Lithium Selenometallates of Triel Elements, Li₅*M*Se₄ (M = Al and Ga), Aliovalent Doping and Their Ionic Conductivity

Santhoshkumar Sundaramoorthy,^a Aleksandr V. Chernatynskiy,^b Nikolay Gerasimchuk^c, and

Amitava Choudhury^{a,*}

^aDepartment of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA

^bDepartment of Physics, Missouri University of Science and Technology, Rolla, MO 65409, USA

^cDepartment of Chemistry, Missouri State University, Springfield, MO 65897, USA

SI No	Content	Page No
Figure S1	Photographs of hand-ground powder of compounds I - IV.	S-3
Figure S2	PXRD of Li_5MSe_4 focusing only $2\Theta = 5$ to 25 region.	S-4
Figure S3	PXRD of $Li_{4.66}Al_{0.82}Sn_{0.22}Se_4$.	S-5
Figure S4	TGA-DSC plots of compound $\mathbf{I} - \mathbf{IV}$.	S-6
Figure S5	XPS of compound III and IV.	S-7
Figure S6	Asymmetric unit of Li _{4.66} Al _{0.82} Sn _{0.22} Se ₄ .	S-8
Figure S7	Li ion coordination in Li_5MSe_4 , $Li_{4.66}Al_{0.82}Sn_{0.22}Se_4$ and $Li_{4.37}Ga_{0.89}Sn_{0.24}Se_4$.	S-9
Figure S8	Equivalent circuit and fitting parameters for Li ₅ <i>M</i> Se ₄ , Li _{4.66} Al _{0.82} Sn _{0.22} Se ₄ and Li _{4.37} Ga _{0.89} Sn _{0.24} Se ₄ .	S-10
Figure S9	Bond valence sum maps of Li ₅ <i>M</i> Se ₄ .	S-11
Figure S10	Bond valence sum maps of $Li_{4.66}Al_{0.82}Sn_{0.22}Se_4$ and $Li_{4.37}Ga_{0.89}Sn_{0.24}Se_4$	S-12
Table S1	Atomic coordinates and isotropic thermal displacement parameters of $\mathbf{I} - \mathbf{IV}$.	S-13
Table S2	Anisotropic displacement parameters of $\mathbf{I} - \mathbf{IV}$.	S-14
Table S3	Polyhedral distortion index of I and III ; and II and IV .	S-15

Figure S1. Photographs of hand-ground powder samples compounds, **I** – **IV**.

Figure S2. PXRD of zoomed in region of $2\Theta = 5$ to 25 of Li₅*M*Se₄ showing the presence of low angle lines.

Figure S3. The experimental PXRD of Li_{4.66}Al_{0.82}Sn_{0.22}Se₄ (**III**) and its comparison with the simulated pattern. Asterisks indicate presence of some unknown impurity.

Figure S4. TGA-DSC curves of compound (a) I, (b) II, (c) III, and (d) IV.

Figure S5. XPS spectra of compound **III** (a) Al 2p, (b) Sn 3d, (c) Se 3d and XPS spectra of compound **IV** (d) Ga 2p, (e) Sn 3d and (f) Se 3d.

Figure S6. Asymmetric unit of $Li_{4.66}Al_{0.82}Sn_{0.22}Se_4$ (III).

Figure S7. Li-ion coordination in (a) Li_5MSe_4 (I and II), (b) $Li_{4.66}Al_{0.82}Sn_{0.22}Se_4$ (III) showing vacancy creation (Li1, Li2, and Li4) and Sn^{4+} substitution (Li3 (red shade)) and (c) $Li_{4.37}Ga_{0.89}Sn_{0.24}Se_4$ (IV) showing Sn^{4+} substitution in Li1 site and no vacancy at Li2 site.

Figure S8. Equivalent circuit and fitting parameters for room temperature ionic conductivity of (a) Li_5MSe_4 (I and II) and (b) $Li_{4.66}Al_{0.82}Sn_{0.22}Se_4$ (III) and $Li_{4.37}Ga_{0.89}Sn_{0.24}Se_4$ (IV).

Figure S9. Bond valence sum maps at different $|\Delta V|$ of (a) Li₅AlSe₄ (I) and (b) Li₅GaSe₄ (II).

Figure S10. Bond valence sum ($|\Delta V| = 1.4 \text{ v.u.}$) maps of (a) $Li_{4.66}Al_{0.82}Sn_{0.22}Se_4$ (III) and $Li_{4.37}Ga_{0.89}Sn_{0.24}Se_4$ (IV).

Atomic Parameters						
Atom	Wyckoff	Occupancy	x/a	y/b	z/c	U (Å)
Li5AlSe4, I						
Al1	2e	1	0.1328(5)	0.2500	0.6721(5)	0.018(1)
Se1	2e	1	0.2572(2)	0.2500	0.3601(2)	0.016(1)
Se2	2e	1	-0.2340(2)	0.2500	0.6755(2)	0.015(1)
Se3	4f	1	0.2593(1)	0.4864(1)	0.8291(1)	0.016(1)
Li1	4f	1	0.1380(20)	0.4869(14)	0.1640(20)	0.016(3)
Li2	2e	1	0.5150(40)	0.2500	0.9770(30)	0.045(6)
Li3	2e	1	-0.1500(30)	0.2500	0.3280(30)	0.020(4)
Li4	2d	1	0.5000	0.5000	0.5000	0.037(6)
			Li5GaSe4, II			
Gal	2e	1	0.1294(1)	0.2500	0.6708(1)	0.006(1)
Se1	2e	1	0.2584(1)	0.2500	0.3594(1)	0.007(1)
Se2	2e	1	-0.2393(1)	0.2500	0.6742(1)	0.007(1)
Se3	4f	1	0.2602(1)	0.4868(1)	0.8300(1)	0.007(1)
Li1	4f	1	0.1375(15)	0.4880(10)	0.1666(13)	0.011(2)
Li2	2e	1	0.5050(20)	0.2500	0.9690(20)	0.033(3)
Li3	2e	1	-0.1426(17)	0.2500	0.3345(15)	0.005(2)
Li4	2d	1	0.5000	0.5000	0.5000	0.024(3)
		Li4.6	66Al0.82Sn0.22Se4	, III		
Al1	2e	0.82	0.1314(2)	0.2500	0.6717(2)	0.017(1)
Sn1	2e	0.18	0.1314(2)	0.2500	0.6717(2)	0.017(1)
Se1	2e	1	0.2608(1)	0.2500	0.3598(1)	0.018(1)
Se2	2e	1	-0.2345(1)	0.2500	0.6733(1)	0.019(1)
Se3	4f	1	0.2623(1)	0.4876(1)	0.8274(1)	0.019(1)
Li1	4f	0.94	0.1370(20)	0.4871(12)	0.1636(17)	0.030(3)
Li2	2e	0.86	0.5130(40)	0.2500	0.9710(30)	0.060(7)
Li3	2e	0.96	-0.1346(14)	0.2500	0.3325(12)	0.039(2)
Sn2	2e	0.04	-0.1346(14)	0.2500	0.3325(12)	0.039(2)
Li4	2d	0.96	0.5000	0.5000	0.5000	0.055(8)
Li4.37Ga0.89Sn0.24Se4, IV						
Ga1	2d	0.893	0.3333	0.6667	0.1275(2)	0.018(1)
Sn1	2d	0.107	0.3333	0.6667	0.1275(2)	0.018(1)
Se1	6i	1	0.6507(1)	0.8254(1)	0.2613(2)	0.023(1)
Se2	2d	1	0.3333	0.6667	0.7528(2)	0.020(1)
Li1	6i	0.956	0.3302(7)	0.1651(4)	0.1370(14)	0.043(2)
Sn2	6i	0.044	0.3302(7)	0.1651(4)	0.1370(14)	0.043(2)
Li2	3f	1	0.5000	0.0000	0.5000	0.066(8)

Table S1. Atomic coordinates and equivalent isotropic displacement parameters of atoms for compound **I** - **IV.** U (eq) = 1/3 of the trace of the orthogonalized Ueq tensor.

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Li5AlSe4, I						
All	10(2)	18(2)	26(2)	0	-1(1)	0
Se1	12(1)	17(1)	20(1)	0	2(1)	0
Se2	8(1)	18(1)	20(1)	0	0(1)	0
Se3	11(1)	17(1)	18(1)	-1(1)	-2(1)	-2(1)
Li1	11(7)	14(6)	23(7)	0(5)	0(6)	-4(5)
Li2	40(16)	45(16)	48(15)	0	-15(12)	0
Li3	29(11)	10(9)	20(10)	0	-4(8)	0
Li4	30(14)	44(15)	37(14)	6(9)	9(11)	-24(10)
			Li5GaSe4, II			
Ga1	4(1)	13(1)	2(1)	0	-1(1)	0
Se1	6(1)	13(1)	2(1)	0	1(1)	0
Se2	1(1)	14(1)	5(1)	0	0(1)	0
Se3	5(1)	14(1)	3(1)	-1(1)	-1(1)	-2(1)
Li1	16(5)	8(4)	9(4)	0(3)	3(3)	-2(3)
Li2	14(7)	53(9)	31(7)	0	-9(5)	0
Li4	7(7)	34(8)	31(7)	-3(5)	6(5)	-10(5)
Li4.66Al0.82Sn0.22Se4, III						
Al1	13(1)	19(1)	19(1)	0	2(1)	0
Sn1	13(1)	19(1)	19(1)	0	2(1)	0
Se1	15(1)	18(1)	21(1)	0	3(1)	0
Se2	15(1)	19(1)	22(1)	0	5(1)	0
e3	16(1)	22(1)	19(1)	-2(1)	-1(1)	-2(1)
Li1	38(7)	23(5)	28(6)	1(4)	-3(5)	-7(4)
Li2	65(17)	57(15)	58(15)	0	-8(12)	0
Li3	42(5)	43(5)	33(4)	0	3(4)	0
Sn2	42(5)	43(5)	33(4)	0	3(4)	0
Li4	65(17)	44(13)	58(15)	-6(8)	6(12)	-13(9)
Li4.37Ga0.89Sn0.24Se4, IV						
Ga1	17(1)	17(1)	19(1)	0	0	9(1)
Sn1	17(1)	17(1)	19(1)	0	0	9(1)
Se1	23(1)	20(1)	25(1)	-1(1)	-2(1)	12(1)
Se2	19(1)	19(1)	21(1)	0	0	9(1)
Li1	40(4)	36(3)	54(5)	-2(2)	-3(3)	20(2)
Sn2	40(4)	36(3)	54(5)	-2(2)	-3(3)	20(2)
Li2	44(10)	45(12)	110(30)	-24(12)	-12(6)	22(6)

Table S2. Anisotropic displacement parameters ($Å^2x \ 10^3$) for compound **I** - **IV**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

Li5Al	Se4 (I)	Li4.66Al0.82Sn0.22Se4 (III)			
Polyhedra	Distortion Index	Polyhedra	Distortion Index		
AlSe ₄	0.00168	(Al1/Sn1) AlSe ₄	0.00273		
(Li1) LiSe ₄	0.01148	(Li1) LiSe4	0.01096		
(Li3) LiSe ₄	0.01790	(Li3/Sn2) LiSe4	0.00710		
(Li2) LiSe ₆	0.05150	(Li2) LiSe ₆	0.05806		
(Li4) LiSe ₆	0.02443	(Li4) LiSe ₆	0.02572		
Li5Gal	Se4 (II)	Li4.37Ga0.89Sn0.24Se4 (IV)			
Polyhedra	Distortion Index	Polyhedra	Distortion Index		
GaSe ₄	0.00307	(Ga1/Sn1) GaSe4	0.00002		
(Li1) LiSe ₄	0.01110	(Li1/Sn2) LiSe ₄	0.00375		
(Li3) LiSe ₄	0.01104	(Li2) LiSe ₆	0.01500		
(Li2) LiSe ₆	0.06637				
(Li4) LiSe ₆	0.02048				

Table S3. Polyhedral distortion index of ${\bf I}$ and ${\bf III};$ and ${\bf I}{\bf I}$ and ${\bf IV}.$