Supporting Information

Rapid and reliable triple-emissive detection of 2,6-dichloro-4-nitroaniline as a pesticide based on a high-nuclear Cd(II)-Sm(III) nanocluster

Xilong Leng, Xiaoping Yang, Yanan Ma, Chengri Wang, Hao Li, Zhen Zhang, Keqin Yang, and Desmond Schipper

Contents

1. General Procedures
2. Synthesis of the ligand H_2L
3. ¹ H NMR spectra of the ligand $H_2L_{$
4. IR spectra of the ligand H_2L and 14
5. The coordination mode of the Schiff base ligand with metal ions in 15
6. The thermogravimetric analysis of 1
7. UV-vis absorption spectra of the ligand $H_2Land 1$
8. The excitation and emission spectra of H_2L and 1
9. Chemical structures of pesticides7
10. The visible fluorescence response of 1 to pesticides
11. The NIR luminescence response of 1 to pesticides10
12. The emission quenching of 1 with the addition of pesticides12
13. The fluorescence response of 1 to DCN with the existence of other pesticides12
14. The fluorescence response of DCN in the extracts of grape and carrot skins13
15. Powder XRD patterns of 1 before and after treatment with DCN13
16. UV-vis absorption spectra of pesticides14
17. Time scans of luminescence response of 1 to DCN14
18. The emission spectra of 1 with the addition of DCN15
19. X-ray crystallography16

<u>1. General Procedures</u>

All chemical materials and solvents were purchased from commercial sources. The synthesis of lanthanide complex was carried out using Schlenk techniques. Powder XRD spectra were obtained using a D8 Advance; IR spectra were determined on a FTIR-650 spectrometer; Elemental analysis was performed on a EURO EA3000 with the solid sample after dried in the oven at 110°C for six hours; The thermogravimetric analyses were carried out on a Perking Elmer Diamond TG-DTA spectrum GX. The sample is under a N₂ flow of 200 mL min⁻¹, and heated from room temperature to 800 °C with a heating rate of 5°C min⁻¹; Dynamic light scattering (DLS) measurement was carried out on a Malvern Zetasizer Nano ZS using a solution of the nanocluster in EtOH (C = 10^{-5} M). The morphology of the sample was analyzed by Nova NanoSEM 200 scanning electron microscope (SEM) and an attached energy-dispersive X-ray spectrometer (EDX). The sample was installed on an aluminum sheet coated with Au.

Photophysical Studies. Absorption spectra were obtained on a UV-3600 spectrophotometer. Emission spectra were recorded on a FLS 980 fluorimeter. The light source for the spectra was a 450 W xenon arc lamp with continuous spectral distribution from 190 to 2600 nm. The temporal decay curves of the fluorescence signals were stored by using the attached storage digital oscilloscope. Systematic errors have been deducted through the standard instrument corrections. All the measurements were carried out at room temperature.

2. Synthesis of the ligand H₂L

Scheme S1. Synthetic approach to H₂L.

Synthesis of H₂L: 5-Bromo-2-hydroxy-3-methoxybenzaldehyde (6.0 mmol, 1.39 g) was dissolved in 10 mL of EtOH. The solution was heated to reflux, and 1,6-hexamethylenediamine (3.0 mmol, 0.35 g) in 20 mL of EtOH was added drop by drop with stirring. The mixture was heated to reflux for 4 hours with stirring, and then left to cool to give yellow solid precipitate. The solid was filtered, and then washed with 5 mL of ethanol for three times. Yield: 1.36 g (83%). ¹H NMR (500 MHz, DMSO) δ 14.07 (s, 2H), 8.48 (s, 2H), 7.18 (s, 2H), 7.06 (s, 2H), 3.77 (s, 6H), 3.58 (t, J = 6.5 Hz, 4H), 1.63 (s, 4H), 1.37 (s, 4H).

3. ¹H NMR spectra of the ligand H₂L

Figure S1. ¹H NMR of the ligand H₂L in DMSO. (Right: an enlarged view of the triplet peak of the f proton)

4. IR spectra of the ligand H₂L and 1

Figure S2. IR spectra of the ligand H_2L and **1**.

5. The coordination mode of the Schiff base ligand with metal ions in 1

d with metal ions

6. The thermogravimetric analysis of 1

Figure S4. The thermogravimetric analysis of 1.

7. UV-vis absorption spectra of the ligand H₂Land 1

Figure S5. UV-vis absorption spectra of the ligand H₂L and 1 in CH₃CN.

8. The excitation and emission spectra of H₂L and 1

Figure S6. (a) The excitation ($\lambda_{em} = 505 \text{ nm}$) and emission ($\lambda_{ex} = 400 \text{ nm}$) spectra of **H**₂**L** in CH₃CN. (b) The excitation ($\lambda_{em} = 645 \text{ nm}$) and emission ($\lambda_{ex} = 365 \text{ nm}$) spectra of **1** (10 μ M) in CH₃CN.

9. Chemical structures of pesticides

Scheme S2. Chemical structures of DCN and other pesticides.

Figure S7. Left: The visible fluorescence response of 1 (10 μ M) to the addition of DCN and other pesticides with different concentrations in CH₃CN ($\lambda_{ex} = 365$ nm). Right: K_{sv} values of DCN to the emissions of 1 at 460 nm and 645 nm.

<u>11. The NIR luminescence response of 1 to pesticides</u>

Figure S8. Left: The NIR luminescence response of **1** (10 μ M) to the addition of DCN and other pesticides with different concentrations in CH₃CN ($\lambda_{ex} = 365$ nm). Right: The K_{sv} values of DCN to the lanthanide luminescence of **1** at 945 nm.

12. The emission quenching of 1 with the addition of pesticides

13. The fluorescence response of 1 to DCN with the existence of other pesticides

Figure S10. The emission intensities of 1 (10 μ M) at 460 nm (left) and 945 nm (right) before and after the addition of DCN ($c = 60 \,\mu$ M) with the existence of other pesticides ($c = 300 \,\mu$ M) in CH₃CN. ($\lambda_{ex} = 365 \,$ nm)

14. The fluorescence response of DCN in the extracts of grape and carrot skins

Figure S11. The fluorescence response of $1(10 \,\mu\text{M})$ to DCN in the extracts of grape (a) and carrot (b) skins.

15. Powder XRD patterns of 1 before and after treatment with DCN

Figure S12. Powder XRD patterns of 1 before and after treatment with DCN.

16. UV-vis absorption spectra of pesticides

Figure S13. UV-vis absorption spectra of pesticides in CH₃CN ($c = 10 \,\mu$ M).

17. Time scans of luminescence response of 1 to DCN

0

18. The emission spectra of 1 with the addition of DCN

Figure S15. The visible and NIR emission spectra of 1 (10 μ M) with the addition of DCN in CH₃CN.

<u>19. X-ray crystallography</u>

Table S1. Selected Bond Lengths (Å) and angles (°) for 1.

Sm(1)-O(168) Sm(1)-O(71) Sm(1)-O(161) Sm(1)-O(188) Sm(1)-O(160) Sm(1)-O(75) Sm(1)-N(36) Sm(1)-O(72)	2.299(19) 2.28(2) 2.301(19) 2.40(2) 2.45(2) 2.489(18) 2.61(2) 2.65(2)	Sm(2)-O(43) Sm(2)-O(182) Sm(2)-O(180) Sm(2)-O(178) Sm(2)-O(176) Sm(2)-O(47) Sm(2)-O(47) Sm(2)-N(24) Sm(2)-O(44)	2.27(2) 2.38(3) 2.37(2) 2.38(2) 2.49(2) 2.50(2) 2.52(3) 2.539(19)
Sm(1)-O(72)	2.65(2)	Sm(2)-O(44)	2.539(19)

Sm(3)-O(171)	2.30(2)	Sm(10)-O(89)
Sm(3)-O(59)	2.32(2)	Sm(10)-O(6)
Sm(3)-O(63)	2.37(2)	Sm(10)-O(10)
Sm(3)-O(173)	2.40(2)	Sm(10)-O(84)
Sm(3)-O(170)	2.42(2)	Sm(10)-O(86)
Sm(3)-O(166)	2.404(18)	Sm(10)-O(87)
Sm(3)-O(60)	2 584(18)	Sm(10) - O(9)
Sm(3) - N(40)	2.60 (10)	Sm(10) - N(3)
Sm(4)-O(150)	2.26(2)	Sm(10) P(0) Sm(11)-O(103)
Sm(4)-O(42)	2.30(2)	Sm(11) - O(34)
Sm(4) - O(152)	2.35(2)	Sm(11) - O(105)
Sm(4)-O(152) Sm(4)-O(46)	2.551(17) 2 42(2)	Sm(11)-O(102) Sm(11)-O(102)
Sm(4) - O(157)	2.12(2) 2 444(19)	Sm(11) - O(38)
Sm(4) - O(157)	2.111(19) 2.46(2)	Sm(11) - O(107)
Sm(4)-O(155) Sm(4)-O(45)	2.+0(2)	Sm(11)-O(107) Sm(11)-N(17)
Sm(4)-O(43) Sm(4)-N(21)	2.04(2) 2 70(3)	Sm(11)-N(17) Sm(11)-O(37)
Sin(4)-N(21) Sm(5) $O(142)$	2.70(3)	Sm(11)-O(37) Sm(12) O(03)
Sin(3)=O(142) Sm(5) $O(54)$	2.30(2)	Sin(12)-O(93) Sm(12) O(05)
Sin(3)-O(34) Sm(5) O(144)	2.33(2) 2.247(10)	Sin(12)-O(93) Sm(12)-O(26)
Sin(3)-O(144) Sin(5) O(58)	2.347(19)	Sin(12)-O(20) Sin(12)-O(22)
Sm(5)-O(58) Sm(5)-O(148)	2.37(2)	Sm(12)-O(22) Sm(12)-O(00)
Sm(5)-O(148)	2.396(16)	Sm(12)-O(99)
Sm(5)-O(140)	2.464(19)	Sm(12)-O(92)
Sm(5)-N(27)	2.58(3)	Sm(12)-O(25)
Sm(5)-O(57)	2.56(2)	Sm(12)-N(11)
Sm(6)-O(154)	2.293(19)	Cd(1)-O(79)
Sm(6)-O(70)	2.326(19)	Cd(1)-N(38)
Sm(6)-O(7/4)	2.341(16)	Cd(1)-O(160)
Sm(6)-O(134)	2.35(2)	Cd(1)-O(75)
Sm(6)-O(135)	2.385(18)	Cd(1)-O(192)
Sm(6)-O(137)	2.485(18)	Cd(1)-O(76)
Sm(6)-N(33)	2.51(2)	Cd(2)-O(184)
Sm(6)-O(73)	2.64(2)	Cd(2)-O(79)
Sm(7)-O(191)	2.22(3)	Cd(2)-O(192)
Sm(7)-O(130)	2.29(2)	Cd(2)-O(80)
Sm(7)-O(39)	2.33(2)	Cd(2)- $Cl(10)$
Sm(7)-O(35)	2.37(3)	Cd(2)-O(183)
Sm(7)-O(111)	2.47(2)	Cd(3)-O(181)
Sm(7)-O(109)	2.50(2)	Cd(3)-O(187)
Sm(7)-N(20)	2.50(2)	Cd(3)-N(22)
Sm(7)-O(36)	2.56(3)	Cd(3)-O(183)
Sm(8)-O(118)	2.32(2)	Cd(3)-O(43)
Sm(8)-O(27)	2.32(2)	Cd(3)-O(159)
Sm(8)-O(23)	2.31(3)	Cd(4)-N(26)
Sm(8)-O(124)	2.37(2)	Cd(4)-O(51)
Sm(8)-O(127)	2.40(2)	Cd(4)-O(176)
Sm(8)-O(125)	2.44(2)	Cd(4)-O(177)
Sm(8)-O(24)	2.63(2)	Cd(4)-O(47)
Sm(8)-N(14)	2.62(3)	Cd(4)-O(48)
Sm(9)-O(15)	2.26(2)	Cd(5)-O(51)
Sm(9)-O(116)	2.293(19)	Cd(5)-O(177)
Sm(9)-O(11)	2.31(2)	Cd(5)-Cl(9)
Sm(9)-O(120)	2.38(2)	Cd(5)-Cl(13)
Sm(9)-O(121)	2.41(2)	Cd(5)-O(52)
Sm(9)-O(114)	2.46(3)	Cd(6)-N(28)
Sm(9)-N(8)	2.55(3)	Cd(6)-O(55)
Sm(9)-O(12)	2.68(2)	Cd(6)-O(175)

2.265(16) 2.349(18) 2.372(19) 2.39(2) 2.39(2) 2.394(19) 2.57(2)2.66(3) 2.282(18) 2.302(19) 2.29(2) 2.318(19) 2.378(19) 2.395(19) 2.51(3) 2.58(2)2.269(17) 2.289(18) 2.277(19) 2.365(19) 2.393(19) 2.42(2)2.574(19) 2.60(3) 2.17(2) 2.25(3) 2.27(2)2.290(19) 2.33(2) 2.52(3)2.25(2) 2.24(2) 2.30(2) 2.39(3) 2.436(12) 2.53(2) 2.24(2) 2.30(2) 2.36(3)2.38(2) 2.40(2) 2.52(2) 2.24(3) 2.25(2) 2.24(2) 2.28(2) 2.34(2)2.44(3)2.14(3) 2.29(2) 2.36(2) 2.439(14) 2.52(3) 2.23(3) 2.27(2)2.31(2)

Cd(6)-Cl(11)	2.574(12)	Cd(16)-O(139)	2.290(18)
Cd(6)-Cl(15)	2.565(10)	Cd(16)-O(62)	2.35(2)
Cd(6)-Cl(13)	2.941(12)	Cd(16)-Cl(4)	2.462(10)
Cd(7)-O(55)	2.21(2)	Cd(16)-O(61)	2.49(2)
Cd(7)-O(174)	2.32(2)	Cd(16)-Cl(7)	2.568(9)
Cd(7)-Cl(12)	2.395(11)	Cd(16)-Cl(1)#1	2.568(9)
Cd(7)-O(56)	2.49(2)	Cd(17)-N(39)	2.25(2)
Cd(7)-Cl(11)	2.532(11)	Cd(17)-O(62)	2.29(2)
Cd(7)-Cl(8)	2.74(3)	Cd(17)-O(138)	2.361(19)
Cd(8)-N(30)	2.19(3)	Cd(17)-Cl(7)	2.525(9)
Cd(8)-O(174)	2.25(2)	Cd(17)-Cl(5)	2.587(9)
Cd(8)-O(172)	2.26(2)	Cd(18)-N(31)	2.18(3)
Cd(8)-O(59)	2.30(2)	Cd(18)-O(136)	2.248(19)
Cd(8)- $Cl(15)$	2.575(10)	Cd(18)-O(66)	2.26(2)
Cd(9)-O(166)	2.26(2)	Cd(18)-O(137)	2.26(2)
Cd(9)-N(32)	2.20(2) 2.24(3)	Cd(18)-O(70)	2.267(10) 2.35(2)
Cd(9)- $O(169)$	2.21(3) 2 29(2)	Cd(18)-O(69)	2.33(2) 2 49(2)
Cd(9)-O(67)	2.29(2)	Cd(19)-O(66)	2.19(2) 2.18(2)
Cd(9)-O(63)	2.25(2) 2 31(2)	Cd(19)-O(136)	2.10(2) 2.337(18)
Cd(9)-O(64)	2.51(2) 2 64(2)	Cd(19)-O(65)	2.337(10) 2 42(2)
Cd(10)-O(163)	2.18(2)	Cd(19)- $Cl(2)$	2.488(10)
Cd(10) - O(67)	2.10(2) 2.24(2)	Cd(19)-Cl(1)	2.100(10) 2.541(10)
Cd(10) - O(169)	2.21(2) 2 33(2)	Cd(19)-Cl(2)#1	2.571(10) 2.678(9)
Cd(10)- $Cl(14)$	2.55(2) 2 425(12)	Cd(20)-N(35)	2.070(9)
Cd(10) - O(68)	2.123(12) 2 52(2)	Cd(20) - O(153)	2.23(2) 2.286(19)
Cd(10) - O(164)	2.52(2)	Cd(20) - O(133)	2.200(1))
Cd(11)-O(162)	2.33(2)	Cd(20) - O(74)	2.339(16)
Cd(11)-N(34)	2 31(3)	Cd(20) - O(158)	2.353(19)
Cd(11)-O(167)	2.32(2)	Cd(20)-O(132)	2.489(19)
Cd(11)-O(71)	2.378(19)	Cd(20)-O(134)	2.588(18)
Cd(11)-O(164)	2.42(2)	Cd(21)-O(156)	2.202(18)
Cd(11)-O(165)	2.450(18)	Cd(21)-O(131)	2.22(2)
Cd(12)-O(46)	2.17(2)	Cd(21)-O(78)	2.27(2)
Cd(12)-O(149)	2.25(2)	Cd(21)-O(77)	2.44(2)
Cd(12)-O(151)	2.31(2)	Cd(21)-Cl(3)	2.459(12)
Cd(12)-N(23)	2.39(3)	Cd(21)-O(132)	2.532(19)
Cd(12)-O(147)	2.393(19)	Cd(22)-O(78)	2.20(2)
Cd(12)-O(146)	2.47(2)	Cd(22)-O(156)	2.234(19)
Cd(13)-O(50)	2.25(2)	Cd(22)-N(37)	2.27(2)
Cd(13)-O(145)	2.27(2)	Cd(22)-O(157)	2.286(17)
Cd(13)-O(143)	2.27(2)	Cd(22)-O(42)	2.29(2)
Cd(13)-O(146)	2.37(2)	Cd(22)-O(41)	2.48(2)
Cd(13)-Cl(6)	2.444(10)	Cd(23)-N(13)	2.29(2)
Cd(13)-O(49)	2.49(3)	Cd(23)-O(94)	2.289(17)
Cd(14)-O(50)	2.23(2)	Cd(23)-O(96)	2.286(19)
Cd(14)-N(25)	2.31(3)	Cd(23)-O(26)	2.342(19)
Cd(14)-O(148)	2.299(16)	Cd(23)-O(108)	2.366(19)
Cd(14)-O(143)	2.287(19)	Cd(23)-O(97)	2.394(18)
Cd(14)-O(54)	2.374(19)	Cd(24)-O(30)	2.241(19)
Cd(14)-O(53)	2.61(2)	Cd(24)-O(101)	2.316(18)
Cd(15)-O(141)	2.21(2)	Cd(24)-O(98)	2.39(3)
Cd(15)-N(29)	2.29(2)	Cd(24)-Cl(27)	2.405(10)
Cd(15)-O(139)	2.338(19)	Cd(24)-O(97)	2.449(18)
Cd(15)-O(58)	2.36(2)	Cd(24)-O(29)	2.48(3)
Cd(15)-Cl(5)	2.591(10)	Cd(25)-O(30)	2.16(2)
Cd(15)-O(140)	2.620(19)	Cd(25)-O(34)	2.247(19)
			. ,

Cd(25)-O(107)	2.262(19)	Cd(34)-O(28)	2.41(3)
Cd(25)-N(15)	2.28(2)	Cd(35)-O(32)	2.03(3)
Cd(25)-O(101)	2.316(16)	Cd(35)-O(185)	2.394(17)
Cd(25)-O(33)	2.571(19)	Cd(35)-O(190)	2.370(18)
Cd(26)-O(104)	2.24(2)	Cd(36)-N(18)	2.23(3)
Cd(26)-O(106)	2.268(19)	Cd(36)-O(129)	2.28(2)
Cd(26)-O(38)	2.27(2)	Cd(36)-O(35)	2.32(3)
Cd(26) - N(19)	2.29(2)	Cd(36)-O(126)	2.30(3)
Cd(26)-O(83)	2 307(18)	Cd(36)-O(189)	2.30(3) 2.45(3)
Cd(26) - O(81)	2 55(2)	Cd(36)-O(185)	2.13(3) 2.526(14)
Cd(27)-O(2)	2.155(2)	Cd(37)-O(110)	2.320(11) 2.21(3)
Cd(27) - O(82)	2.17(2) 2.24(3)	Cd(37)- $O(111)$	2.21(3) 2.22(2)
Cd(27) - O(85)	2.2(3)	Cd(37)-N(2)	2.22(2) 2.27(3)
Cd(27) = O(1)	2.209(10)	Cd(37) - O(3)	2.27(3) 2 34(4)
Cd(27)-Cl(25)	2.40(2)	Cd(37)-O(39)	2.34(4) 2 35(2)
Cd(27) - Cl(23)	2.450(12)	Cd(37) O(40)	2.55(2)
Cd(27) - O(81)	2.40(2)	Cd(37)-O(40)	2.38(3)
Cd(28) - O(84)	2.239(19) 2.26(2)	Cd(38) - O(3)	2.23(3) 2.244(16)
Cd(28) - N(1)	2.20(3)	Cd(38)-Cl(24) Cd(38) O(110)	2.344(10) 2.46(2)
Cd(28) - O(83)	2.250(19)	Cd(38)-O(110)	2.40(3)
Cd(28)-O(2)	2.204(19)	Cd(38)-Cl(21)	2.51(5)
Cd(28)-O(6)	2.34(2)	Cd(38)-O(4)	2.01(4)
Cd(28)-O(5)	2.54(2)	Cd(39)-O(112)	2.27(2)
Cd(29)-O(90)	2.19(2)	Cd(39)-N(4)	2.26(3)
Cd(29)-N(5)	2.24(2)	Cd(39)-O(7)	2.29(3)
Cd(29)-O(88)	2.30(2)	Cd(39)-Cl(30)	2.564(11)
Cd(29)-O(10)	2.42(2)	Cd(39)-Cl(23)	2.622(10)
Cd(29)-Cl(28)	2.563(9)	Cd(39)-Cl(24)	2.850(17)
Cd(29)-O(87)	2.611(18)	Cd(40)-O(7)	2.23(3)
Cd(30)-O(88)	2.30(2)	Cd(40)-O(113)	2.35(2)
Cd(30)-O(14)	2.356(19)	Cd(40)-Cl(17)	2.426(13)
Cd(30)-Cl(31)	2.444(10)	Cd(40)-O(8)	2.52(3)
Cd(30)-O(13)	2.59(2)	Cd(40)-Cl(30)	2.573(10)
Cd(30)-Cl(29)	2.613(9)	Cd(40)-Cl(16)	2.75(4)
Cd(30)-Cl(26)#2	2.623(9)	Cd(41)-O(115)	2.18(2)
Cd(31)-N(7)	2.26(2)	Cd(41)-N(6)	2.29(3)
Cd(31)-O(14)	2.29(2)	Cd(41)-O(11)	2.28(2)
Cd(31)-O(91)	2.306(19)	Cd(41)-O(113)	2.323(19)
Cd(31)-Cl(29)	2.552(9)	Cd(41)-O(114)	2.53(3)
Cd(31)-Cl(28)	2.583(9)	Cd(41)- $Cl(23)$	2.585(9)
Cd(32)-O(18)	2.26(2)	Cd(42)-O(119)	2.19(2)
Cd(32)-O(100)	2.304(19)	Cd(42)-N(10)	2.30(3)
Cd(32)-Cl(19)	2.387(10)	Cd(42)-O(121)	2.31(2)
Cd(32)-Cl(26)	2.426(10)	Cd(42)-O(19)	2.34(3)
Cd(32)-O(17)	2.50(2)	Cd(42)-O(15)	2.37(2)
Cd(33)-N(9)	2.25(3)	Cd(42)-O(16)	2.56(3)
Cd(33)-O(100)	2.244(19)	Cd(43)-O(19)	2.21(3)
Cd(33)-O(18)	2.28(2)	Cd(43)-O(119)	2.28(2)
Cd(33)-O(92)	2.292(19)	Cd(43)-O(20)	2.39(4)
Cd(33)-O(22)	2.30(2)	Cd(43)-Cl(18)	2.376(19)
Cd(33)-O(21)	2.54(2)	Cd(43)-Cl(20)	2.57(2)
Cd(34)-O(31)	2.13(2)	Cd(44)-O(117)	2.32(3)
Cd(34)-N(16)	2.23(3)	Cd(44)-N(12)	2.34(3)
Cd(34)-O(27)	2.27(2)	Cd(44)-O(123)	2.31(2)
Cd(34)-O(128)	2.31(2)	Cd(44)-O(23)	2.36(3)
Cd(34)-O(125)	2.40(2)	Cd(44)-O(122)	2.42(2)
Cd(34)-O(126)	2.50(2)	Cd(44)-Cl(20)	2.66(2)

O(168)-Sm(1)-O(71)	90.4(7)
O(168)-Sm(1)-O(161)	75.1(7)
O(71)-Sm(1)-O(161)	75.5(7)
O(168)-Sm(1)-O(188)	143.2(7)
O(71)-Sm(1)-O(188)	104.0(7)
O(161)-Sm(1)-O(188)	760(7)
O(168)-Sm(1)-O(160)	78.0(7)
O(71) Sm(1) $O(160)$	158.0(7)
O(1(1) - Sin(1) - O(1(0))	130.0(7)
O(101)-Sin(1)-O(100)	64.3(7)
O(188)-Sm(1)- $O(160)$	/6.8(/)
O(168)-Sm(1)-O(75)	111.1(6)
O(71)-Sm(1)-O(75)	130.1(7)
O(161)-Sm(1)-O(75)	152.0(7)
O(188)-Sm(1)-O(75)	85.4(6)
O(160)-Sm(1)-O(75)	71.0(7)
O(168)-Sm(1)-N(36)	77.1(7)
O(71)-Sm(1)-N(36)	73.6(7)
O(161)-Sm(1)-N(36)	137.8(7)
O(188)-Sm(1)-N(36)	139 3(8)
O(160)-Sm(1)-N(36)	119 8(8)
O(75)-Sm(1)-N(36)	687(7)
O(168)-Sm(1)-O(72)	146.6(7)
O(71)-Sm(1)- $O(72)$	61.2(7)
O(161)-Sm(1)- $O(72)$	110.8(7)
O(101)-Sm(1)-O(72)	665(7)
O(160)-Sm(1)-O(72)	$134\ 4(7)$
O(75)-Sm(1)-O(72)	134.4(7)
N(36)-Sm(1)-O(72)	79.0(7)
$\Omega(30)-Sm(1)-O(72)$ $\Omega(43)-Sm(2)-O(182)$	77.3(9)
O(43)-SIII(2)-O(182) O(43), Sm(2), O(180)	77.3(9)
O(43)-SIII(2)-O(180) O(182), Sm(2), O(180)	33.3(7)
O(102)-SIII(2)-O(100) O(12), Sm(2), O(178)	106.5(9)
O(43)-SII(2)-O(178)	100.3(7)
O(182)-Sm(2)-O(178)	/3.1(9)
O(180)-Sm(2)-O(178)	145.4(8)
O(43)-Sm(2)-O(1/6)	159.2(7)
O(182)-Sm(2)-O(176)	84.0(9)
O(180)-Sm(2)- $O(176)$	82.1(7)
O(178)-Sm(2)- $O(176)$	76.0(7)
O(43)-Sm(2)-O(47)	132.2(8)
O(182)-Sm(2)-O(47)	146.7(9)
O(180)-Sm(2)-O(47)	114.2(8)
O(178)-Sm(2)-O(47)	82.2(8)
O(176)-Sm(2)-O(47)	68.4(7)
O(43)-Sm(2)-N(24)	74.5(9)
O(182)-Sm(2)-N(24)	142.2(10)
O(180)-Sm(2)-N(24)	74.9(9)
O(178)-Sm(2)-N(24)	139.3(9)
O(176)-Sm(2)-N(24)	117.5(9)
O(47)-Sm(2)-N(24)	70.1(9)
O(43)-Sm(2)-O(44)	62.6(6)
O(182)-Sm(2)-O(44)	112.8(8)
O(180)-Sm(2)-O(44)	140.8(7)
O(178)-Sm(2)-O(44)	70.3(7)
O(176)-Sm(2)-O(44)	134.8(6)
O(47)-Sm(2)-O(44)	77.9(7)
N(24)-Sm(2)-O(44)	75.1(8)

O(171)-Sm(3)-O(59)	85.8(7)
O(171)-Sm(3)-O(63)	117.0(7)
O(59)-Sm(3)-O(63)	135.7(7)
O(171)-Sm(3)-O(173)	77.3(7)
O(59)-Sm(3)-O(173)	74.4(7)
O(63)-Sm(3)-O(173)	144.1(7)
O(171)-Sm(3)-O(170)	148.2(7)
O(59)-Sm(3)-O(170)	104.3(7)
O(63)-Sm(3)-O(170)	76.7(7)
O(173)-Sm(3)-O(170)	76.6(7)
O(171)-Sm(3)-O(166)	79.8(7)
O(59)-Sm(3)-O(166)	155.0(7)
O(63)-Sm(3)-O(166)	69.2(7)
O(173)-Sm(3)-O(166)	82.5(7)
O(170)-Sm(3)-O(166)	79.0(6)
O(171)-Sm(3)-O(60)	135.8(7)
O(59)-Sm(3)-O(60)	62.3(7)
O(63)-Sm(3)-O(60)	76.4(7)
O(173)-Sm(3)-O(60)	117.6(7)
O(170)-Sm(3)-O(60)	73.5(6)
O(166)-Sm(3)-O(60)	140.0(7)
O(171)-Sm(3)-N(40)	74.1(8)
O(59)-Sm(3)-N(40)	80.0(8)
O(63)-Sm(3)-N(40)	71.9(9)
O(173)-Sm(3)-N(40)	142.7(9)
O(170)-Sm(3)-N(40)	136.9(8)
O(166)-Sm(3)-N(40)	115.0(8)
O(60)-Sm(3)-N(40)	71.0(7)
O(150)-Sm(4)-O(42)	151.9(8)
O(150)-Sm(4)-O(152)	74.2(7)
O(42)-Sm(4)-O(152)	117.7(8)
O(150)-Sm(4)-O(46)	74.7(8)
O(42)-Sm(4)-O(46)	128.0(8)
O(152)-Sm(4)-O(46)	88.6(7)
O(150)-Sm(4)-O(157)	88.6(7)
O(42)-Sm(4)-O(157)	68.8(7)
O(152)-Sm(4)-O(157)	83.7(7)
O(46)-Sm(4)-O(157)	163.1(6)
O(150)-Sm(4)-O(155)	73.5(7)
O(42)-Sm(4)-O(155)	84.2(8)
O(152)-Sm(4)-O(155)	141.5(7)
O(46)-Sm(4)-O(155)	102.5(7)
O(157)-Sm(4)-O(155)	75.2(6)
O(150)-Sm(4)-O(45)	111.3(8)
O(42)-Sm(4)-O(45)	74.3(8)
O(152)-Sm(4)-O(45)	145.3(7)
O(46)-Sm(4)-O(45)	61.8(7)
O(157)-Sm(4)-O(45)	129.5(6)
O(155)-Sm(4)-O(45)	67.8(7)
O(150)-Sm(4)-N(21)	136.1(8)
O(42)-Sm(4)-N(21)	71.5(8)
O(152)-Sm(4)-N(21)	75.2(8)
O(46)-Sm(4)-N(21)	73.9(8)
O(157)-Sm(4)-N(21)	118.2(8)
O(155)-Sm(4)-N(21)	143.2(8)
O(45)-Sm(4)-N(21)	79.1(8)

O(142)-Sm(5)-O(54)	112.6(7)
O(142)-Sm(5)-O(144)	147.8(7)
O(54)-Sm(5)-O(144)	81.8(7)
O(142)-Sm(5)-O(58)	89.2(8)
O(54)-Sm(5)-O(58)	135.1(7)
O(144)-Sm(5)-O(58)	100.5(7)
O(142)-Sm(5)-O(148)	77.7(6)
O(54)-Sm(5)-O(148)	70.5(6)
O(144)-Sm(5)-O(148)	80.9(6)
O(58)-Sm(5)-O(148)	154.4(7)
O(142)-Sm(5)-O(140)	78.3(6)
O(54)-Sm(5)-O(140)	146.5(6)
O(144)-Sm(5)-O(140)	75.1(6)
O(58)-Sm(5)-O(140)	73.9(7)
O(148)-Sm(5)-O(140)	81.9(6)
O(142)-Sm(5)-N(27)	75 5(8)
O(54)-Sm(5)-N(27)	73 3(8)
O(144)-Sm(5)-N(27)	136 6(8)
O(58)-Sm(5)-N(27)	75 3(8)
O(1/8) - Sm(5) - N(27)	121 1(7)
O(140)-Sm(5)-N(27)	121.1(7) 139 $4(7)$
O(140)-Sm(5)-O(57)	137.4(7) 140.4(7)
O(142)-SIII(3)-O(37)	70.3(6)
O(34)-SIII(3)-O(37) O(144) Sm(5) O(57)	79.3(0) 68.6(7)
O(58) Sm(5) O(57)	60.0(7)
O(148)-Sm(5)-O(57)	139.6(6)
O(140)-Sm(5)-O(57)	113 3(6)
N(27)-Sm(5)-O(57)	72 3(8)
$\Omega(154)$ -Sm(6)- $\Omega(70)$	1090(7)
O(154)-Sm(6)-O(74)	87.4(6)
O(70)-Sm(6)- $O(74)$	135.2(6)
O(154)-Sm(6)- $O(134)$	79.6(7)
O(70)-Sm(6)- $O(134)$	1497(7)
O(74)-Sm(6)- $O(134)$	725(6)
O(154)-Sm(6)-O(135)	1492(7)
O(70)-Sm(6)- $O(135)$	82 1(6)
O(74)-Sm(6)- $O(135)$	1050(5)
O(134)-Sm(6)- $O(135)$	77.7(6)
O(154)-Sm(6)-O(137)	79 2(7)
O(70)-Sm(6)- $O(137)$	71.2(7)
O(74)-Sm(6)- $O(137)$	1534(6)
O(134)-Sm(6)- $O(137)$	82 4(6)
O(135)-Sm(6)-O(137)	77 5(6)
O(153)-SIII(0)-O(157) O(154)-Sm(6)-N(33)	74.1(7)
O(70)-Sm(6)-N(33)	73.0(7)
O(74)-Sm(6)-N(33)	73.0(7)
O(134)-Sm(6)-N(33)	1364(7)
O(135)-Sm(6)-N(33)	136.4(7)
O(137)-Sm(6)-N(33)	130.5(7) 124 5(7)
O(154)-Sm(6)-O(73)	124.5(7) 141 5(7)
O(70)-Sm(6)- $O(73)$	79 6(6)
O(74)-Sm(6)-O(73)	63 9(6)
O(134)-Sm(6)-O(73)	112.2(6)
O(135)-Sm(6)-O(73)	67 6(6)
O(137)-Sm(6)-O(73)	137.1(6)
N(33)-Sm(6)-O(73)	73.0(7)
$\langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle$	()

O(191)-Sm(7)-O(130)	79.4(8)
O(191)-Sm(7)-O(39)	148.4(8)
O(130)-Sm(7)-O(39)	115.6(8)
O(191)-Sm(7)-O(35)	75.3(9)
O(130)-Sm(7)-O(35)	84.7(8)
O(39)-Sm(7)-O(35)	131.2(8)
O(191)-Sm(7)-O(111)	85.9(8)
O(130)-Sm(7)-O(111)	76.3(7)
O(39)-Sm(7)-O(111)	72.1(8)
O(35)-Sm(7)-O(111)	155.4(8)
O(191)-Sm(7)-O(109)	75.7(9)
O(130)-Sm(7)-O(109)	142.7(7)
O(39)-Sm(7)-O(109)	76.7(8)
O(35)-Sm(7)-O(109)	114.5(8)
O(111)-Sm(7)- $O(109)$	74.8(7)
O(191)-Sm(7)-N(20)	141 4(9)
O(130)-Sm(7)-N(20)	76 0(8)
O(39)-Sm(7)-N(20)	70.0(8)
O(35)-Sm(7)-N(20)	73.3(8)
O(111)-Sm(7)-N(20)	115.9(7)
O(109)-Sm(7)-N(20)	138.5(8)
O(191)-Sm(7)-O(36)	106.5(9)
O(130)-Sm(7)-O(36)	140.9(7)
O(39)-Sm(7)-O(36)	80.0(8)
O(35)-Sm(7)-O(36)	60.9(9)
O(111)-Sm(7)-O(36)	141.7(8)
O(109)-Sm(7)-O(36)	73.6(8)
N(20)-Sm(7)-O(36)	76.7(8)
O(118)-Sm(8)-O(27)	145.8(9)
O(118)-Sm(8)-O(23)	76.2(9)
O(27)-Sm(8)-O(23)	134.2(9)
O(118)-Sm(8)-O(124)	75.6(8)
O(27)-Sm(8)-O(124)	116.7(8)
O(23)-Sm(8)-O(124)	84.1(8)
O(118)-Sm(8)-O(127)	76.2(8)
O(27)-Sm(8)-O(127)	78.6(8)
O(23)-Sm(8)-O(127)	107.7(9)
O(124)-Sm(8)-O(127)	145.6(9)
O(118)-Sm(8)-O(125)	82.7(9)
O(27)-Sm(8)-O(125)	70.9(8)
O(23)-Sm(8)-O(125)	153.9(9)
O(124)-Sm(8)-O(125)	75.8(8)
O(127)-Sm(8)-O(125)	81.5(8)
O(118)-Sm(8)-O(24)	114.1(8)
O(27)-Sm(8)-O(24)	79.4(7)
O(23)-Sm(8)-O(24)	60.8(8)
O(124)-Sm(8)-O(24)	137.5(8)
O(127)-Sm(8)-O(24)	73.0(8)
O(125)-Sm(8)-O(24)	144.1(8)
O(118)-Sm(8)-N(14)	144.2(9)
O(27)-Sm(8)-N(14)	68.9(8)
O(23)-Sm(8)-N(14)	77.1(9)
$O(124)-Sm(\delta)-N(14)$ O(127) Sm(8) N(14)	125 2(9)
$O(127)-Sm(\delta)-N(14)$ $O(125)-Sm(\delta)-N(14)$	133.3(8)
$O(123)-Sm(\delta)-N(14)$ O(24) Sm(8) N(14)	114.1(9) 71.5(9)
U(24)-SIII(0)-IN(14)	/1.3(8)

O(15)-Sm(9)-O(116)	116.0(8)
O(15)-Sm(9)-O(11)	138.0(7)
O(116)-Sm(9)-O(11)	84.4(7)
O(15)-Sm(9)-O(120)	80.8(8)
O(116)-Sm(9)-O(120)	147.2(7)
O(11)-Sm(9)-O(120)	101.8(8)
O(15)-Sm(9)-O(121)	70.0(8)
O(116)-Sm(9)-O(121)	81.1(8)
O(11)-Sm(9)-O(121)	152.0(7)
O(120)-Sm(9)-O(121)	78.9(8)
O(15)-Sm(9)-O(114)	144.4(8)
O(116)-Sm(9)-O(114)	75.8(8)
O(11)-Sm(9)-O(114)	73.6(8)
O(120)-Sm(9)-O(114)	75.3(8)
O(121)-Sm(9)-O(114)	79.7(8)
O(15)-Sm(9)-N(8)	71.4(8)
O(116)-Sm(9)-N(8)	78.0(8)
O(11)-Sm(9)-N(8)	78.4(8)
O(120)-Sm(9)-N(8)	134.7(8)
O(121)-Sm(9)-N(8)	121.2(8)
O(114)-Sm(9)-N(8)	143.1(9)
O(15)-Sm(9)-O(12)	78.6(8)
O(116)-Sm(9)-O(12)	139.2(7)
O(11)-Sm(9)-O(12)	64.1(7)
O(120)-Sm(9)-O(12)	69.0(7)
O(121)-Sm(9)-O(12)	137.9(7)
O(114)-Sm(9)-O(12)	115.6(8)
N(8)-Sm(9)-O(12)	71.0(8)
O(89)-Sm(10)-O(6)	113.0(6)
O(89)-Sm(10)-O(10)	93.3(6)
O(6)-Sm(10)-O(10)	130.9(7)
O(89)-Sm(10)-O(84)	79.7(6)
O(6)-Sm(10)-O(84)	69.4(7)
O(10)-Sm(10)-O(84)	159.2(7)
O(89)-Sm(10)-O(86)	144.2(7)
O(6)-Sm(10)-O(86)	81.8(7)
O(10)-Sm(10)-O(86)	100.9(7)
O(84)-Sm(10)-O(86)	75.4(7)
O(89)-Sm(10)-O(87)	77.4(6)
O(6)-Sm(10)-O(87)	148.4(7)
O(10)-Sm(10)-O(87)	75.2(6)
O(84)-Sm(10)-O(87)	84.1(6)
O(86)-Sm(10)-O(87)	74.8(7)
O(89)-Sm(10)-O(9)	142.7(7)
O(6)-Sm(10)-O(9)	75.2(6)
O(10)-Sm(10)-O(9)	60.2(6)
O(84)-Sm(10)-O(9)	134.0(6)
O(86)-Sm(10)-O(9)	71.2(7)
O(87)-Sm(10)-O(9)	115.5(6)
O(89)-Sm(10)-N(3)	75.7(7)
O(6)-Sm(10)-N(3)	72.2(7)
O(10)-Sm(10)-N(3)	75.6(7)
O(84)-Sm(10)-N(3)	120.6(7)
O(86)-Sm(10)-N(3)	139.7(7)
O(87)-Sm(10)-N(3)	138.6(6)
O(9)-Sm(10)-N(3)	72.7(8)

O(103)-Sm(11)-O(34)	151.2(7)
O(103)-Sm(11)-O(105)	77.8(7)
O(34)-Sm(11)-O(105)	113.3(7)
O(103)-Sm(11)-O(102)	76.5(7)
O(34)-Sm(11)-O(102)	79.7(7)
O(105)-Sm(11)-O(102)	141.9(7)
O(103)-Sm(11)-O(38)	75.8(6)
O(34)-Sm(11)-O(38)	129.0(6)
O(105)-Sm(11)-O(38)	88.0(7)
O(102)-Sm(11)-O(38)	112.1(7)
O(103)-Sm(11)-O(107)	88.2(6)
O(34)-Sm(11)-O(107)	69.6(6)
O(105)-Sm(11)-O(107)	77.8(7)
O(102)-Sm(11)-O(107)	73.7(7)
O(38)-Sm(11)-O(107)	160.6(6)
O(103)-Sm(11)-N(17)	135.6(8)
O(34)-Sm(11)-N(17)	72.9(8)
O(105)-Sm(11)-N(17)	75.6(9)
O(102)-Sm(11)-N(17)	141.1(9)
O(38)-Sm(11)-N(17)	68.4(8)
O(107)-Sm(11)-N(17)	119.5(8)
O(103)-Sm(11)-O(37)	110.6(7)
O(34)-Sm(11)-O(37)	75.8(7)
O(105)-Sm(11)-O(37)	145.9(7)
O(102)-Sm(11)-O(37)	70 6(7)
O(38)-Sm(11)-O(37)	63.9(7)
O(107)-Sm(11)-O(37)	1337(7)
N(17)-Sm(11)-O(37)	76 2(8)
O(93)-Sm(12)-O(95)	78.1(7)
O(93)-Sm(12)-O(26)	850(7)
O(95)-Sm(12)-O(26)	733(7)
O(93)-Sm(12)-O(22)	1153(7)
O(95)-Sm(12)-O(22)	147 1(7)
O(26)-Sm(12)-O(22)	134.8(7)
O(23)-Sm(12)-O(22)	134.0(7) 145 7(7)
O(95)-Sm(12)-O(99)	76 8(6)
O(26)-Sm(12)-O(99)	100.0(0)
O(22)-Sm(12)-O(99)	77.0(6)
O(22)-Sm(12)-O(99) O(03)-Sm(12)-O(02)	76.5(7)
O(93)-Sin(12)-O(92) O(05) Sm(12) O(02)	70.3(7) 84.6(7)
O(35)-SIII(12)-O(32)	1537(7)
O(22) - Sin(12) - O(92)	70.0(6)
O(22)-Sin(12)- $O(92)$	70.9(0)
O(99)-SIII(12)-O(92) O(03) Sm(12) O(25)	140.0(6)
O(95)-SIII(12)-O(25) O(05), Sm(12), O(25)	140.9(0) 100.9(7)
O(93)-SIII(12)-O(23)	100.0(7)
O(26)-Sm(12)- $O(25)$	02.1(0)
O(22)-Sm(12)- $O(25)$	80.3(0)
O(99)-Sm(12)-O(25)	/0.3(6)
O(92)-Sm(12)-O(25)	141.2(6)
O(95)-Sm(12)-N(11)	/3.9(8)
O(95)-Sm(12)-N(11)	140.0(8)
U(26)-Sm(12)-N(11)	/4.6(8)
O(22)-Sm(12)-N(11)	12.5(8)
O(99)-Sm(12)-N(11)	137.2(8)
O(92)-Sm(12)-N(11)	117.6(8)
O(25)-Sm(12)-N(11)	75.5(8)