Electronic supplementary information (ESI)

A new method for the preparation of high-purity CO₂-absorbing Li₃NaSiO₄ powder using lithium silicate and sodium carbonate

Shumpei Iwasaki,^a Kosuke Shido^a and Takuya Hashimoto^{a*}

^a Department of Physics, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajousui, Setagaya-ku, Tokyo 156-8550, Japan

Preparation of Li2SiO3

Nominal amounts of Li₂CO₃ powder (99.9 %, Furuuchi Chemical Co.) and SiO₂ powder (99.9%, Kojundo Chemical Laboratory Co., Ltd) were mixed in ethanol using an Al₂O₃ mortar and pestle. The mixed powder was heated at 950 °C for 24 h in air, followed by pulverization in the Al₂O₃ mortar and pestle. The obtained powder was subsequently heated at 1000 °C for 24 h in air two times.

Fig. S1 shows the XRD pattern of the obtained powder. All the peaks were successfully indexed to orthorhombic symmetry with a = 5.398 Å, b = 9.387 Å, and c = 4.661 Å, which confirmed the synthesis of single-phase Li₂SiO₃ (JCPDS No. 29-0829).

^{*} Corresponding author: Department of Physics, College of Humanities and Sciences, Nihon

University, 3-25-40 Sakurajousui, Setagaya-ku, Tokyo 156-8550, Japan E-mail address: hashimoto.takuya@nihon-u.ac.jp (Takuya Hashimoto)

Fig. S1 XRD pattern of the Li_2SiO_3 compound employed in this study.

Preparation of Li₄SiO₄

Nominal amounts of Li₂CO₃ powder (99.9 %, Furuuchi Chemical Co.) and SiO₂ powder (99.9%, Furuuchi Chemical Co.) were mixed in ethanol using the Al₂O₃ mortar and pestle. The mixed powder was heated at 700 °C for 12 h in air.

Fig. S2 shows the XRD pattern of the obtained powder. All the peaks were successfully indexed to monoclinic symmetry with a = 5.298 Å, b = 6.102 Å, c = 5.150 Å, and $\beta = 90.25^{\circ}$, which validated the synthesis of single-phase Li₄SiO₄ (JCPDS No. 37-1472).

Fig. S2 XRD pattern of the Li_4SiO_4 compound employed in this study.

Preparation of LiNaCO3

Nominal amounts of Li₂CO₃ powder (99.9 %, Furuuchi Chemical Co.) and Na₂CO₃ powder (99.9%, FUJIFILM WAKO Chem.) were mixed in ethanol using the Al₂O₃ mortar and pestle. The powder was heated at 500 °C for 24 h in air.

Fig. S3 shows the XRD pattern of the obtained powder. All the peaks were successfully indexed to the C2/m (No. 12) space group with a = 14.285 Å, b = 24.750 Å, c = 3.302 Å, and $\beta = 91.7^{\circ}$, thereby confirming the preparation of single-phase LiNaCO₃ (JCPDS No. 34-1193).

Fig. S3 XRD pattern of the LiNaCO₃ compound used in this study.

Morphology of powder specimens after CO2 absorption

Fig. S4 shows the SEM images of the powder after CO₂ absorption. CO₂ absorption was performed at 700 °C and followed by quenching to 25 °C under CO₂ gas flow in a TG-DTA apparatus. The initial Li₃NaSiO₄ powder was prepared from (a) Li₄SiO₄/Li₂SiO₃/SiO₂ and (b) Li₂CO₃/Na₂CO₃/SiO₂. XRD measurements revealed that both specimens were a mixture of LiNaCO₃ and Li₂SiO₃.¹

Fig. S4 SEM images of the powder after CO₂ absorption at 700 °C. Initial Li₃NaSiO₄ powder was prepared from (a) Li₄SiO₄/Li₂SiO₃/SiO₂ and (b) Li₂CO₃/Na₂CO₃/SiO₂.

Less difference in morphology between the two powder specimens was observed compared to the initial Li₃NaSiO₄ powders depicted in Fig. 8. At 700 °C in CO₂ atmosphere, Li₃NaSiO₄ decomposes to solid Li₂SiO₃ powder and liquid LiNaCO₃. It was prospected that the size and shape of Li₂SiO₃ particles generated by the decomposition was similar between the two kinds of powder, resulting in similar morphology of the powder mixture of Li₂SiO₃ and LiNaCO₃, which solidified from the liquid phase during cooling at approximately 500 °C.

Reference

1. M. Hirai, E. Niwa and T. Hashimoto, Dalton Trans., 2021, 50, 5301-5310