Supporting Information

Ultrafine PdCo bimetallic nanoclusters confined in N-doped porous carbon for the efficient semi-hydrogenation of alkynes

Xuecheng Zhan,^{a,#} Hanghang Zhu,^{b,#} Haowen Ma,^{a,*} Xiaoli Hu,^a Yuan Xie,^a Dajiang Guo,^a Minglin Chen,^a Ping Ma,^a Liming Sun,^a Wei David Wang^{b,*} and Zhengping Dong^{b,*}

^a Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou, 730060, PR China.

^b College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.

[#] These authors contribute equally to this work.

* Corresponding authors.

<u>mahaowen@petrochina.com.cn</u> (Haowen Ma), <u>ww@lzu.edu.cn</u> (Wei David Wang) and <u>dongzhp@lzu.edu.cn</u> (Zhengping Dong).

Figure S1. (a) The full-range XPS spectrum of $Pd_{0.22}Co_{1.5}/m$ -NC. The XPS spectra of N 1s (b), Pd 3d (c) and Co 2p (d) of $Pd_{0.22}Co_{1.5}/m$ -NC.

Figure S2. (a) The full-range XPS spectrum of $Pd_{0.65}Co_{0.5}/m$ -NC. The XPS spectra of N 1s (b), Pd 3d (c) and Co 2p (d) of $Pd_{0.65}Co_{0.5}/m$ -NC.

Figure S3. The trend of conversion and selectivity of phenylacetylene semi-hydrogenation reaction catalyzed by (a) $Pd_{0.65}Co_{0.5}/m$ -NC, (b) $Pd_{0.43}Co_1/m$ -NC and (c) $Pd_{0.22}Co_{1.5}/m$ -NC under same conditions (10 mg catalyst, 1 mmol phenylacetylene, 5 mL ethanol, room temperature, 1 atm H₂).

Figure S4. PXRD pattern of fresh $Pd_{0.43}Co_1/m$ -NC and recycled $Pd_{0.43}Co_1/m$ -NC.

Figure S5. (a) TEM images of the recycled $Pd_{0.43}Co_1/m$ -NC and histogram of the distribution of PdCo NCs. (b) EDX mapping of composition element C, N, Pd and Co in recycled $Pd_{0.43}Co_1/m$ -NC.

Samples	BET surface area (m ² ·g ⁻¹)	t-Plot micropore area (m ² ·g ⁻¹)	Pore volume (cm ³ ·g ⁻¹)	t-Plot micropore volume (cm ³ ·g ⁻¹)	Average pore size (nm)
m-NC	1008.93	637.7	0.39	0.32	2.51
Pd _{0.43} Co ₁ /m- NC	1132.41	727.5	0.49	0.36	2.65

Table S1. BET surface area and pore structure characterization parameters of materials.

Table S2. Fitting data for H₂-TPD spectra of different materials.

Samples	Peak type	Center Grvty	Area Intg	FWHM
Ca /m NC	Gaussian	432.2	2.6	126.7
Co ₁ /m-NC	Gaussian	681.9	1.4	55.8
Pd _{0.43} /m-NC	Gaussian	484.1	11.2	177.5
Pd _{0.43} Co ₁ /m-NC	Gaussian	492.7	19.1	196.4

Table S3. Comparison the catalytic performance for semi-hydrogenation of alkynes presented in literatures and this work.

Entry	Catalyst	Substrate	T (°C)	P (MPa)	Conv. (%)	Alkene Sel. (%)	Ref.	
1	Pd/C	2-Butyne-1,4-diol	65	0.3	65	73	[1]	
2	PdCu/ZnO	Dehydroisophytol	80	0.4	99	95-97	[2]	
3	PdAg/ZnO	Dehydroisophytol	80	0.4	99	97-98	[2]	
4	UiO-67@Pd@UiO-67 (50 nm)	phenylacetylene	10	0.5	>99	93.1	[3]	
5	Pd/Al ₂ O ₃	acetylene	200	-	43	17	[4]	
6	PdGa	acetylene	200	-	86	75	[4]	
7	PdZn/CN@ZnO	Dehydroisophytol	50	1.0	96	>99	[5]	
8	PdZn/Al ₂ O ₃	2-Methyl-3-butyn-2-ol	100	0.1	25	90	[6]	
9	Pd-Ru@ZIF-8	phenylacetylene	100	0.1	98	96	[7]	
10	PdIn/MgAl ₂ O ₄	phenylacetylene	25	0.1	92	97	[8]	
11	This work	phenylacetylene	R.T.	0.1	>99	93.6	-	

Reference

[1] I.T. Duncanson, I.W. Sutherland, B. Cullen, S.D. Jackson, D. Lennon, The hydrogenation of 2butyne-1,4-diol over a carbon-supported palladium catalyst, Catal. Lett., 103 (2005) 195-199.

[2] A. Yarulin, I. Yuranov, F. Cardenas-Lizana, D.T.L. Alexander, L. Kiwi-Minsker, How to increase the selectivity of Pd-based catalyst in alkynol hydrogenation: Effect of second metal, Appl. Catal. A-Gen., 478 (2014) 186-193.

[3] K. Choe, F.B. Zheng, H. Wang, Y. Yuan, W.S. Zhao, G.X. Xue, X.Y. Qiu, M. Ri, X.H. Shi, Y.L. Wang, G.D. Li, Z.Y. Tang, Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal-Organic Frameworks, Angew. Chem. Int. Edit., 59 (2020) 3650-3657.

[4] M. Armbruster, K. Kovnir, M. Behrens, D. Teschner, Y. Grin, R. Schlogl, Pd-Ga Intermetallic Compounds as Highly Selective Semihydrogenation Catalysts, J. Am. Chem. Soc., 132 (2010) 14745-14747.

[5] L.F. Shen, S.J. Mao, J.Q. Li, M.M. Li, P. Chen, H.R. Li, Z.R. Chen, Y. Wang, PdZn intermetallic on a CN@ZnO hybrid as an efficient catalyst for the semihydrogenation of alkynols, J. Catal., 350 (2017) 13-20.

[6] A. Gonzalez-Fernandez, A. Berenguer-Murcia, D. Cazorla-Amoros, F. Cardenas-Lizana, Zn-Promoted Selective Gas-Phase Hydrogenation of Tertiary and Secondary C4 Alkynols over Supported Pd, ACS Appl. Mater. Interfaces, 12 (2020) 28158-28168.

[7] Z. Li, M. Hu, J. Liu, W. Wang, Y. Li, W. Fan, Y. Gong, J. Yao, P. Wang, M. He, Y. Li, Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site, Nano Research, 15 (2022) 1983-1992.

[8] Q.C. Feng, S. Zhao, Y. Wang, J.C. Dong, W.X. Chen, D.S. He, D.S. Wang, J. Yang, Y.M. Zhu, H.L. Zhu, L. Gu, Z. Li, Y.X. Liu, R. Yu, J. Li, Y.D. Li, Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes, J. Am. Chem. Soc., 139 (2017) 7294-7301.