(CH₃)₆), 60.27 (CHOSi(CH₃)₃), 117.99 (CN), 125.42 (C_{Ar}), 128.60 (C_{Ar}), 130.40 (C_{Ar}), 132.01 C₆(CH₃)₆), 132.22 (C_{Ar}), 134.60 (C_{Ar}), 146.47 (C_{Ar}) ppm.

Entry 15. 2,6-Cl₂C₆H₄CH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.21 (s, 9H, Si(CH₃)₃), 2.25 (s, C₆(CH₃)₆), 6.28 (s, 1H, CHOSi(CH₃)₃), 7.28-7.38 (m, 3H Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.19 (Si(CH₃)₃), 16.85 C₆(CH₃)₆), 59.61 (CHOSi(CH₃)₃), 117.66 (*C*N), 129.50 (*C*_{Ar}), 131.32 (*C*_{Ar}), 131.50 (*C*_{Ar}), 132.18 *C*₆(CH₃)₆), 135.64 (*C*_{Ar}) ppm.

Entry 16. 2,5-(CH₃O)₂C₆H₄CH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.23 (s, 9H, Si(CH₃)₃), 2.20 (s, C₆(CH₃)₆), 3.79 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 5.77 (s, 1H, CHOSi(CH₃)₃), 6.82-6.87 (m, 2H, Ar), 7.16 (s, 1H, Ar) ppm; ¹³C{¹H} NMR (125)

MHz, CDCl₃): δ -0.25 (Si(CH₃)₃), 16.81 C₆(CH₃)₆), 55.89 (OCH₃), 56.03 (OCH₃), 58.27 (CHOSi(CH₃)₃), 111.84 (C_{Ar}), 113.21 (C_{Ar}), 115.21 (C_{Ar}), 119.34 (CN), 125.64 (C_{Ar}), 132.02 C₆(CH₃)₆), 150.02 (C_{Ar}), 153.95 (C_{Ar}) ppm.

Entry 17. 4-OCH₃C₆H₄CH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.21 (s, 9H, Si(CH₃)₃), 2.22 (s, C₆(CH₃)₆), 3.81 (s, 3H, OCH₃), 5.43 (s, 1H, CHOSi(CH₃)₃), 6.91-6.93 (m, 2H, Ar), 7.37-7.39 (m, 2H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.08 (Si(CH₃)₃), 16.91 C₆(CH₃)₆), 55.49 (OCH₃), 63.52 (CHOSi(CH₃)₃), 114.45 (C_{Ar}), 119.46 (CN), 128.08 (C_{Ar}), 128.66 (C_{Ar}), 132.13 C₆(CH₃)₆), 160.53 (C_{Ar}) ppm.

Entry 18. 4-CH₃C₆H₄CH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.23 (s, 9H, Si(CH₃)₃), 2.22 (s, C₆(CH₃)₆), 2.38 (s, 3H, CH₃), 5.47 (s, 1H, CHOSi(CH₃)₃), 7.22 (d, ³J_{H,H} = 7.7 Hz, 2H, Ar), 7.35 (d, ³J_{H,H} = 7.8 Hz, 2H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.18 (Si(CH₃)₃), 16.87 C₆(CH₃)₆), 21.32 (CH₃), 63.57 (CHOSi(CH₃)₃), 119.43 (CN), 126.52 (C_{Ar}), 129.72 (C_{Ar}), 132.10 C₆(CH₃)₆), 133.56 (C_{Ar}), 139.49 (C_{Ar}) ppm.

Entry 19. 4-C₅H₄NCH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.21 (s, 9H, Si(CH₃)₃), 2.15 (s, C₆(CH₃)₆), 5.48 (s, 1H, CHOSi(CH₃)₃), 7.34 (d, ³J_{H,H} = 6.0 Hz, 2H, CH_{pyridine}), 8.60 (d, ³J_{H,H} = 6.0 Hz, 2H, CH_{pyridine}) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.41 (Si(CH₃)₃), 16.72 C₆(CH₃)₆), 62.23 (CHOSi(CH₃)₃), 118.08 (CN), 120.55 (CH_{pyridine}), 131.93 C₆(CH₃)₆), 144.88 (C_{pyridine}), 150.38 (CH_{pyridine}) ppm.

Entry 20. 2-C₅H₄NCH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.22 (s, 9H, Si(CH₃)₃), 2.18 (s, C₆(CH₃)₆), 5.56 (s, 1H, CHOSi(CH₃)₃), 7.26-7.28 (m, 1H, CH_{pyridine}), 7.54-7.57 (m, 1H, CH_{pyridine}), 7.73-7.76 (m, 1H, CH_{pyridine}), 8.54-8.55 (m, 1H, CH_{pyridine}) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.35 (Si(CH₃)₃), 16.75 C₆(CH₃)₆), 65.10 (CHOSi(CH₃)₃), 118.72 (*C*N), 120.47 (*C*H_{pyridine}), 124.01 (*C*H_{pyridine}), 131.96 *C*₆(CH₃)₆), 137.51 (*C*H_{pyridine}), 149.38 (*C*H_{pyridine}), 155.42 (*C*_{pyridine}) ppm.

Entry 21. 2-C₄H₄NCH(CN)(OTMS):

¹H NMR (500 MHz, CDCl₃): δ 0.19 (s, 9H, Si(CH₃)₃), 2.26 (s, C₆(CH₃)₆), 5.58 (s, 1H, CHOSi(CH₃)₃), 6.18 (br, 1H, CH_{pyrrole}), 6.29 (br, 1H, CH_{pyrrole}), 6.84 (br, 1H, CH_{pyrrole}), 8.66 (bs, 1H, NH_{pyrrole}) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.31 (Si(CH₃)₃), 16.85 C₆(CH₃)₆), 57.86 (CHOSi(CH₃)₃), 108.49 (CH_{pyrrole}), 108.84 (CH_{pyrrole}), 118.47 (CN), 120.04 (CH_{pyrrole}), 125.52(C_{pyrrole}), 132.07 C₆(CH₃)₆) ppm.

Entry 22. $CH_3CONHC_6H_4CH(CN)(OTMS)$:

¹H NMR (500 MHz, CDCl₃): δ 0.21 (s, 9H, Si(CH₃)₃), 2.16 (s, 3H, NHCOCH₃), 2.24 (s, C₆(CH₃)₆), 5.45 (s, 1H, CHOSi(CH₃)₃), 7.38 (d, ³J_{H,H} = 8.4 Hz, 2H, Ar), 7.56 (d, ³J_{H,H} = 8.3 Hz, 2H, Ar), 7.74 (bs, 1H, NH) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.11 (Si(CH₃)₃), 16.93 C₆(CH₃)₆), 24.68 (NHCOCH₃), 63.43 (CHOSi(CH₃)₃), 119.37 (CN), 120.14 (CAr), 127.32 (C_{Ar}), 131.94 (C_{Ar}), 132.15 C₆(CH₃)₆), 139.16 (C_{Ar}), 168.80 (NHCOCH₃) ppm.

Entry 23. $CH_3COC_6H_4CH(CN)(OTMS)$:

¹H NMR (500 MHz, CDCl₃): δ 0.26 (s, 9H, Si(CH₃)₃), 2.22 (s, C₆(CH₃)₆), 2.62 (s, 3H, COCH₃), 5.55 (s, 1H, CHOSi(CH₃)₃), 7.57 (d, ³J_{H,H} = 8.15 Hz, 2H, Ar), 8.00 (d, ³J_{H,H} = 8.15 Hz, 2H, Ar) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ -0.13 (Si(CH₃)₃), 16.76 C₆(CH₃)₆), 26.98 (COCH₃), 63.31 (CHOSi(CH₃)₃), 118.75 (CN), 126.61 (C_{Ar}), 129.10 (C_{Ar}), 132.13 C₆(CH₃)₆), 137.97 (C_{Ar}), 141.11 (C_{Ar}), 197.47 (COCH₃) ppm.

Figure S28. ¹H NMR spectrum of the cyanosilylated product of *p*-formaldehyde.

Figure S29. ¹³C NMR spectrum of the cyanosilylated product of *p*-formaldehyde.

Figure S30. ¹H NMR spectrum of the cyanosilylated product of hexanal.

Figure S314. ¹³C NMR spectrum of the cyanosilylated product of hexanal.

Figure S325. ¹H NMR spectrum of the cyanosilylated product of octanal.

Figure S336. ¹³C NMR spectrum of the cyanosilylated product of octanal.

Figure S347. ¹H NMR spectrum of the cyanosilylated product of 3-phenylpropanal.

Figure S358. ¹³C NMR spectrum of the cyanosilylated product of 3-phenylpropanal.

Figure S369. ¹H NMR spectrum of the cyanosilylated product of *trans*-cinnamaldehyde.

Figure S4037. ¹³C NMR spectrum of the cyanosilylated product of *trans*-cinnamaldehyde.

Figure S41. ¹H NMR spectrum of the cyanosilylated product of benzaldehyde.

Figure S42. ¹³C NMR spectrum of the cyanosilylated product of benzaldehyde.

Figure S43. ¹H NMR spectrum of the cyanosilylated product of 4-fluorobenzaldehyde.

Figure S38. ¹³C NMR spectrum of the cyanosilylated product of 4-fluorobenzaldehyde.

Figure S39. ¹H NMR spectrum of the cyanosilylated product of 4-chlorobenzaldehyde.

Figure S40. ¹³C NMR spectrum of the cyanosilylated product of 4-chlorobenzaldehyde.

Figure S41.¹H NMR spectrum of the cyanosilylated product of 4-bromobenzaldehyde.

Figure S42. ¹³C NMR spectrum of the cyanosilylated product of 4-bromobenzaldehyde.

Figure S43.¹H NMR spectrum of the cyanosilylated product of 3-bromobenzaldehyde.

Figure S50. ¹³C NMR spectrum of the cyanosilylated product of 3-bromobenzaldehyde.

Figure S51.¹H NMR spectrum of the cyanosilylated product of 4-cyanobenzaldehyde.

Figure S52. ¹³C NMR spectrum of the cyanosilylated product of 4-cyanobenzaldehyde.

Figure S44. ¹H NMR spectrum of the cyanosilylated product of 4-nitrobenzaldehyde.

Figure S45. ¹³C NMR spectrum of the cyanosilylated product of 4-nitrobenzaldehyde.

Figure S46. ¹H NMR spectrum of the cyanosilylated product of 3-nitrobenzaldehyde.

Figure S47.¹³C NMR spectrum of the cyanosilylated product of 3-nitrobenzaldehyde.

Figure S48. ¹H NMR spectrum of the cyanosilylated product of 2-nitrobenzaldehyde.

Figure S49. ¹³C NMR spectrum of the cyanosilylated product of 2-nitrobenzaldehyde.

Figure S50. ¹H NMR spectrum of the cyanosilylated product of 2,6-dichlorobenzaldehyde.

Figure S60.¹³C NMR spectrum of the cyanosilylated product of 2,6-dichlorobenzaldehyde.

Figure S61. ¹H NMR spectrum of the cyanosilylated product of 2,5-dimethoxybenzaldehyde.

Figure S62. ¹³C NMR spectrum of the cyanosilylated product of 2,5-dimethoxybenzaldehyde.

Figure S51. ¹H NMR spectrum of the cyanosilylated product of 4-methoxybenzaldehyde.

Figure S52.¹³C NMR spectrum of the cyanosilylated product of 4-methoxybenzaldehyde.

Figure S53. ¹H NMR spectrum of the cyanosilylated product of 4-methylbenzaldehyde.

Figure S54. ¹³C NMR spectrum of the cyanosilylated product of 4-methylbenzaldehyde.

Figure S55. ¹H NMR spectrum of the cyanosilylated product of pyridine-2-carbaldehyde.

Figure S56.¹³C NMR spectrum of the cyanosilylated product of pyridine-2-carbaldehyde.

Figure S57. ¹H NMR spectrum of the cyanosilylated product of pyridine-4-carbaldehyde.

Figure S580.¹³C NMR spectrum of the cyanosilylated product of pyridine-4-carbaldehyde.

Figure S7159.¹H NMR spectrum of the cyanosilylated product of pyrrole-2-carbaldehyde.

Figure S72.¹³C NMR spectrum of the cyanosilylated product of pyrrole-2-carbaldehyde.

Figure S60. ¹H NMR spectrum of the cyanosilylated product of 4-acetylbenzaldehyde.

Figure S61. ¹³C NMR spectrum of the cyanosilylated product of 4-acetylbenzaldehyde.

Figure S62. ¹H NMR spectrum of the cyanosilylated product of 4-acetamidobenzaldehyde.

Figure S63. ¹³C NMR spectrum of the cyanosilylated product of 4-acetamidobenzaldehyde.

General procedure for the intermolecular chemoselective cyanosilylation using catalyst 5 (eqns 1-3)

Benzaldehyde (1.0 mmol), substrate (1.0 mmol) [acetophenone (eqn 1), benzonitrile (eqn 2), and phenyl benzoate (eqn 3)], TMSCN (1.1 mmol), and catalyst **5** (0.5 mol %) were stirred at 50 °C for required period. The reaction progress was monitored by ¹H NMR spectroscopy; after the completion of the reaction, a ¹³C NMR spectrum was also recorded.

¹H and ¹³C NMR spectra of the reactions shown in eqns 1-3

Figure S64. ¹H NMR spectrum of the chemoselective cyanosilylation of benzaldehyde in the presence of acetophenone (eqn 1).

Figure S65. ¹³C NMR spectrum of the chemoselective cyanosilylation of benzaldehyde in the presence of acetophenone (eqn 1).

Figure S66. ¹H NMR spectrum of the chemoselective cyanosilylation of benzaldehyde in the presence of benzonitrile (eqn 2).

Figure S80. ¹³C NMR spectrum of the chemoselective cyanosilylation of benzaldehyde in the presence of benzonitrile (eqn 2).

Figure S67. ¹H NMR spectrum of the chemoselective cyanosilylation of benzaldehyde in the presence of phenyl benzoate (eqn 3).

Figure S82. ¹³C NMR spectrum of the chemoselective cyanosilylation of benzaldehyde in the presence of phenyl benzoate (eqn 3).

Figure S83. ¹H NMR spectrum of the equimolar reaction of compound **5** with acetophenone. The spectrum was recorded after 4 h of adding acetophenone.

Table S2. The equimolar reactions of catalyst 5 with hexanaldehyde, benzaldehyde, 4-chlorobenzaldehyde, and 2,6-dichlorobenzaldehyde to afford cyanostannylated products S1, S2, S3, and S4, respectively*

*Unreacted aldehyde is also seen. The separation of the cyanostannylated products from these mixtures was predominantly not feasible as the individual components have similar solubility.

Figure S84. ¹H NMR spectrum of the equimolar reaction of compound **5** with hexanaldehyde. The spectrum was recorded after 0.5 h of adding hexanaldehyde.

Figure S85. ¹¹⁹Sn NMR spectrum of the equimolar reaction of compound **5** with hexanaldehyde. The spectrum was recorded after 0.5 h of adding hexanaldehyde.

Figure S86. ¹H NMR spectrum of the equimolar reaction of compound **5** with benzaldehyde. The spectrum was recorded after 0.5 h of adding benzaldehyde.

Figure S87. ¹¹⁹Sn NMR spectrum of the equimolar reaction of compound **5** with benzaldehyde. The spectrum was recorded after 0.5 h of adding benzaldehyde.

Figure S88. ¹H NMR spectrum of the equimolar reaction of compound **5** with 4-chlorobenzaldehyde. The spectrum was recorded after 0.5 h of adding 4-chlorobenzaldehyde.

Figure S89. ¹¹⁹Sn NMR spectrum of the equimolar reaction of compound **5** with 4-chlorobenzaldehyde. The spectrum was recorded after 0.5 h of adding 4-chlorobenzaldehyde.

Figure S90. ¹H NMR spectrum of the equimolar reaction of compound **5** with 2,6dichlorobenzaldehyde. The spectrum was recorded after 0.5 h of adding 2,6dichlorobenzaldehyde.

Figure S91. ¹¹⁹Sn NMR spectrum of the equimolar reaction of compound **5** with 2,6-dichlorobenzaldehyde. The spectrum was recorded after 0.5 h of adding 2,6-dichlorobenzaldehyde.

Figure S92. The ¹H NMR spectrum of the reaction of benzaldehyde with TMSCN at 50 °C in the presence of 0.5 mol% of compound **6**

Figure S93. Plot of In[*A*] versus *t* for the benzaldehyde cyanosilylation done at 40 °C.

Figure S94. Plot of ln[A] versus *t* for the benzaldehyde cyanosilylation done at 50 °C.

Figure S95. Plot of In[*A*] versus *t* for the benzaldehyde cyanosilylation done at 60 °C.

Figure S96. Plot of ln[A] versus *t* for the benzaldehyde cyanosilylation done at 70 °C.

Figure S97. The Arrhenius plot of ln(k) versus 1/T. From the slope, the activation energy was found to be 62(6) kJ/mol.

Figure S98. ¹H NMR spectrum of the reaction of compound **6** with TMSCN to afford cyanosilylated product **7** and catalyst **5**. The spectrum was recorded after 0.5 h from adding a slight excess TMSCN to compound **6**.