Electronic supplementary information for

Symmetric CEST-active lanthanide complexes for redox monitoring

Damien Mouchel dit Leguerrier, Richard Barré, Quentin Ruet, Véronique Frachet, Daniel Imbert, Fabrice Thomas* and Jennifer K. Molloy*

Content :

Fig. S1-	-\$22	 	 	S2

 $Calculation \ of \ the \ number \ of \ coordinated \ water \ molecules \ q \ in \ the \ europium \ complexes....S12$

```
m/z calculated for C48 H77 08 NIO [M]<sup>+</sup> 921.59204
m/z found 921.59137
Error ppm -0.722
```


Fig. S1 HR-MS of ligand L_1 : Top, experimental spectrum ; bottom, simulated spectrum.

m/z calculated for :	C48 H71 D6 N10 F6	[M] ⁺ : 997.54568
m/z found	997.54512	
Error ppm	-0.557	

Fig. S2 HR-MS of ligand L_2 : Top, experimental spectrum ; bottom, simulated spectrum.

Fig. S3 HR-MS of complex [Eu(L₁)]³⁺: Top, experimental spectrum ; bottom, simulated spectrum.

Fig. S4 HR-MS of complex $[Eu(L_2)]^{3+}$: Top, experimental spectrum ; bottom, simulated spectrum.

Fig. S5 HR-MS of complex [Yb(L₁)]³⁺ : Top, experimental spectrum ; bottom, simulated spectrum.

Fig. S6 HR-MS of complex [Yb(L₂)]³⁺ : Top, experimental spectrum ; bottom, simulated spectrum.

Fig. S7 HR-MS of complex [Dy(L1)]³⁺: Top, experimental spectrum ; bottom, simulated spectrum.

Fig. S8 X-band EPR spectra of 0.45 mM aqueous (+10% glycerol) solutions of the ytterbium complexes; (left) $[Yb(L_1)]^{3+}$ and (right) $[Yb(L_2)]^{3+}$. Microwave Freq. 9.42 GHz; power, 3.5 mW; Mod. Amp. 0.2 mT, Freq. 100 KHz. T = 298 K.

Fig. S9 X-band EPR spectra of 0.45 mM aqueous (+10% glycerol) solutions of the ytterbium complexes; (left) $[Yb(L_1)]^{3+}$ and (right) $[Yb(L_2)]^{3+}$. Microwave Freq. 9.63 GHz; power, 20 mW or 2mW; Mod. Amp. 0.4 mT, Freq. 100 KHz. T = 6 K (left) or 8 K (right).

Fig. S10 X-band EPR spectra of a 0.45 mM aqueous (+10% glycerol) solution of $[Dy(L_1)]^{3+}$; (left) before addition of ascorbate, as a function of the temperature and (right) after addition of two molar eq. of ascorbate at 8 K (resonance of the isolated Dy³⁺). Microwave Freq. 9.63 GHz; power, 0.2 mW (left) or 2mW (right); Mod. Amp. 0.4 mT, Freq. 100 KHz. T = 8 K (right).

Fig. S11 X-band EPR spectrum of a 0.5 mM CH₃CN solution of the dysprosium complex $[Dy(L_1)]^{3+}$. Microwave Freq. 9.42 GHz; power, 3.5 mW; Mod. Amp. 0.2 mT, Freq. 100 KHz. T = 298 K.

Fig. S12 Power saturation curves of L_1 and its europium complex. Microwave Freq. 9.42 GHz; Mod. Amp. 0.2 mT, Freq. 100 KHz. T = 298 K.

Fig. S13 Cyclic voltammetry curves of (a) $[Yb(L_1)]^{3+}$, (b) $[Eu(L_1)]^{3+}$, (c) $[Dy(L_1)]^{3+}$ and (d) ligand L_1 , recorded in CH₃CN (+ 0.1 M TBAP) at a carbon electrode. Scan rate 0.1 V/s, T = 298 K.

Fig. S14 Cyclic voltammetry curves of (a) $[Yb(L_2)]^{3+}$, (b) $[Eu(L_2)]^{3+}$, (c) ligand L_2 , recorded in CH₃CN (+ 0.1 M TBAP) at a carbon electrode. Scan rate 0.1 V/s, T = 298 K.

Fig S15. Spectra of $[Eu(L_1)]^{3+}$ in a 0.05 mM methanolic solution: (green) absorption spectrum; (red) excitation spectrum (with an emission at 614 nm); (black) luminescence spectra (with an excitation at 280 nm). T = 298 K.

Fig S16. Spectra of $[Eu(L_2)]^{3+}$ in a 0.05 mM methanolic solution: (green) absorption spectrum; (red) excitation spectrum (with an emission at 614 nm); (black) luminescence spectra (with an excitation at 280 nm). T = 298 K.

Fig S17. Spectra of $[Yb(L_1)]^{3+}$ in a methanolic solution: (green) absorption spectrum; (red) excitation spectrum (with an emission at 980 nm); (black) luminescence spectra (with an excitation at 280 nm).

Fig. S18 Z spectra of $[Eu(L_1)]^{3+}$ in a 20 mM H₂O:CD₃CN (2:1) mixture at pH = 7.4 ([HEPES] = 0,07 mol/L). Spectra recorded in the presence of 2 molar eq. of ascorbate. B₀ = 11.7 T; B₁ = 19 μ T; Irradiation time = 4 s. A = 288 K, B = 298 K, B = 310 K, C = 318 K.

Fig. S19 Z spectra of $[Eu(L_2)]^{3+}$ in a 20 mM H₂O:CD₃CN (2:1) mixture at pH = 7.4 ([HEPES] = 0,07 mol/L). Spectra recorded in the presence of 2 molar eq. of ascorbate. B₀ = 11.7 T; B₁ = 19 μ T; Irradiation time = 4 s. A = 298 K, B = 310 K, C = 318 K.

Fig. S20 Z spectra of $[Yb(L_1)]^{3+}$ in a 20 mM H₂O:CD₃CN (2:1) mixture at pH = 7.4 ([HEPES] = 0,07 mol/L). Spectra recorded in the presence of 2 molar eq. of ascorbate. B₀ = 11.7 T; B₁ = 5 μ T (left), 19 μ T (right); Irradiation time = 4 s; *T* = 298 K.

Fig. S21 Z spectra of $[Yb(L_2)]^{3+}$ in a 20 mM H₂O:CD₃CN (2:1) mixture at pH = 7.4 ([HEPES] = 0,07 mol/L). Spectra recorded in the presence of 2 molar eq. of ascorbate. B₀ = 11.7 T; B₁ = $\frac{25 \ \mu T}{25 \ \mu T}$ (left), 19 μT (right); Irradiation time = 4 s; T = 298 K.

Fig. S22 Z spectra of $[Dy(L_1)]^{3+}$ in a 20 mM H₂O:CD₃CN (2:1) mixture at pH = 7.4 ([HEPES] = 0,07 mol/L). Spectra recorded in the absence (left) and in presence (right) of 2 molar eq. of ascorbate. B₀ = 11.7 T; B₁ = $(2.4 \mu T)$; rradiation time = 4 s; T = 298 K.

Comment [FT]: Bizarre que 25 ici et 5 uT au dessus, C'est sûr que c'est différent ????

Comment [u]: En effet le L2 a été fait à des fortes puissances seulement. Dans le cas du L1 les premières mesures été faites à faibles puis à fortes puissances.

Comment [FT]: Bizarre que 25 ici et 5 uT au dessus, C'est sûr que c'est différent ????

Comment [u]: En effet le L2 a été fait à des fortes puissances seulement. Dans le cas du L1 les premières mesures été faites à faibles puis à fortes puissances.

Calculation of the number of coordinated water molecules q in the europium complexes

The number of coordinated water molecules q was calculated by using two empirical formula developed by W. Horrocks *et al.*^[123] (Eq. 1) and D. Parker et al. ^[124] (Eq. 2) :

$$q = 1,11 [\Delta k_{obs} - 0,31 - 0,45q^{OH} - 0,99q^{NH} - 0,075q^{CONH}]$$
Eq. 1
$$q = 1,2 [\Delta k_{obs} - 0,25 - 0,075q^{CONHR}]$$
Eq. 2

where $\Delta k_{obs} = k_{H2O} - k_{D2O} = 1/\tau_{H2O} - 1/\tau_{D2O}$

 q^{OH} is the number of -OH oscillators in the first coordination sphere

 $q^{\rm NH}$ is the number of -NH oscillators in the first coordination sphere

 q^{CONH} is the number of CONH (amide) oscillators in the first coordination sphere.

Table S1. Calculation of the q values for the europium complexes

complex	τ _{H2O (msec)}	τ _{H2O (msec)}	Δk_{obs}	<i>q</i> (Eq. 1 / Eq. 2)
[Eu(L ₁)] ³⁺	0.48	1.43	1.38	1.1/0.9
[Eu(L ₂)] ³⁺	0.25	0.32	0.88	0.5/0.4

Fig. S23: ¹H NMR spectrum in CH_3CN of complex L_1 .Eu.

Fig. S24: ¹H NMR spectrum in CH₃CN of complex L₂.Eu

Exchange rate measurements [Eu.D₅]³⁺

Experimentally the intenisty of the CEST signal is measured as a function of the strength of B1 applied. At 15°C, the intensity of the signal evolves from 0% to almost 40% When the power isaltered from 0 Hz to 3500 Hz. At 25°C and 37°C, The intensity is close for the weak power applied but reaches almost 19% and 22% at 3500 Hz, respectively.

Figure **S25.**: Experimental measurement of the CEST signal obtained for the complex as a function of the saturation power applied.

Applying the 'Omega Plot' method the rate of exchange measured are 2450 s⁻¹ at 15°C, 2640 s⁻¹ at 25°C and 3270 s⁻¹at 37°C.

Exchange rate measurements [Eu(L₁)(NO₃)₃]

At 37°C, the exchange rate obtained is 4000 s⁻¹ which is equivalent to a residence time of the water molecule of 250 μ s (A et B). This value is higher than that obtained for the complex [*Eu(L*₁)(*NO*₃)₃] which was 3270 s⁻¹.

Omega plot	[Eu.L ₁] ³⁺	$[Eu.L_2]^{3+}$
Exchange rate at 15°C τ : residence time	2450 s ⁻¹ 410 μs	
Exchange rate at 25°C τ : residence time	2650 s ⁻¹ 380 μs	
Exchange rate at 37°C τ : residence time	3300 s ⁻¹ 300 μs	4000 s ⁻¹ 250 μs

Table S2 : Values of exchange rates and residence times calculated via the Omega Plot method.