Electronic Supporting Information (ESI)

Synthesis of low oxidation state zinc(I) complexes and their catalytic studies in dehydroborylation of terminal alkynes†

Rajata Kumar Sahoo, Sagrika Rajput, A Ganesh Patro, and Sharanappa Nembenna*

School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, 752 050, India

Contents

➢ NMR spectra (\(^1\)H, \(^{13}\)C{\(^1\)H}, \(^{11}\)B NMR) of compound 2, precatalyst 3, and CBG zinc alkynyl complex 5 and stoichiometric experiments data……………………………S2-S11

➢ \(^1\)H, \(^{13}\)C{\(^1\)H} and \(^{11}\)B NMR spectra of dehydrogenative borylation of alkynes....S12-S35

➢ X-ray crystallographic data of compounds 3 and 5……………………………………S35-S38

➢ References……………………………………………………………………………………………………S39
NMR spectra (1H, 13C(1H), 11B NMR) of compound 2, precatalyst 3, and CBG zinc alkynyl complex 5 and stoichiometric experiments data.

Figure S1: 1H NMR spectrum of compound 2 (400 MHz, C$_6$D$_6$) {Reaction scale}.

Figure S2: 13C(1H) NMR spectrum of compound 2 (101 MHz, C$_6$D$_6$) {Reaction scale}.
Figure S3: 1H NMR spectrum of compound 2 and Cp*H (400 MHz, C$_6$D$_6$) {NMR scale}.

Figure S4: 13C{1}H NMR spectrum of compound 2 and Cp*H (101 MHz, C$_6$D$_6$) {NMR scale}.
Figure S5: 1H NMR spectrum of compound 3 (400 MHz, C$_6$D$_6$) {Reaction scale}.

Figure S6: 13C(1H) NMR spectrum of compound 3 (101 MHz, C$_6$D$_6$) {Reaction scale}.
Figure S7: 1H NMR spectrum of Compound 3 and Cp*H (400 MHz, C$_6$D$_6$) {NMR scale}.

Figure S8: 13C(1H) NMR spectrum of Compound 3 and Cp*H (101 MHz, C$_6$D$_6$) {NMR scale}.
Figure S9. Annotated 1H NMR stack plot of the reaction between 2 equiv. of LH and Cp*$_2$Zn$_2$.

Figure S10: Zoom 1H NMR monitoring: Annotated 1H NMR stack plot of the reaction between 2 equiv. of LH and Cp*$_2$Zn$_2$.
Figure S11: 1H NMR spectrum of compound 5 (400 MHz, C$_6$D$_6$).

Ar = 2,6-Et$_2$-C$_6$H$_3$

Figure S12: 13C{1H} NMR spectrum of compound 5 (101 MHz, C$_6$D$_6$)

Ar = 2,6-Et$_2$-C$_6$H$_3$
Figure S13: 1H NMR spectrum of compound 5 and Cp*H (400 MHz, C$_6$D$_6$) [NMR scale].

Figure S14: 13C-1H NMR spectrum of compound 5 and Cp*H (101 MHz, C$_6$D$_6$) [NMR scale].
Figure S15: 1H NMR (400 MHz, 25 °C, C$_6$D$_6$) spectrum of [LZnH]$_2$ & 7c.

Figure S16: 13C[1H] NMR (101 MHz, 25 °C, C$_6$D$_6$) spectrum of [LZnH]$_2$ & 7c.
Figure S17: 11B NMR (128 MHz, 25 °C, C$_6$D$_6$) spectrum of [LZnH]$_2$ & 7c. A doublet peak at δ 29.17 – 27.81 ppm arises from free HBpin, and a peak at δ 21.85 ppm arises from B(OR)$_3$. A singlet peak was observed at δ 24.54 ppm due to compound 7c.

Figure S18: 1H NMR (400 MHz, 25 °C, C$_6$D$_6$) spectrum of compounds 5 & 7c.
Figure S19: 13C{1H} NMR (101 MHz, 25 °C, C$_6$D$_6$) spectrum of compounds 5 & 7c.

Figure S20: 11B NMR (128 MHz, 25 °C, C$_6$D$_6$) spectrum of 5 & 7c. A doublet peak at δ 29.15 – 27.79 ppm arises from free HBpin, and a peak at δ 21.76 ppm arises from B(OR)$_3$. A singlet peak was observed at δ 24.77 ppm due to compound 7c.
1H, 13C(1H) and 11B NMR Spectra of Dehydrogenative Borylation of Alkynes

Figure S21: 1H NMR spectrum of 7a without catalyst (400 MHz, CDCl$_3$).

Figure S22: 13C(1H) NMR spectrum of 7a without catalyst (101 MHz, CDCl$_3$).
Figure S23: 11B NMR spectrum of 7a without catalyst (128 MHz, CDCl$_3$).

Figure S24: 1H NMR spectrum of 7a catalyzed by Cp*H (400 MHz, CDCl$_3$).
Figure S25: 13C{$_1^1$H} NMR spectrum of 7a catalyzed by Cp*H (101 MHz, CDCl$_3$).

Figure S26: 11B NMR spectrum of 7a catalyzed by Cp*H (128 MHz, CDCl$_3$).
Figure S27: 1H NMR spectrum of 7a precatalyzed by Cp*ZnZnCp* (1) (400 MHz, CDCl$_3$).

Figure S28: 13C{1H} NMR spectrum of 7a precatalyzed by Cp*ZnZnCp* (1) (101 MHz, CDCl$_3$).
Figure S29: 11B NMR spectrum of 7a precatalyzed by $\text{Cp}^*\text{ZnZnCp}^*$ (1) (128 MHz, CDCl$_3$).

Figure S30: 1H NMR spectrum of 7a precatalyzed by Cp^*ZnZnL (2) (400 MHz, CDCl$_3$).
Figure S31: 13C(1H) NMR spectrum of 7a precatalyzed by Cp*ZnZnL (2) (101 MHz, CDCl$_3$).

Figure S32: 11B NMR spectrum of 7a precatalyzed by Cp*ZnZnL (2) (128 MHz, CDCl$_3$).
Figure S33: 1H NMR spectrum of 7a precatalyzed by LZnZnL (3) (400 MHz, CDCl$_3$).

Figure S34: 13C(1H) NMR spectrum of 7a precatalyzed by LZnZnL (3) (101 MHz, CDCl$_3$).
Figure S35: 11B NMR spectrum of 7a precatalyzed by LZnZnL (3) (128 MHz, CDCl$_3$).

Figure S36: 1H NMR spectrum of 7b (400 MHz, CDCl$_3$).
Figure S37: 13C\{1H\} NMR spectrum of 7b (101 MHz, CDCl$_3$).

Figure S38: 1H NMR spectrum of 7c (400 MHz, CDCl$_3$).
Figure S39: 13C{^1}H NMR spectrum of 7c (101 MHz, CDCl$_3$).

Figure S40: 1H NMR spectrum of 7d (400 MHz, CDCl$_3$).
Figure S41: 13C\{1H\} NMR spectrum of 7d (101 MHz, CDCl$_3$).

Figure S42: 1H NMR spectrum of 7e (400 MHz, CDCl$_3$).
Figure S43: 13C{1H} NMR spectrum of 7e (101 MHz, CDCl$_3$).

Figure S44: 1H NMR spectrum of 7f (400 MHz, CDCl$_3$).
Figure S45: 13C\{1H\} NMR spectrum of 7f (101 MHz, CDCl\textsubscript{3}).

Figure S46: 1H NMR spectrum of 7g (400 MHz, CDCl\textsubscript{3}).
Figure S47: $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 7g (101 MHz, CDCl$_3$).

Figure S48: ^1H NMR spectrum of 7h (400 MHz, CDCl$_3$).
Figure S49: 13C{1H} NMR spectrum of 7h (101 MHz, CDCl$_3$).

Figure S50: 1H NMR spectrum of 7i (400 MHz, CDCl$_3$). * = mesitylene is used as an internal standard.
Figure S51: 1H NMR spectrum of 7j (400 MHz, CDCl$_3$). * = mesitylene is used as an internal standard.

Figure S52: 1H NMR spectrum of 7k (400 MHz, CDCl$_3$).
Figure S53: 13C-1H NMR spectrum of 7k (101 MHz, CDCl$_3$).

Figure S54: 1H NMR spectrum of 7l (400 MHz, CDCl$_3$).
Figure S55: 13C{H} NMR spectrum of $7l$ (101 MHz, CDCl$_3$).

Figure S56: 1H NMR spectrum of $7m$ (400 MHz, CDCl$_3$).
Figure S57: 13C{^1H} NMR spectrum of 7m (101 MHz, CDCl$_3$).

Figure S58: 1H NMR spectrum of 7n (400 MHz, CDCl$_3$).
Figure S59: 13C-1H NMR spectrum of 7n (101 MHz, CDCl$_3$).

Figure S60: 1H NMR spectrum of 7o (400 MHz, CDCl$_3$).
Figure S61: $^{13}\text{C}(^{1}\text{H})$ NMR spectrum of 7o (101 MHz, CDCl$_3$).

Figure S62: ^1H NMR spectrum of 7p (400 MHz, CDCl$_3$).
Figure S63: 13C\{1H\} NMR spectrum of 7p (101 MHz, CDCl\textsubscript{3}).

Figure S64: 1H NMR spectrum of 7q (400 MHz, CDCl\textsubscript{3}). * = mesitylene is used as an internal standard.
Figure S65: 13C{1H} NMR spectrum of 7q (101 MHz, CDCl$_3$). * = mesitylene is used as an internal standard.

Figure S66: 1H NMR spectrum of 7r (400 MHz, CDCl$_3$).
Figure S67: 13C{1H} NMR spectrum of 7r (101 MHz, CDCl$_3$).

X-ray Crystallographic Data of compounds 3 and 5

The single crystals of compounds 3 and 5 were crystallized from benzene and toluene as colorless blocks. The crystal data of compounds 3 and 5 were collected on a Rigaku Oxford diffractometer at 100 K. Selected data collection parameters and other crystallographic results are summarized in Table S2. The structure was determined using direct methods employed in ShelXT,1 OleX,2 and refinement was carried out using least-square minimization implemented in ShelXL.3 All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom positions were fixed geometrically in idealized positions and were refined using a riding model.
Figure S68. Molecular structures of 3. The thermal ellipsoids are shown at 50% probability, and all the hydrogen atoms (except for H(4), H(5)) and ethyl groups have been removed for clarity. Selected bond lengths (Å) and angles (deg), For 3: Zn1-Zn1’ 2.4072(3), Zn1-N1 2.0021(12), Zn1-N2 2.0035(13); N1-Zn1-N2 91.08(5), N1-Zn1- Zn1’ 134.92(4), N2-Zn1- Zn1’ 134.00(4).
Figure S69. Molecular structures of 5. The thermal ellipsoids are shown at 50% probability, and all the hydrogen atoms (except for H(4), H(5)) and ethyl groups have been removed for clarity. Selected bond lengths (Å) and angles (deg), For 5: Zn1-Zn1’ 3.0400(4), Zn1-N1 1.9709(13), Zn1-N2 1.9663(13), Zn1-C1 2.0181(15), Zn1-C1’ 2.3360(16), C1-C2 1.187(2); N1-Zn1-N2 94.76(5), N1-Zn1-C1 119.73(6), N2-Zn1-C1 122.42(6), C1-Zn1-C1’ 91.75(6), Zn1-C1-Zn1’ 88.25(6).
Table S1. Crystallographic Data and Refinement Parameters for Compounds 3 and 5.

<table>
<thead>
<tr>
<th>Compound</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>C₈₄H₁ₐ₈N₁₀Zn₂</td>
<td>C₁₀₂H₁₂₂N₁₀Zn₂</td>
</tr>
<tr>
<td>CCDC</td>
<td>2179810</td>
<td>2179805</td>
</tr>
<tr>
<td>Molecular mass</td>
<td>1388.54</td>
<td>1618.83</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Size(mm)</td>
<td>0.2×0.18×0.18</td>
<td>0.2×0.18×0.17</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C2/c</td>
<td>P-1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>18.0369(4)</td>
<td>12.89300(10)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>16.9127(4)</td>
<td>12.9295(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>27.6720(6)</td>
<td>14.8009(2)</td>
</tr>
<tr>
<td>α (deg)°</td>
<td>90</td>
<td>77.6300(10)</td>
</tr>
<tr>
<td>β (deg)°</td>
<td>104.820(2)</td>
<td>71.4150(10)</td>
</tr>
<tr>
<td>γ (deg)°</td>
<td>90</td>
<td>71.6870(10)</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>8160.6(3)</td>
<td>2202.29(5)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Calculated density (g/cm³)</td>
<td>1.130</td>
<td>1.221</td>
</tr>
<tr>
<td>Absorption coefficient (mm¹)</td>
<td>0.635</td>
<td>0.598</td>
</tr>
<tr>
<td>F(000)</td>
<td>2968.0</td>
<td>864.0</td>
</tr>
<tr>
<td>Theta range for data collection (deg)°</td>
<td>6.64 to 50.694</td>
<td>6.692 to 52.74</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-20 ≤ h ≤ 21, -19 ≤ k ≤ 20, -33 ≤ l ≤ 33</td>
<td>-16 ≤ h ≤ 16, -16 ≤ k ≤ 16, -18 ≤ l ≤ 18</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>34530</td>
<td>38471</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>7460 [R_int = 0.0335, R_sigma = 0.0231]</td>
<td>8979 [R_int = 0.0343, R_sigma = 0.0246]</td>
</tr>
<tr>
<td>Completeness to theta</td>
<td>99 %</td>
<td>99 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Empirical</td>
<td>Empirical</td>
</tr>
<tr>
<td>Data / restraints /parameters</td>
<td>7460 / 0 / 441</td>
<td>8979 / 0 / 517</td>
</tr>
<tr>
<td>Goodness – of–fit on F²</td>
<td>1.057</td>
<td>1.047</td>
</tr>
<tr>
<td>Final R indices [I>2 sigma(I)]</td>
<td>R₁ = 0.0305, wR₂ = 0.0807</td>
<td>R₁ = 0.0348, wR₂ = 0.0936</td>
</tr>
</tbody>
</table>
References:

