The Rigidity of Self-Assembled Cofacial Porphyrins Influences Selectivity and Kinetics of Oxygen Reduction Electrocatalysis

Daoyang Zhang,^a Matthew R. Crawley,^a Ming Fang,^a Lea J. Kyle,^a and Timothy R. Cook^{*, a}

^a Department of Chemistry, University at Buffalo, The State University of New York, Buffalo,

New York 14260, United States

Email: trcook@buffalo.edu

Supplementary Information

Contents

Experimental Procedures: 2	2
Materials:	2
Synthesis Procedure for metalloporphyrin:	2
5-Methyl-2,2'-bipyridine:	2
2,2'-Bipyridinyl-5-carboxylic acid:	2
Ethyl 2,2'-Bipyridinyl-5-carboxylate:	3
2,2'-Bipyridinyl-5-methanol	3
2,2'-Bipyridinyl-5-carboxaldehyde:	3
Tetrakis(bipyridyl) porphyrin:	3
Zn ₂ Ag ₄ prism:	1
Co(II) tetrakis(bipyridyl) porphyrin:	1
Co ₂ Ag ₄ prism:	1
Spectroscopic characterization:	5
¹ H NMR spectroscopy	5
Mass spectrometry:	9
Electrochemical Experiments:	L
UV-vis study:	1
KL-analysis:	5
KL analysis detail:	5
Computational Details:	7
Reference:	7

Experimental Procedures:

Materials:

Chemicals were purchased from commercial sources and used as received unless otherwise noted below. Solvents were purified using a solvent-drying system (Pure Process Technology). ¹H NMR spectra were acquired on Varian 300, 400, or 500 MHz spectrometers. Chemical shifts (δ) are reported in parts per million (ppm) and referenced against the residual proton resonance of the deuterated solvent. Mass spectra were recorded using the Agilent 6530 Q-TOF mass spectrometer. No precautions were taken to exclude air (O₂ or water) from self-assembly reactions. Ag(bpy)₂OTf was synthesized by following a literature procedure.¹

Synthesis Procedure for metalloporphyrin:

5-Methyl-2,2'-bipyridine:

A solution of iodine (14.2 g, 56.0 mmol) and 2-acetylpyridine (5.6 mL, 50.0 mmol) in pyridine (60 mL) was prepared in a reaction flask equipped with a condenser and drying tube, and the reaction mixture was stirred for 6 h at 90 °C. At this time, the resulting suspension was filtered as brown solid, the crude product was used without purification. Methacrolein (3.6 mL, 44.0 mmol) and H₄NOAc (18.6 g, 240.0 mmol) were sequentially added to the solution of the brown solid (13.0 g) in formamide (100 mL). The mixture was stirred at 80 °C for 16 h. At this time, the crude mixture was cooled and extracted with diethyl ether (3×200 mL). The combined organic layers were washed with brine (200 mL), dried over MgSO4, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (5% MeOH in CH2Cl2) to yield 5-Methyl-2,2'-bipyridine (7.0 g, 82.0%) as a brown oil.

2,2'-Bipyridinyl-5-carboxylic acid:

Potassium permanganate (24.6 g, 156 mmol) was added in 7 portions at 1 h intervals to a solution of 5-Methyl-2,2'-bipyridine (6.8 g, 40 mmol) in water (200 mL). The mixture was heated at 70 °C overnight until all the Potassium permanganate turn brown. The brown mixture was then filtered while hot through celite and washed with hot water (2×25 mL). The filtrate was concentrated to approximately 10 mL under reduced pressure, and then 1 M HCl was added slowly until a pH of 4 was obtained. The residue was then filtered and dried to obtain pure product (5.8 g, 73.4%) as a white solid.

Ethyl 2,2'-Bipyridinyl-5-carboxylate:

Concentrated sulfuric acid (20 mL) was added to a solution of 2,2'-Bipyridinyl-5-carboxylic acid (5.8 g, 29 mmol) in ethanol (50 mL). The reaction mixture was stirred at 70 °C, the reaction progress was monitored by LTQ-MS, after 48 hours, the mixture was concentrated under reduced pressure, and a NaHCO3 solution was added to the mixture to neutralize the acid. The product was then extracted with ethyl acetate (3×100 mL), and the combined organic fractions were washed with brine, dried over MgSO4, filtered, and concentrated under reduced pressure to obtain pure product (3.9 g, 59.0%) as a white solid.

2,2'-Bipyridinyl-5-methanol

Sodium borohydride (1.1 g, 30 mmol) was added to ethyl 2,2'-Bipyridinyl-5-carboxylate (1.37 g, 6 mmol) in ethanol (50 mL). The mixture was stirred at room temperature for about 24 hours and monitored by LTQ-MS, then concentrated under reduced pressure. Water (50 mL) was added, and then the crude product was extracted with ethyl acetate (3 × 50 mL). The combined organic layers were washed with brine (50 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to obtain as brown oil as product quantitatively.

2,2'-Bipyridinyl-5-carboxaldehyde:

To a solution of $(COCI)_2$ (0.94 mL, 12.0 mmol) in CH_2Cl_2 (14.0 mL) was added dry DMSO (1.70 mL, 24 mmol) at -78 °C. After stirring for 30 min, 2,2'-Bipyridinyl-5-methanol (0.93 g, 10.0 mmol) was added, and the reaction mixture was stirred for 1 h at the same temperature. Then, to the mixture was added triethylamine (6.4 mL, 48 mmol), and the resulting mixture was warmed to room temperature. After stirring for 1 h, the reaction was quenched by addition of water, and the mixture was extracted with CH_2Cl_2 . The extract was washed with water and brine, dried, and concentrated to dryness to yield 0.83 g brownish yellow oil as crude product, NMR was acquired to identify the purity and the product was used without further purification.

Tetrakis(bipyridyl) porphyrin:

The purity of aldehyde was obtained by ¹H NMR, as shown is Figure S5, the peak at 10.2 ppm was attribute to the aldehyde CHO, and the peak at 4.85 ppm was attributed to the methanol CH_2 peak, based on the peak integration, the aldehyde was around 75% purity, since alcohol group doesn't involve into any reaction during the porphyrin synthesis, the crude product was directly used with further purification.

Pyrrole was distilled under reduced pressure before use. A 1 L round-bottom flask was equipped with a reflux condenser and a magnetic stirring bar. 2,2´-bipyridine-5-carbaldehyde (0.736 g, 3.0 mmol ,1.0 eq, 75% purity) and propionic acid (70 mL) to the flask were added. The mixture was heated at 140 °C. Pyrrole (0.221 g, 3.3 mmol, 1.1 eq) was then dissolved in propionic acid (5 mL) and added to the solution. The reaction mixture was heated at 140 °C for 45 min under aerobic and ambient-light conditions, cooled to room temperature and evaporate the solvent under reduced pressure. The black solid was washed by N,N-dimethylformamide and methanol to obtain the product as purple solid (136 mg, 19.6%).

Zn(II) tetrakis(bipyridyl) porphyrin:

Free-base porphyrin (50 mg, 0.054 mmol, 1.0 eq), $CHCl_3$ (30 mL) and CH_3OH (5 mL) were placed in a 50 mL round-bottom flask. To the clear, red solution was added zinc acetate dihydrate (50 mg 0.27 mmol, 5.0 eq) dissolved in CH_3OH (3 mL). The solution was stirred at room temperature for 16 h under the dark to give clear, purple solution. The solution was transferred to separating funnel, washed with 50 mM EDTA·2Na aqueous solution (20 mL × 3) and with H_2O (20 mL × 3). The combined organic phase was dried over Na_2SO_4 , filtered and evaporated to obtain crude 1 as a reddish purple solid (44 mg, 81%).

Zn₂Ag₄ prism:

To a solution of Co-porphyrin (75 mg, 0.076 mmol, 1.0 equiv.) in a mixture of $CHCl_3$ (20 mL) and CH_3OH (20 mL) was added a solution of Ag(OTf) (38.9 mg, 0.15 mmol, 2.0 equiv.) in a round bottom flask, diethyl ether was carefully layered. Let the reaction sited overnight, and the solid was collected by centrifuge, the washed with diethyl ether, (113 mg, quant.).

Elemental Analysis (%) calcd for C₁₂₄H₇₂Ag₄Zn₂F₁₂N₂₄O₁₂S₄•3CHCl₃: C 45.31, H 2.25, N 9.99; found: C 44.76, H 2.42, N 9.74.

Co(II) tetrakis(bipyridyl) porphyrin:

Free-base porphyrin (50 mg, 0.054 mmol, 1.0 eq), $CHCI_3$ (30 mL) and CH_3OH (5 mL) were placed in a 50 mL round-bottom flask. To the clear, red solution was added cobalt acetate tetrahydrate (67 mg 0.27 mmol, 5.0 eq) dissolved in CH_3OH (3 mL). The solution was stirred at room temperature for 16 h under the dark to give clear, purple solution. The solution was transferred to separating funnel, washed with 50 mM EDTA·2Na aqueous solution (20 mL × 3) and with H_2O (20 mL × 3). The combined organic phase was dried over Na_2SO_4 , filtered and evaporated to obtain crude 1 as a reddish purple solid (48 mg, 89%).

LTQ-MS: m/z = 984.621, corresponding to $[M+H^+]^{1+}$, m/z = 492.995, corresponding to $[M+2H^+]^{2+}$,

Co₂Ag₄ prism:

To a solution of Co-porphyrin (22.4 mg, 0.024 mmol, 1.0 equiv.) in a mixture of CH_2Cl_2 (5.0 mL) and CH_3OH (5.0 mL) was added a solution of Ag(OTf) (12.3 mg, 0.048 mmol, 2.0 equiv.) in a 20 mL vial, diethyl ether was carefully layered. Let the reaction sited overnight, and the solid was collected by centrifuge, the washed with diethyl ether, (34.5 mg, quant.).

Elemental Analysis (%) calcd for C₁₂₄H₇₂Ag₄Co₂F₁₂N₂₄O₁₂S₄•12CH₂Cl₂: C 40.69, H 2.41, N 8.37; found: C 40.60, H 2.36, N 8.82.

HR-MS: m/z = 1348.9965, corresponding to $[M-2OTf^{-}]^{2+}$, m/z = 1369.0182, corresponding to $[M-2OTf^{-} + ACN]^{2+}$, and m/z = 863.0297, corresponding to $[M-3OTf^{-} + ACN]^{3+}$

UV-Vis (ACN): soret band λ_{max} = 433 nm, Q bands λ_{max} = 531, 587 nm.

Spectroscopic characterization: ¹H NMR spectroscopy

Figure S1 ¹H NMR spectrum of 5-Methyl-2,2'-bipyridine (CDCl₃, 500 MHz, 298 K).

Figure S2. ¹H NMR spectrum of 2,2'-Bipyridinyl-5-carboxylic acid (DMSO, 500 MHz, 298 K).

Figure S3. ¹H NMR spectrum of Ethyl 2,2'-Bipyridinyl-5-carboxylate (CDCl₃, 500 MHz, 298 K).

Figure S4. ¹H NMR spectrum of 2,2'-Bipyridinyl-5-methanol (CDCl₃, 500 MHz, 298 K).

Figure S5. ¹H NMR spectrum of 2,2'-bipyridine-5-carbaldehyde (CDCl₃, 500 MHz, 298 K).

Figure S6. ¹H NMR spectrum of tetrakis(bipyridyl) porphyrin (CDCl₃, 500 MHz, 298 K).

Figure S7. ¹H NMR spectrum of Zn tetrakis(bipyridyl) porphyrin (DMSO, 500 MHz, 298 K).

Figure S8. ¹H NMR spectrum of Zn₂Ag₄ prism (DMSO, 500 MHz, 298 K).

Figure S9. ¹H NMR spectrum of Co₂Ag₄ prism (CD₃CN, 500 MHz, 298 K).

Figure S10. LTQ-MS of Co tetrakis(bipyridyl) porphyrin, m/z = 984.621 was attributed to the $M+H^+$.

Figure S11. Mass spectrometry of Co₂Ag₄ prism

Figure S12. The 2+ base peak for Co_2Ag_4 prism in Figure 11 corresponding (top) Experimental data, (bottom) simulated spectrum with loss of 2 OTf⁻ counterions and addition of an acetonitrile [M-2OTf⁻+ACN]²⁺.

Figure S13. The 3+ base peak Co_2Ag_4 prism in Figure S11 corresponding (top) Experimental data, (bottom) simulated spectrum with loss of 2 OTf- counterions and addition of an acetonitrile [M-3OTf-+ACN]³⁺.

Electrochemical Experiments:

The CVs of **Co₂Ag₄ prism** and **Zn₂Ag₄ prism** show an irreversible oxidization wave at ~0 V vs Fc⁺/Fc. The CV of [Ag(bpy)₂]OTf has a similar oxidation feature at the same potential, thus we ascribe this redox event to the Ag nodes. Although the current response is weak, the **Co₂Ag₄ prism** shows a reduction at ca. –1.3 V vs Fc⁺/Fc that is not present in the **Zn₂Ag₄ prism** which we attribute to the Co(II)/Co(I) couple. This cobalt centered reduction is seen in our other cofacial porphyrin prisms.²

Figure S14. CV of Co₂Ag₄ prism and Zn₂Ag₄ prism under Nitrogen. Conditions: 100 mM TBAPF₆ in dry acetonitrile, glassy carbon working electrode, Pt-wire counter electrode, scan rate: 100 mV/sec, scan direction: reduction first.

Figure S15. CV of Ag(bpy)₂OTf under Nitrogen. Conditions: 100 mM TBAPF₆ in dry acetonitrile, glassy carbon working electrode, Pt-wire counter electrode, scan rate: 100 mV/sec, scan direction: reduction first.

Figure S16. CV of Co₂Ag₄ Prism under Nitrogen and TFA. Conditions: 100 mM TBAPF₆ in dry acetonitrile, glassy carbon working electrode, Pt-wire counter electrode, scan rate: 100 mV/sec, scan direction: reduction first.

Figure S17. Controlled potential electrolysis (CPE) of Co_2Ag_4 prism under heterogeneous condition. Conditions: potential held at 0 V, in 0.5 M H₂SO₄ aqueous solution, with saturated oxygen, glassy carbon working electrode, Pt-wire counter electrode. Reference electrode: AgCl in 3 M KCl. Plot Current with time.

Figure S 18. Controlled potential electrolysis (CPE) of Co_2Ag_4 prism under heterogeneous condition. Conditions potential held at 0 V, in 0.5 M H₂SO₄ aqueous solution, with saturated oxygen, glassy carbon working electrode, Pt-wire counter electrode. Reference electrode: AgCl in 3 M KCl. Plot Charge with time.

Figure S 19. CV before and after the electrolysis in 0.5 M H₂SO₄, in 0.5 M H₂SO₄ aqueous solution, with saturated oxygen, glassy carbon working electrode, Pt-wire counter electrode. Reference electrode: AgCl in 3 M KCl.

UV-vis study:

Figure S20. Normalized UV-Vis spectra of monomeric Co porphyrin and Co₂Ag₄ prism.

Figure S 21. Normalized UV-Vis spectra of Co₂Ag₄ prism in acetonitrile before and after addition of TFA.

KL-analysis:

Figure S22. Koutecký-Levich plots of Co₂Ag₄ prism

Figure S23. Plot of $ln(k_{het})$ vs. overpotential for the Co_2Ag_4 prism. The y-intercept of this plot is ln(ks)

KL analysis detail:

The rotating disk data for the catalyst was plotted at various overpotentials using the KL equation in which, i_{lim} is the limiting current (A), B is the Levich constant, ω is the rotation rate (rad/s), and $i_{\rm K}$ is the kinetically limited current, select five different data at different overpotential from the LSV data (Figure 4.) at different rotation rate, plot ω versus 1/A to obtain KL plot as shown in Figure S22. Koutecký-Levich plots of Co2Ag4 prism. Extracted the Y intercept as $1/i_{\rm k}$, then use Equation S2 to obtain the value $k_{\rm het}$. Finally, plot the ln($k_{\rm het}$) with overpotential as shown in Figure S23. Plot of ln(khet) vs. overpotential for the Co2Ag4 prism. The y-intercept of this plot is ln(ks)Figure S23. to obtain the y intercept as the standard rate constant values $k_{\rm s}$.

$\frac{1}{i_{1}} = \omega^{-1/2} + \frac{i}{i_{1}}$	Equation S1.
$i_k = nFAk_{het}[O_2]\Gamma_{cat}$	Equation S2.
$k_{het} = k_s e^{\frac{-a\eta}{RT}}$	Equation S3.
$n = 4 - a(\frac{{}^{6}H_2O_2}{100})$	Equation S4.

Equation S5.

$$\%H_2O_2 = \frac{\frac{2i_{ring}}{N}}{i_{disk} + \frac{i_{ring}}{N}} \times 100$$

Computational Details:

The structure of Zn₂Ag₄ and Co₂Ag₄ prisms were optimized using ORCA 5.0.3 with the B97-3c functional and def2-mTZVP basis set. A frequency calculation was performed at the same level of theory/basis set and was analyzed for imaginary frequencies. After several optimizations from various displaced geometries the imaginary frequency remained.

Coordinates of Zn₂Ag₄ Optimized Structure:

Ag	-6.333178000	-6.004808000	2.187593000
Ag	-6.287246000	6.087647000	2.213068000
Zn	-0.022453000	0.014979000	0.005125000
Ν	2.026159000	0.006493000	0.017918000
Ν	-0.023513000	2.064481000	-0.009945000
Ν	-0.039919000	-2.034275000	-0.021071000
Ν	-2.070251000	0.023544000	-0.052485000
Ν	-5.647866000	-4.801240000	4.060254000
Ν	-6.811601000	-7.303241000	4.029590000
Ν	-7.428269000	-6.409383000	0.248663000
Ν	-4.939812000	-5.198991000	0.421210000
Ν	-5.594513000	4.893650000	4.082287000
Ν	-6.743224000	7.401743000	4.055501000
Ν	-7.373009000	6.502370000	0.276259000
Ν	-4.891283000	5.273350000	0.440583000
С	2.832061000	-1.099641000	-0.092941000
С	1.083822000	2.871837000	-0.060777000
С	0.665801000	4.248906000	-0.099543000
С	-1.123196000	2.886907000	-0.061009000
С	-0.690770000	4.256462000	-0.116605000
С	-2.452667000	2.461718000	-0.118074000
С	-2.881623000	1.129919000	-0.066421000
С	-4.257195000	0.710724000	-0.047141000
С	-4.262533000	-0.646494000	-0.050278000
С	-2.890347000	-1.076370000	-0.071218000
С	-2.472082000	-2.411248000	-0.128648000
С	-1.146228000	-2.847519000	-0.073951000
С	-0.725159000	-4.220409000	-0.133826000
С	0.631445000	-4.224000000	-0.117336000
С	1.060766000	-2.850508000	-0.074637000
С	2.394396000	-2.426066000	-0.137209000
С	4.198657000	-0.679656000	-0.254432000
С	4.204087000	0.676698000	-0.250829000
С	2.840914000	1.106752000	-0.087151000
С	2.413916000	2.436801000	-0.125181000
С	-3.882904000	-3.451623000	4.964120000
С	-4.792623000	-3.781565000	3.967376000
С	-3.938915000	-4.193724000	6.142240000
С	-5.679967000	-5.533685000	5.188411000
С	-4.847254000	-5.227200000	6.261130000
С	-6.578273000	-6.703139000	5.211143000
С	-7.140878000	-7.182244000	6.390074000
С	-7.941395000	-8.311010000	6.349758000

С	-7.578181000	-8.396634000	3.999449000
С	-8.157658000	-8.938854000	5.133500000
С	-3.930161000	-4.343567000	0.594161000
С	-3.534159000	-3.419381000	-0.366083000
С	-4.214407000	-3.442893000	-1.582489000
С	-5.240719000	-4.344136000	-1.780885000
С	-5.600216000	-5.208704000	-0.750256000
С	-6.751183000	-6.122857000	-0.878868000
С	-7.139699000	-6.650176000	-2.106701000
С	-8.255650000	-7.466230000	-2.174502000
С	-8.963623000	-7.734616000	-1.013902000
С	-8.510364000	-7.190916000	0.174852000
С	-3.506487000	3.479288000	-0.351466000
С	-4.191238000	3.509070000	-1.565246000
С	-3.889740000	4.407896000	0.609894000
С	-4.749258000	3.866001000	3.986459000
С	-3.839714000	3.527048000	4.980367000
С	-3.884602000	4.270080000	6.158431000
С	-4.782306000	5.312463000	6.279970000
С	-5.616252000	5.626649000	5.210437000
С	-6.505170000	6.803257000	5.236795000
С	-7.502202000	8.500298000	4.028037000
С	-8.069244000	9.049891000	5.164905000
С	-7.848172000	8.423872000	6.381219000
С	-7.055463000	7.289494000	6.418674000
С	-5.556138000	5.288673000	-0.728157000
С	-5.209462000	4.420250000	-1.759973000
С	-6.699152000	6.213269000	-0.852693000
С	-7.084556000	6.746874000	-2.078765000
С	-8.449154000	7.292651000	0.205154000
С	-8.898902000	7.842926000	-0.981816000
С	-8.193927000	7.572030000	-2.143666000
Н	1.317214000	5.104481000	-0.120698000
Н	-1.333826000	5.117146000	-0.172501000
Н	-5.112714000	1.362575000	-0.023350000
Н	-5.123081000	-1.291822000	-0.029755000
Н	-1.375395000	-5.075594000	-0.191401000
Н	1.275889000	-5.084765000	-0.140848000
Н	5.043795000	-1.331188000	-0.391716000
Н	5.054430000	1.322192000	-0.384458000
Н	-4.824795000	-3.209551000	3.049737000
Н	-3.258860000	-3.969625000	6.951938000
Н	-4.872932000	-5.821471000	7.161959000
Н	-6.978072000	-6.667097000	7.325001000

Н	-8.392684000	-8.692043000	7.254579000
Н	-7.716271000	-8.855959000	3.030187000
Н	-8.764017000	-9.829548000	5.060574000
Н	-3.418977000	-4.390397000	1.546976000
Н	-3.943455000	-2.744408000	-2.361606000
Н	-5.785836000	-4.343865000	-2.712606000
Н	-6.563313000	-6.447634000	-2.996923000
Н	-8.565323000	-7.889272000	-3.119317000
Н	-9.847908000	-8.354410000	-1.024703000
Н	-9.033142000	-7.370371000	1.104095000
Н	-3.930059000	2.807925000	-2.345305000
Н	-3.374246000	4.450115000	1.560644000
Н	-4.789783000	3.294699000	3.068779000
Н	-3.204607000	4.039114000	6.966234000
Н	-4.799056000	5.906978000	7.180826000
Н	-7.644534000	8.957818000	3.058490000
Н	-8.669915000	9.944605000	5.094085000
Н	-8.289892000	8.810553000	7.288366000
Н	-6.889590000	6.775818000	7.353858000
Н	-5.758269000	4.425038000	-2.689533000
Н	-6.510448000	6.541706000	-2.969861000
Н	-8.969887000	7.473719000	1.135183000
Н	-9.778327000	8.469625000	-0.990275000
Н	-8.500912000	7.999990000	-3.087141000
Ag	5.905190000	6.030676000	2.453603000
Ag	5.845283000	-6.055052000	2.439629000
Zn	-0.416236000	0.017345000	4.637445000
Ν	-2.464497000	0.030077000	4.625789000
Ν	-0.419613000	-2.032360000	4.652350000
Ν	-0.393775000	2.066298000	4.663581000
Ν	1.631783000	0.004104000	4.695729000
Ν	5.203777000	4.839310000	0.580846000
Ν	6.373146000	7.337869000	0.613847000
Ν	7.004384000	6.423577000	4.390210000
Ν	4.510953000	5.222030000	4.222315000
Ν	5.165613000	-4.850280000	0.566455000
Ν	6.311557000	-7.359938000	0.599653000
Ν	6.935743000	-6.465312000	4.378864000
Ν	4.452840000	-5.241993000	4.205598000
С	-3.267936000	1.137912000	4.737119000
С	-1.528629000	-2.837387000	4.702111000
С	-1.113624000	-4.215455000	4.739318000
С	0.678240000	-2.857206000	4.702913000
С	0.242949000	-4.225929000	4.756476000

С	2.008416000	-2.434887000	4.762052000
С	2.440508000	-1.104161000	4.711553000
С	3.817116000	-0.688315000	4.694892000
С	3.825664000	0.668881000	4.696955000
С	2.454429000	1.102085000	4.715521000
С	2.039186000	2.438028000	4.771907000
С	0.714258000	2.877193000	4.716122000
С	0.296038000	4.251005000	4.775426000
С	-1.060560000	4.257443000	4.758944000
С	-1.492763000	2.884872000	4.716946000
С	-2.827233000	2.463336000	4.780833000
С	-4.635420000	0.720869000	4.898942000
С	-4.643808000	-0.635484000	4.894941000
С	-3.281631000	-1.068442000	4.730869000
С	-2.857645000	-2.399416000	4.767707000
С	3.437131000	3.490933000	-0.321432000
С	4.348834000	3.819512000	0.673967000
С	3.490430000	4.235352000	-1.498261000
С	5.233437000	5.574011000	-0.545892000
С	4.397974000	5.269520000	-1.617076000
С	6.132674000	6.742802000	-0.568787000
С	6.689617000	7.225987000	-1.748770000
С	7.491643000	8.353672000	-1.708190000
С	7.141268000	8.430114000	0.644347000
С	7.715238000	8.976343000	-0.490602000
С	3.498847000	4.369492000	4.050271000
С	3.103344000	3.443838000	5.009402000
С	3.786498000	3.463621000	6.224284000
С	4.815523000	4.361962000	6.421859000
С	5.174677000	5.227441000	5.391853000
С	6.328840000	6.137774000	5.518934000
С	6.722105000	6.661914000	6.746605000
С	7.841161000	7.473785000	6.813130000
С	8.547572000	7.741170000	5.651346000
С	8.089643000	7.200999000	4.462813000
С	3.059900000	-3.454578000	4.997697000
С	3.735557000	-3.490558000	6.216347000
С	3.450894000	-4.377258000	4.033997000
С	4.319344000	-3.823297000	0.659648000
С	3.409352000	-3.487680000	-0.335074000
С	3.456163000	-4.232399000	-1.512007000
С	4.355234000	-5.273920000	-1.631181000
С	5.188246000	-5.585517000	-0.560165000
С	6.076708000	-6.762516000	-0.582946000

С	7.069789000	-8.459065000	0.630257000
С	7.639101000	-9.010273000	-0.504614000
С	7.421280000	-8.385563000	-1.722207000
С	6.629488000	-7.250679000	-1.762838000
С	5.109639000	-5.262934000	5.378902000
С	4.753630000	-4.401415000	6.413284000
С	6.254633000	-6.184795000	5.505531000
С	6.635020000	-6.723311000	6.731024000
С	8.014638000	-7.251519000	4.451879000
С	8.460017000	-7.806183000	5.638522000
С	7.747294000	-7.544440000	6.797762000
Н	-1.766973000	-5.069596000	4.759624000
Н	0.884394000	-5.087937000	4.811044000
Н	4.671124000	-1.342250000	4.673468000
Н	4.687793000	1.312096000	4.677205000
Н	0.947984000	5.104882000	4.832849000
Н	-1.703235000	5.119549000	4.782095000
Н	-5.479128000	1.374230000	5.036358000
Н	-5.495506000	-1.279282000	5.028208000
Н	4.382930000	3.246142000	1.590657000
Н	2.809048000	4.012317000	-2.307130000
Н	4.421298000	5.865435000	-2.516868000
Н	6.521415000	6.714854000	-2.684933000
Н	7.938568000	8.737774000	-2.613880000
Н	7.285372000	8.885095000	1.614812000
Н	8.323129000	9.865966000	-0.417350000
Н	2.985109000	4.419702000	3.099010000
Н	3.515650000	2.764505000	7.002865000
Н	5.362872000	4.358579000	7.352269000
Н	6.146989000	6.460064000	7.637802000
Н	8.154430000	7.894380000	7.757851000
Н	9.434235000	8.357573000	5.661048000
Н	8.610928000	7.380036000	3.532675000
Н	3.467963000	-2.793879000	6.998245000
Н	2.942333000	-4.414954000	3.079369000
Н	4.359040000	-3.249838000	1.576090000
Н	2.776346000	-4.003725000	-2.320610000
Н	4.373422000	-5.869903000	-2.531053000
Н	7.209630000	-8.915358000	1.600719000
Н	8.239032000	-9.905273000	-0.431280000
Н	7.864846000	-8.773635000	-2.627854000
Н	6.466101000	-6.737942000	-2.698972000
Н	5.295806000	-4.410661000	7.346679000
Н	6.055189000	-6.525098000	7.619997000

```
H8.541248000-7.4256830003.523809000H9.342016000-8.4292380005.648760000H8.050625000-7.9762910007.740647000
```

Coordinates of Co₂Ag₄ Optimized Structure:

Ag	16.91456180061173	9.59836659584698	-2.00383791815975
Ag	13.73659499886531	15.10211732204602	8.30094275718063
Со	10.01769884416324	15.02603145474824	0.06400024188920
Ν	8.86403184915502	16.26382887937543	-0.95523345406838
Ν	9.49857195820789	15.92180499321971	1.74548562317373
Ν	10.53070638980725	14.11801842472820	-1.61231945058434
Ν	11.14656874696920	13.77588265508424	1.08249071481300
Ν	17.69732759001080	11.71776898722987	-1.46873318878545
Ν	18.98121609352717	9.82669543582066	-3.01103108651958
Ν	16.08766804228183	7.52978122219577	-1.64561845115055
Ν	14.52367703221657	9.80962501324804	-1.88625658349939
Ν	15.14550313311387	16.14509705243758	6.79604105317292
Ν	15.09623486755039	16.52795772715296	9.52393773691167
Ν	12.67765747678842	13.42297794963509	9.35697461367716
Ν	11.77073389695818	14.56990706638538	6.99599994337235
С	8.60489841706426	16.24464536204491	-2.31220720801824
С	8.62237261898770	16.97797613460061	1.89469764599916
С	8.48868363424045	17.32633098927931	3.27898386930257
С	9.87369496082214	15.58594892319386	3.03350518868225
С	9.24424354258378	16.45407553290766	3.98200895538617
С	10.70284363109592	14.53840742632977	3.38519488396924
С	11.33392407566265	13.73498570215697	2.45091200166620
С	12.25980535881729	12.70012901064863	2.79804636828763
С	12.61428003135011	12.08283413515191	1.64794352210948
С	11.90836106354731	12.73490413265387	0.58705462392466
С	11.97341983993202	12.32888830229633	-0.73476129759192
С	11.35074645528486	13.01422486635592	-1.76003688634044
С	11.43704640903495	12.63409113495831	-3.13755331519207
С	10.67661595740269	13.50529281081710	-3.83661514916586
С	10.09090569177289	14.40713340722033	-2.88842902047253
С	9.16306575026388	15.37595649934886	-3.23006396154876
С	7.61262671937261	17.22095173673404	-2.64836453602644
С	7.26248904730815	17.84115586242660	-1.49941483283905
С	8.03716486702350	17.24893961936061	-0.45058105872140
С	7.90455471815057	17.58982670092912	0.88163173598832
С	17.09028634223672	14.02802465711520	-1.26767215737977
С	16.88182284018015	12.67678751242740	-1.02752366118612
С	18.25553967155592	14.37979164960329	-1.94499336718441
С	18.80818704793995	12.05769914362623	-2.14728020376749
С	19.12323742669477	13.39469839733459	-2.37471679970731
С	19.63067728870378	10.96098983345477	-2.69129821995187
С	21.00196304548501	11.09069220466058	-2.88764931596333

С	21.71007683929087	10.03789201911153	-3.44167202736755
С	19.66950117738493	8.81833584436079	-3.55260398820463
С	21.03150450225035	8.88150650557063	-3.79168677512678
С	13.87380071920509	10.95818074629182	-1.68476659206507
С	12.65401733807948	11.04336487338316	-1.02371587593271
С	12.08279601841761	9.84678520975804	-0.59484236197808
С	12.73509337373608	8.65187742587649	-0.82182694331850
С	13.97138074018618	8.65913803992121	-1.46297604052990
С	14.74626414742430	7.41726294133403	-1.65045651681507
С	14.12801020179901	6.17982404425287	-1.80236932752101
С	14.90483525310018	5.04110501568166	-1.92785503878709
С	16.28480360627639	5.16178260450002	-1.89385583292758
С	16.83228429993441	6.42497429961480	-1.75790196029360
С	10.85060739798290	14.17283551169774	4.81450886199476
С	10.26759104092382	13.00044004970931	5.29164170311646
С	11.57883942372137	14.93000034164002	5.72520590748233
С	14.87390728222921	16.16965709011768	5.49015030332728
C	15.26404602214506	17.20144739685625	4.64729784121608
C	16.04137751739946	18.21459251586020	5,20343649883264
C	16.35601309015435	18.17886104664753	6.54801757976576
C	15.87029340899699	17.14067578635641	7.33832695955186
C	16.06582539024456	17.11629658311925	8.80009482691516
C	15.19832101736668	16.51878102933744	10.85528984930882
C	16.26819722221542	17.08088268421724	11.53055201867363
C	17,28156302067914	17.66723306312503	10,78935454869440
c	17 17884806879487	17 68774057204356	9 40879705670031
C	11,21234631144558	13 43356255467954	7 44807073641662
C	10.43893487081927	12.63319578263347	6.61090619092833
c	11 49510423646013	13 03784592293230	8 84145817088632
c	10 59664629264774	12 28161443686314	9 58816092888006
c	13 00026794335435	13 04161869981283	10 59749668704898
c c	12 16336663153746	12 27528017632626	11 38851899710643
c c	10 93269150990622	11 89862051009703	10 87510525581531
н	7 881127/2767559	18 1263135088505/	3 66227020021807
н	9 36509758369009	16 39799264107424	5.00227525521057
н	12 60067309010664	12/1829573901/252	3 79/65916261903
н	13 30018775976115	11 26376459769305	1 52451433765390
н	12.00528318/21283	11 803803065652/8	-3 51723000500805
ц	10 51276200062112	12 52846628020625	-3.31723030330803
	7 21512060177100	17 29600607216654	2 6220595204333801
	6 52271002026070	17.50009097210054	1 26460205795402
	16 015571303330070	10.01104/0010/434	-1.30409303763402
п	10.0100/4/2204100	12.33099361376473	-0.40/001/0052129
		12 66101476142222	-2.13148991412582
	20.01150031312274	13.001914/0143223	-2.9208080019/924
	21.01091104312033	11.3314253/9/4293	-2.38852225/9038/
Н	22.//08184/552821	10.11840394205185	-3.593/49851293/6
H	19.09908289073016	7.93748454860024	-3.8139648446/053
н	21.54377005069623	8.04259241804873	-4.23904563600408

Н	14.35163069938049	11.85272483425880	-2.06285337231129
Н	11.13618754113567	9.86114855909328	-0.07303101056947
н	12.30704780277028	7.72736994057295	-0.46518029219640
н	13.05173149462879	6.10685557601559	-1.84773526714469
н	14.43899230465261	4.07434889586561	-2.05395038054833
Н	16.92758297201000	4.29767306581203	-1.97353401474157
н	17,90351712757812	6.56673358901476	-1.72329224901321
н	9 69429257879866	12 37564008035420	4 62125704749908
н	12 03264767442823	15 86305392880111	5 41680704587375
н	14 30788468495768	15 33423066330981	5 10091770161627
н	16 37630802600927	10 03682021003/83	A 58673002/02566
ц	16 02222560144540	19.03082021003483	6 09752150699124
п	14 20270056201702	16.97863020003371	11 202107077760706
	14.382/9950281/03		11.39310787450700
	10.30330920425402	17.05573220803290	12.00900411500152
н	18.14272323400170	18.09942674001937	11.2/83862829066/
н	17.96909074843612	18.12128224917555	8.81414537260880
н	10.01041262216/62	11./1129//3816/9/	6.9/3/230958142/
Н	9.63347509032285	12.01537277848953	9.17941724274862
Н	13.97087284309981	13.35583433297288	10.95507239969329
Н	12.47129360939724	11.98568185982151	12.38223893692758
Н	10.24192636225843	11.31772220039892	11.46917434496050
Ag	7.08835082882222	23.04731893235778	2.00026855176337
Ag	10.24098634677769	17.52795821155846	-8.29740446854255
Со	13.97301876562423	17.60915332152405	-0.06093718365302
Ν	15.12686743830483	16.37216317315241	0.95909405862566
Ν	14.49347208653155	16.71361398444561	-1.74210554262475
Ν	13.46040328254165	18.51835890000257	1.61486568702441
Ν	12.84519925321666	18.85949132659504	-1.08038398511554
Ν	6.30392177626342	20.92552065567122	1.46774555950519
Ν	5.02214834879121	22.82262725179663	3.00452147575317
Ν	7.91516468445636	25.11635980184337	1.63311244200387
Ν	9.47634013178269	22.83590523165293	1.88169269168545
Ν	8.83614788951445	16.48397800186483	-6.79277313636597
Ν	8.88136285304974	16.09823853457655	-9.52015150175748
Ν	11.30472829536344	19.20048629297921	-9.35453190407920
Ν	12.21329350358466	18.05581374916969	-6.99196715264872
С	15.38362567956155	16.39011383331535	2.31652636101918
C	15.37274463059384	15.65999443805242	-1.89099521894066
C	15,50694179008513	15.31109436767736	-3.27509594386825
c	14 11668692247991	17 04737630372037	-3 03020267306646
c	14 74818258621416	16 18036884402186	-3 97837133168160
c	13 28577050180383	18 09331891933525	-3 38244710284567
c	12 65596112902290	18 808221///78//32	-2 11861252982115
c	11 72177010710000	10 03/385/7677360	-2.7706202701606E0
c	11 200/0/60001007	20 55/77/2065EC20	-1 64608500020272
c	12 00042402021227	10 00206276272207	-1.04030300332373
	12.0002033304383	13.30200243343204	
с С			U./SO495//182401
L	12.043203333990357	13.02423012022021	1./01494/09/0422

С	12.55599175366230	20.00471320178736	3.13888592359543
С	13.31279382764841	19.13121133733173	3.83901013131006
С	13.89778268469492	18.22809242412630	2.89157786834647
С	14.82386797031574	17.25793410652547	3.23423605389020
С	16.37622470617990	15.41435288207863	2.65337443097742
C	16.72987006350866	14.79659108102552	1.50419122807935
C	15.95638903809377	15.38916804204040	0.45469587785137
C	16.09152245510453	15 04983980402230	-0.87760417594750
c	6 90822707309840	18 61401918623750	1 27178962329658
c	7 11800759083181	19 96451634575267	1 02830554070990
c	5 74334156533414	18 26529244872364	1 95134814458468
c	5 193373/9730529	20 58847867533450	2 14809967648330
c	<i>A</i> 87718002 <i>/</i> 2 <i>/</i> / <i>/</i> /23		2.14005507040550
c	4.8771031301/15131	21 68752116611315	2.57551751105702
c c	2 00060022224409	21.08752110011515	2.00912411007209
c c	2.00003332324408	21.55555545528500	2.88085901959815
C C	2.29552405271021	22.01449050072101	3.43702973199073
C C	4.554//096105/9/	23.03337100109203	3.34200077392342
C C	2.9/29129/220642	23.//1/8934693162	3.78302139497949
C	10.124/5693584/90	21.68600834933860	1.68308313418808
C	11.344/5280908/04	21.59//9/464/3430	1.02293283822683
C	11.91810814597638	22.79269963146948	0.59223/2/2510/0
C	11.26/3834/143216	23.98898856519562	0.81641876903510
C	10.0304/425255618	23.98477684646504	1.45635959905174
С	9.25662242218425	25.22787232226973	1.63963020870861
С	9.87578836764777	26.46517521751079	1.78890691207269
С	9.09972077857463	27.60490027266883	1.90990391334946
С	7.71971087006799	27.48527709295865	1.87396203175907
С	7.17136688272040	26.22212812184310	1.74086478349663
С	13.13609750472783	18.45647238856885	-4.81221629463195
С	13.71919404059168	19.62767703097142	-5.29212077635566
С	12.40636328546935	17.69804808869495	-5.72071651515714
С	9.10916753785404	16.46150624299085	-5.48711076354923
С	8.72040665445944	15.43075666018139	-4.64239896670226
С	7.94320190671881	14.41629004141740	-5.19630259112268
С	7.62662828109521	14.45022307689803	-6.54047286903835
С	8.11099845181088	15.48744031687042	-7.33285933859823
С	7.91322503775364	15.51004113099239	-8.79435177708807
С	8.77737078300899	16.10592378144443	-10.85130822458969
С	7.70694598592662	15.54229057567930	-11.52448426167265
С	6.69506899891988	14.95600610705076	-10.78121243220201
С	6.79974350860754	14.93704915476596	-9.40077006414574
С	12.77193081056676	19.19091997837581	-7.44667050785297
С	13.54661962047454	19.99256821896212	-6.61187718635831
С	12.48848818755854	19.58424523691562	-8.84063678868725
С	13.38771025697425	20.33739644746133	-9.58952461728021
С	10.98184301556474	19.58030449321316	-10.59554536538526
С	11.81958118765074	20.34355528993782	-11.38860040578182
С	13.05141596580478	20.71871675825646	-10.87688414710443

Н	16.11699463067391	14.51288074447706	-3.65812232079272
Н	14.62639478693561	16.23517980873330	-5.04535835593688
Н	11.39000216546810	20.15042365677575	-3.79294483667941
Н	10.69673097381957	21.37572835205369	-1.52413816597514
Н	11.98943730591507	20.83650298714409	3.51780162389890
Н	13.47480538963932	19.10736865346907	4.90162614843946
Н	16.77188307350085	15.24828283885196	3.63955772721710
Н	17.46998164405386	14.02791529497877	1.36981410548992
Н	7.98409850424252	20.28797165811281	0.46676507893188
Н	5.53322925231187	17.22577606825507	2.16052660205149
Н	3.98927009561156	18.98753661875819	2.93331331841508
Н	2.48504181412522	20.65787962668301	2.59124000371542
Н	1.22683897019974	22.53509079663997	3.59067910449833
Н	4.90589662157043	24.71482109119662	3.80064174781354
Н	2.46137289841848	24.61260042231683	4.22763518016141
Н	9.64531128440933	20.79296263752949	2.06259098898725
Н	12.86487340048607	22.77586344449431	0.07078559056533
Н	11.69702900495447	24.91219245979133	0.45833194408243
Н	10.95206288861888	26.53737125958233	1.83570594263663
Н	9.56617142005011	28.57162577956342	2.03397583011553
Н	7.07754759608688	28.35017724638023	1.94998405102794
Н	6.10006642361270	26.08126119657449	1.70485695602806
Н	14.29346430716185	20.25344490220186	-4.62347011985846
Н	11.95254603619676	16.76571996534056	-5.41002815128079
Н	9.67454751798941	17.29812221131455	-5.09958307670958
Н	7.60884831327660	13.59502758618899	-4.57795684256618
Н	7.05078408099779	13.64906582136005	-6.97832593935312
Н	9.59176677102480	16.57015806642982	-11.39080919616916
Н	7.67024857083233	15.56627863650827	-12.60357150039295
Н	5.83355244024657	14.52261990375765	-11.26856024117743
Н	6.01058868911621	14.50366089644968	-8.80455910253703
Н	13.97518394084298	20.91360010070063	-6.97685657345944
Н	14.35171930521209	20.60245169999230	-9.18199680863129
Н	10.01034859162434	19.26735872342881	-10.95176627429562
Н	11.51137918911618	20.63193515099903	-12.38258658225933
Н	13.74282511276592	21.29721592486025	-11.47254224686844

Reference:

(1) Galloway, J. D.; Mai, D. N.; Baxter, R. D. Radical Benzylation of Quinones via C–H Abstraction. *J. Org. Chem.* **2019**, *84* (18), 12131-12137. DOI: 10.1021/acs.joc.9b01004.

(2) Crawley, M. R.; Zhang, D.; Oldacre, A. N.; Beavers, C. M.; Friedman, A. E.; Cook, T. R. Tuning the Reactivity of Cofacial Porphyrin Prisms for Oxygen Reduction Using Modular Building Blocks. *J. Am. Chem. Soc.* **2021**, *143* (2), 1098-1106. DOI: 10.1021/jacs.0c11895.