Co-doped amorphous NiMoS$_4$ modified with rGO for high-rate and long-cycle stability of hybrid supercapacitor

Yuchen Lu, Bingji Huang, Jingjing Yuan*, Yifan Qiao, Wenyao Zhang, Guangyu He, Haiqun Chen*

(*Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Centre, Changzhou University, Changzhou, Jiangsu Province 213164, China; bKey Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China)

*Jingjing Yuan. E-mail: yuanjj@cczu.edu.cn *Haiqun Chen. E-mail: chenhq@cczu.edu.cn

1. Experimental section

1.1 Materials

(NH$_4$)$_2$S solution (16–20%), NH$_3$·H$_2$O (30–33%), (NH$_4$)$_6$Mo$_7$O$_{24}$·4H$_2$O, Ni(NO$_3$)$_2$·6H$_2$O, Co(NO$_3$)$_2$·6H$_2$O, concentrated H$_2$SO$_4$ (95–98%), KMnO$_4$, KOH and polytetrafluoroethylene (PTFE) were purchased from Sinopharm Chemical Reagent Co., Ltd (China). Needle Coke (carbon content ≥ 98% and ash content ≤ 0.8%) was purchased from Jinzhou Petrochemical Co., Ltd (China). All reagents and solvents were of analytical grade and used as received.

1.2 Preparation of GO

Graphite oxide (GO) is prepared by a modified Hummers method.

1.3 Preparation of (NH$_4$)$_2$MoS$_4$

The preparation method of (NH$_4$)$_2$MoS$_4$ has been improved on the basis of the work of our group1. 19.6 g of (NH$_4$)$_6$Mo$_7$O$_{24}$·4H$_2$O were dissolved in 50 mL of ammonia water, and the pH of the ammonia water was adjusted to 9 using NH$_3$·H$_2$O. The solution was stirred in a water bath at 65 °C for 1 h after...
340 mL of (NH$_4$)$_2$S solution was added. Following this, the solution was crystallized in an ice-water bath at 0 °C for 1 h. The resulting material was washed with deionized water and vacuum-dried for 12 h at 60 °C to give (NH$_4$)$_2$MoS$_4$.

1.4 Preparation of Ni$_{1-x}$Co$_x$MoS$_4$/rGO composite

The preparation process taking Ni$_{0.7}$Co$_{0.3}$MoS$_4$/rGO as an example is as follows: 0.13 g of (NH$_4$)$_2$MoS$_4$ was dissolved in 20 mL of deionized water in a 60 °C water bath. At the same time, 0.102 g of Ni(NO$_3$)$_2$·6H$_2$O and 0.044 g of Co(NO$_3$)$_2$·6H$_2$O were added to 40 mL of GO dispersion with 16 mg dispersed in it, stirred at a constant speed for 10 min, and then sonicated for 20 min. Then the cooled (NH$_4$)$_2$MoS$_4$ solution was slowly added dropwise to the above dispersion, stirred at a constant speed for 30 min, and reacted at 120 °C for 12 h. The samples were centrifuged three times with deionized water and then freeze-dried to obtain a black powder sample. A series of Ni$_{1-x}$Co$_x$MoS$_4$/rGO (x=0, 0.3, 0.5, 0.7 and 1) composites were prepared by adjusting the molar ratio of nickel-cobalt metal salts. For comparison, NiMoS$_4$ and Ni$_{0.7}$Co$_{0.3}$MoS$_4$ were prepared under the same conditions without adding GO.

1.5 Preparation of needle coke oxide (NCO)

1 g of the needle coke (NC) was slowly added to a beaker containing 25 mL of concentrated H$_2$SO$_4$ under ice-water bath, and stirred for 1 h. Then 3 g of KMnO$_4$ was slowly added in an ice-water bath andkept stirring for 12 h at room temperature. After that, 60 mL of deionized water was slowly added to the above mixture, stirring for 12 h at 60 °C. Finally, the product was rinsed to neutrality with deionized water and dried at 60 °C in oven, named as NCO.

1.6 Materials characterization

The crystalline phase was investigated by powder X-ray diffraction (XRD, Bruker D8 Advance with Cu K$_\alpha$ radiation, $\lambda = 0.15418$ nm). The specific surface area was obtained from the N$_2$ adsorption-
desorption isotherms and calculated by the Brunauer-Emmett-Teller method (BET, ASAP2460). The chemical species and structure of samples were examined by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) and Fourier transform infrared spectroscopy (FT-IR, Nicolet Avatar 370). The morphology of samples was observed by field-emission scanning electron microscopy (FESEM, Zeiss Supra 55) equipped with an energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM, JEOL JEM-2100).

1.7 Electrochemical measurements

Electrochemical studies were conducted using three-electrode and two-electrode systems. Acetylene black and polytetrafluoroethylene (PTFE) were used as the conductive component and binder, respectively. The active material, acetylene black, and PTFE were uniformly mixed in an 8:1:1 mass ratio, and the resulting slurry was uniformly coated on a porous NF substrate with a 1 cm×1 cm area. The mass of the active ingredient is approximately 1.2 mg. As the electrolyte, a KOH solution of 6 mol L⁻¹ was used. The platinum rod and the Hg/HgO electrode serve as the counter and reference electrodes in the three-electrode test, respectively. For the two-electrode test, a CR2032 battery box was used, and glass fiber filter paper was used as a separator to construct a two-electrode symmetrical button capacitor. The cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests of the samples were performed using the CHI 760E electrochemical workstation of Shanghai Chenhua Company. All electrochemical tests were performed at room temperature.

The specific capacitance \(C \) (C·g⁻¹) of the three-electrode system was calculated using the equation:\(^1\)

\[
C = \frac{I \Delta t}{m}
\]
where \(m \) is the weight of the active material, \(\Delta t \) is the discharge duration, \(I \) is the discharge current.

The following equations are used to compute the power density \(P \) (W·kg⁻¹) and energy density \(E \) (Wh·kg⁻¹) of the HSC:\(^2\)

\[
E = \frac{C A V}{7.2}
\]

\[\text{Equation 1}\]

\[\text{Equation 2}\]
\[\frac{3600E}{\Delta t} \]

where \(C \) represents the specific capacitance of the HSC (C·g⁻¹), and \(\Delta V \) and \(\Delta t \) are equivalent to those in equations (1).

Fig. S1 XRD spectra of NiMoS₄ and standard card

Fig. S2 The EDS spectra of Ni₀.7Co₀.3MoS₄/rGO (the inset shows the Ni, Co, Mo and S elemental mappings).
Fig. S3 (a) Amplified Raman spectra of GO, RGO and Ni$_{0.7}$Co$_{0.3}$MoS$_4$/rGO from 2450 cm$^{-1}$ to 3000 cm$^{-1}$, (b) Amplified Raman spectra of NiMoS$_4$ and Ni$_{0.7}$Co$_{0.3}$MoS$_4$/rGO from 500 cm$^{-1}$ to 1000 cm$^{-1}$.

Fig. S4 FT-IR spectra of NiMoS$_4$, NiMoS$_4$/rGO and Ni$_{0.7}$Co$_{0.3}$MoS$_4$/rGO

Fig. S4 clearly shows that rGO has weak absorption bands at 1630, 1403, 1150 and 1098 cm$^{-1}$, which is caused by functional groups such as -OH, -O and -OOH on the surface. In addition, the tensile vibration peaks of Ni-S and Mo-S appeared at 760 and 631 cm$^{-1}$ respectively. With the introduction of Co, the Ni-S and Mo-S peak intensities of the Ni$_{0.7}$Co$_{0.3}$MoS$_4$/rGO curve are also weakened. These results indicate that NiMoS$_4$ and Ni$_{0.7}$Co$_{0.3}$MoS$_4$/rGO were successfully prepared.
Fig. S5 (a) XPS survey spectrum of NiMoS$_4$/rGO. Core XPS spectrum of (b) C 1s, (c) Ni 2p, (d) Mo 3d and (e) S 2p XPS spectra of NiMoS$_4$/rGO.

The Ni 2p spectrum of NiCoMoS$_4$/rGO can be fitted into the satellite peaks (862.7 and 882.0 eV), corresponding to Ni$^{3+}$ (879.7 and 857.1 eV) and Ni$^{2+}$ (875.4 and 853.8 eV) characteristic peaks. The above data can prove that compared with NiMoS$_4$/rGO, the Ni characteristic peaks of Ni$_{0.7}$Co$_{0.3}$MoS$_4$/rGO generally have obvious red shift.

Fig. S6 CV (a) and GCD (b) curves of Ni$_{0.7}$Co$_{0.3}$MoS$_4$ and Ni$_{0.7}$Co$_{0.3}$MoS$_4$/rGO.
Fig. S7 GCD curves of NCO in different current density.

Table S1 Comparison of electrochemical performance of Ni\textsubscript{0.7}Co\textsubscript{0.3}MoS\textsubscript{4}/rGO (three-electrode system) with reported transition metal-based sulfides electrode in literatures

<table>
<thead>
<tr>
<th>Electrode material</th>
<th>Specific capacity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni\textsubscript{0.7}Co\textsubscript{0.3}MoS\textsubscript{4}/rGO</td>
<td>509.8 C·g-1 at 1 A·g-1</td>
<td>This work</td>
</tr>
<tr>
<td>Amorphous CoMoS\textsubscript{4}</td>
<td>396.6 C·g-1 at 1 A·g-1</td>
<td>6</td>
</tr>
<tr>
<td>Amorphous structured NiMoS\textsubscript{4}-rGO</td>
<td>500 C·g-1 at 1 A·g-1</td>
<td>7</td>
</tr>
<tr>
<td>NiCo\textsubscript{2}S\textsubscript{4} nanotube</td>
<td>397 C·g-1 at 1 A·g-1</td>
<td>8</td>
</tr>
<tr>
<td>NiCo\textsubscript{2}O\textsubscript{4} flowerlike nanostructure</td>
<td>361.9 C·g-1 at 1 A·g-1</td>
<td>9</td>
</tr>
<tr>
<td>NiCo\textsubscript{2}S\textsubscript{4}@MnO\textsubscript{2} heterostructure</td>
<td>286.4 C·g-1 at 1 A·g-1</td>
<td>10</td>
</tr>
<tr>
<td>NiCo\textsubscript{2}S\textsubscript{4} cubic octahedron</td>
<td>334 C·g-1 at 1 A·g-1</td>
<td>11</td>
</tr>
<tr>
<td>rGO\textsubscript{100}-CNT\textsubscript{50}-Co\textsubscript{3}S\textsubscript{4}</td>
<td>488.6 C·g-1 at 1 A·g-1</td>
<td>12</td>
</tr>
<tr>
<td>Ni\textsubscript{2}S\textsubscript{3}-MoS\textsubscript{2} nano flower</td>
<td>490.8 C·g-1 at 1 A·g-1</td>
<td>13</td>
</tr>
<tr>
<td>MOF-derived Co\textsubscript{9}S\textsubscript{8}/carbon</td>
<td>367 C·g-1 at 1 A·g-1</td>
<td>14</td>
</tr>
<tr>
<td>Co\textsubscript{3}O\textsubscript{4}-rGO</td>
<td>330 C·g-1 at 0.5 A·g-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Table S2 Rate performance of NiMoS$_4$/rGO, Ni$_{0.7}$Co$_{0.3}$MoS$_4$/rGO, Ni$_{0.5}$Co$_{0.5}$MoS$_4$/rGO, Ni$_{0.3}$Co$_{0.7}$MoS$_4$/rGO and CoMoS$_4$/rGO

<table>
<thead>
<tr>
<th>Electrode material</th>
<th>Capacitance in 1 A·g$^{-1}$ (C·g$^{-1}$)</th>
<th>Capacitance in 20 A·g$^{-1}$ (C·g$^{-1}$)</th>
<th>Capacitance retention (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiMoS$_4$/rGO</td>
<td>114.1</td>
<td>36</td>
<td>31</td>
</tr>
<tr>
<td>Ni${0.7}$Co${0.3}$MoS$_4$/rGO</td>
<td>509.8</td>
<td>260.3</td>
<td>51</td>
</tr>
<tr>
<td>Ni${0.5}$Co${0.5}$MoS$_4$/rGO</td>
<td>312</td>
<td>76.8</td>
<td>24.6</td>
</tr>
<tr>
<td>Ni${0.3}$Co${0.7}$MoS$_4$/rGO</td>
<td>140</td>
<td>34.6</td>
<td>24.7</td>
</tr>
<tr>
<td>CoMoS$_4$/rGO</td>
<td>370</td>
<td>23.8</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Reference

