Supplementary Information

Accelerated Fenton degradation for azo dyes wastewater via a novel Zscheme CoFeN-g-C₃N₄ heterojunction photocatalyst with excellent charge transfer under visible light irradiation

Shihao Miao^a, Hongcheng Gao^{*a}, Hongyu Xia^a, Xiaoxia Mao^a, Lijuan Zhang^a, Mengqin Shi^a and Yuanguang Zhang^{*a,b}

^aKey Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River

in Anhui of Anhui, Provincial Education Department, College of Resources and Environment,

Anqing Normal University, Anqing 246011, China

^bCollege of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011,

China

*Corresponding Authors

Email: hongchenggao@aqnu.edu.cn (H. Gao); zygaqtc@163.com (Y. Zhang)

Fig. S1 Multifunctional photocatalytic reactor.

Fig. S2 TEM images of (a) CN and (b) CFN.

Fig. S3 (a) Full XPS spectra of CFN-CN1, (c) C 1s High-resolution XPS spectrum of CFN-CN1.

Fig. S4 Photos of all samples (a) CN, (b) CFN, (c) CFN-CN1, (d) CFN-CN2 and (e) CFN-CN3.

Fig. S5 EIS Nyquist plot of the catalysts.

Fig. S6 M-S plots vs. Ag/AgCl CFN-CN1.

Fig. S7 Comparison of adsorption performance of different catalysts. Experimental conditions: $[MO]_0 = 10 \text{ mg } L^{-1}$, $[catalyst] = 0.2 \text{ g } L^{-1}$, natural pH.

Fig. S8 Degradation rate constants of MO with different catalysts. Experimental conditions: $[MO]_0 = 10 \text{ mg L}^{-1}$, $[\text{catalyst}] = 0.2 \text{ g L}^{-1}$, $[H_2O_2] = 75 \text{ mM}$, natural pH.

Fig. S9 Kinetic analysis curves (a) original MO concentration, (b) catalyst dosage, (c) H_2O_2 concentration, (d) pH, the illustration in (a), (b), (c) and (d) are the corresponding degradation rate constant. Experimental conditions: $[MO]_0 = 10 \text{ mg } \text{L}^{-1}$, $[\text{catalyst}] = 0.2 \text{ g } \text{L}^{-1}$, $[H_2O_2] = 75 \text{ mM}$, natural pH.

Fig. S10 Degradation rate constants of different inorganic anions (a) Cl⁻, (b) HCO_3^- and (c) $\text{SO}_4^{2^-}$. Experimental conditions: $[\text{MO}]_0 = 10 \text{ mg L}^{-1}$, $[\text{catalyst}] = 0.2 \text{ g L}^{-1}$, $[\text{H}_2\text{O}_2] = 75 \text{ mM}$, natural pH.

Fig. S11 Degradation rate constants for the addition of different active species traps. Experimental conditions: $[MO]_0 = 10 \text{ mg } \text{L}^{-1}$, $[\text{catalyst}] = 0.2 \text{ g } \text{L}^{-1}$, $[H_2O_2] = 75 \text{ mM}$, natural pH.

Table S1		
BET specific surface area	and pore volu	me of catalyst

1	1 ,	
	BET Surface Area (m ² g ⁻¹)	Pore Volume (cm ³ g ⁻¹)
CN	36.203	0.109
CFN	357.47	0.201
CFN-CN1	249.45	0.212
CFN-CN2	194.467	0.191
CFN-CN3	139.638	0.155