Electronic Supplementary Information

Peptide-based chemical models for lytic polysaccharide monooxigenases

Azza A. Hassoon^{a,d}, Attila Szorcsik^a, Lívia Fülöp^b, Zita I. Papp^b, Nóra V. May^c, Tamás Gajda^{a,*}

^aDepartment of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary ^bInstitute of Medical Chemistry, University of Szeged, Szeged, Hungary

^cCentre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary

^dChemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt

Figure S1 Analytical HPLC chromatograms (A,B), HR ESI-MS (C,D) and ¹H NMR (E,F) spectra of the purified HPH-NH₂ (L^1) (A,C,E) and HPHPY-NH₂ (L^2) (B,D,F) peptides. Conditions of HPLC chromatograms: JUPITER C18 column (150 x 4.6 mm, 300 Å pore size, 5 µm particle size), mobile phase A: 0.1% TFA in water, mobile phase B: 0.1% TFA in acetonitrile/water, flow rate: 1.2 ml/min, detection:UV at 220 nm.

HR ESI-MS: (C) m/z calc for C₁₇H₂₄N₈O₃ [M+H]⁺ 389.20, found [M+1]⁺ 389.20 (z = 1) and [M + 2H]²⁺ 195.11 (z = 2); (D) m/z calc for C₃₁H₄₀N₁₀O₆ [M]⁺ 648.31, found [M+1]⁺ 649.39 (z = 1) and [M + 2H]²⁺ 325.16 (z = 2). For the assignment of the ¹H NMR peaks see the Experimental part.

Figure S2 pH-dependent UV-Vis (A,B) and circular dichroism (C,D) spectra in the Cu(II)-L¹ (A,C) and Cu(II)-L² (B,D) systems at 1:2 metal-to-ligand ratios (the pH increases in the green-yellow-red direction, T = 298 K, I = 0.2 M KCl, [L]_{tot} = 0.0014 M,).

Figure S3 Individual UV-Vis (A,C), CD (B,D) and EPR (E,F) spectra of the complexes formed in the Cu(II)- L^1 (A,B,E) and Cu(II)- L^2 (C,D,F) systems. UV-Vis and CD spectra were calculated by the computer program PSEQUAD, while the component EPR spectra were obtained using the 'epr' software.

Figure S4 Experimental X-band CW-EPR spectra recorded at room temperature in the Cu(II)-L¹ (A,C) and Cu(II)-L² (B,D) systems at 1:1 (A,B) and 1:2 (C,D) metal-to-ligand ratios (A: [Cu(II)]_{tot} = 1.24 mM, [L¹]_{tot} = 1.30 mM, B: [Cu(II)]_{tot} = 0.65 mM, [L²]_{tot} = 1.30 mM, C: [Cu(II)]_{tot} = 1.80 mM, [L¹]_{tot} = 1.90 mM, D: [Cu(II)]_{tot} = 0.95 mM, [L²]_{tot} = 1.90 mM)

Figure S5. Titration curves of the free ligand (a), copper - ligand (II) 1:2 (b) and 1:1 (c) systems as a function of added base equivalent relative to the ligand L^1 (left) and L^2 (right).

Figure S6 Monomer and dimer complexes identified on the ESI-MS spectra. The peaks related to the dimer $[Cu^{II}_{2}L^{2}_{2}+2Cl]^{2+}$ complex (bottom) have notable lower intensity than those of the monomer species.

Figure S7. Cyclic voltammograms of the Cu(II)-L¹ (A,B) and Cu(II)-L² (C,D) 1:1 systems at pH= 7.4 (A,C) and pH = 10.5 (B,D) in absence (continuous lines) and in presence (dashed lines) of 1.1 equivalent H₂O₂ (T = 298 K, I = 0.2 M KCl, [L]_{tot} = 0.6 mM).

Figure S8 Time-dependent formation of *p*-nitrophenolate during the oxidation of PNPG catalysed by the Cu(II)-L¹ (A,C) and Cu(II)-L² (B,D) 1:1 systems at pH 7.4 (A,B) and pH 10.5 (C,D); the inserts show the plot of turnover number (TON) as a function of time. (At pH = 7.4: $[H_2O_2] = [PNPG] = 20 \text{ mM}$, $[Cu(II)]_{tot} = 0.1 \text{ mM}$, 5 mm cuvette; at pH = 10.5 $[H_2O_2] = 10 \text{ mM}$, [PNPG] = 5 mM, $[Cu(II)]_{tot} = 0.01 \text{ mM}$, 10 mm cuvette).

The reason of saturation behaviour at pH 7.4 is unknown, but maybe related to the oxidation of the peptides during such long-term kinetic studies.

Figure S9 ESI-MS spectrum in negative mode of the reaction mixture of PNPG oxidation promoted by the Cu(II)-L¹ system after 4h reaction time (pH = 10.5 [H₂O₂] = 10 mM, [PNPG] = 1 mM, [Cu(II)]_{tot} = 0.05 mM). The peaks at m/z = 138.0174 and 195.0488 corresponds to *p*-nitrophenolate (calc. m/z = 138.0191) and gluconate (calc. m/z = 195.0505) anions, respectively.

Figure S10 Dependence of k_{obs} of PNPG oxidation on the copper(II) concentration in the Cu(II)-L¹ (A) and Cu(II)-L² (B) 1:1 systems at pH = 7.4 (\bullet) and 10.5 (\blacksquare); [PNPG] = [H₂O₂] = 10 mM. Blue signs in figure A show the effect of CuCl₂ concentration, in the absence of peptides.

Figure S11. A,B: The change of 77K EPR spectra upon addition of 25 eq. H_2O_2 in the Cu(II)- L^1 (A) and Cu(II)- L^2 (B) 1:1 systems. C,D,E: Deconvolution of the EPR spectra obtained after addition of H_2O_2 to the (C) Cu(II)- L^1 at pH 10.5, (D) Cu(II)- L^2 at pH 7.4, (E) Cu(II)- L^2 at pH 9.5; (i) experimental (black) and simulated (red) spectra, (ii) and (iii) are the component spectra of the dimer and monomer complexes, respectively.

The EPR parameters of the mononuclear (hydro)peroxo complexes: (C) $g_{\perp} = 2.045(2)$, $g_{\parallel} = 2.222(2)$, $A_{\perp} = 14(2)$ G, $A_{\parallel z} = 189(2)$ G, $A_{N,\perp} = 15(2)$ G; (D) $g_{\perp} = 2.058(2)$, $g_{\parallel} = 2.248(2)$, $A_{\perp} = 12(5)$ G, $A_{\parallel} = 182(2)$ G; (E) $g_{\perp} = 2.050(2)$, $g_{\parallel} = 2.231(2)$, $A_{\perp} = 10(5)$ G, $A_{\parallel} = 186(2)$ G. Isotropic components were described with singlet lines.

Figure S12 Time dependence of UV-Vis spectra of the Cu(II)- L^2 1:1 systems upon addition of 1.1 eq. (A,B) 10 eq. (C) and 200 eq. H₂O₂ (D) at pH 7.4 (A,C,D) and at 10.5 (B). Blue lines: the initial spectra, green-to-yellow-to-red lines changes upon addition of H₂O₂. Inserts show the time dependence of spectrum intensity at 440 nm (\bullet), 550 nm (\blacktriangle) and 650 nm (\blacksquare). ([Cu(II)] = 0.05 mM, 20 mm cuvette (A,B,C) and 50 mm cuvette (D));

Figure S13 UV-Vis spectra of the Cu(II)-L¹ (A) and Cu(II)-L² (B) 1:1 systems at pH 7.4 and at [Cu(II)] = [HPH] = 0.05 mM in 50 mm cuvette (black line), + 10 mM H₂O₂ (blue line), + 10 mM PNPG time dependence up to 650 minutes (green-to-red lines); insert show the change of spectrum intensity at 650 nm as a function of turn-over number (TON); initial spectrum (\blacksquare), + 10 mM H₂O₂ (\blacksquare), time (TON) dependent changes after addition of 10 mM PNPG (\blacksquare). TONs were calculated based on the absorbances at 450 nm where $\varepsilon_{p-nitrophenolate}$ (450nm) ~ 0.2* $\varepsilon_{p-nitrophenolate}$ (400nm).

Scheme S1: Scheme for the oxidative conversion of p-nitrophenyl-β-D-glucopyranoside

Table S1 Cathodic and anodic peaks observed by cyclic voltammetry in the Cu(II)- L^1 and Cu(II)- L^2 1:1 systems ([Cu(II)]_{tot} = 0.6 mM, [H₂O₂] = 0.66 mM, [buffer] = 0.1 M, I = 0.2 M KCl). Potentials are given in V vs. Ag/AgCl electrode.

peptide	pН	1.1 eq.	Ep ^c	Ep^{mi*}	$Ep^{ma^{**}}$
	-	H ₂ O ₂	(v)	(v)	(v)
L^1	7.4	-	0.11	~ 0.16	0.39
		+	0.07	~ 0.16	0.40
	10.5	-	-0.13	-	0.21
		+	-0.12	-	0.21
L ²	7.4	-	0.14	-	0.31
		+	0.11	-	0.35
	10.5	-	-0.18	~ -0.03	0.19
		+	-0.13	~ -0.07	0.17

*minor anodic peak

** major anodic peak