Supporting Information for

Computational mining of endohedral C₇₀ electrides: Tri-metal alkalis and alkaline-earth encapsulation

Baisheng Sa^{1,*}, Zhanlin Yang¹, Ying Zhang¹, Yitao Si^{2,3}, Hengyi Li⁴, Chang-Feng

Zhu⁵, Cuilian Wen¹, Bo Wu¹, and Tao Yu^{3,6 **}

¹ Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China

² International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an 710049, P. R. China

³ State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an 710065, P. R. China

⁴ Fujian Applied Technology Engineering Center of Power Battery Materials, Fujian College of Water Conservancy and Electric Power, Yongan, Fujian 366000, P. R.

China

 ⁵ Xiamen Funano New Materials Technology Co., Ltd., Xiamen 361006, P. R. China
⁶ School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China

Corresponding authors: bssa@fzu.edu.cn (B. Sa); fischer@wo.cn (T. Yu).

Spiral number	Symmetry	Pentagon adjacencies	$\Delta E \operatorname{Li}_3 @ \operatorname{C}_{70}$	$\Delta E \operatorname{Be}_{3}@C_{70}$			
8149	D_{5h}	0	0.00	0.00			
8144	C_s	2	19.69	31.95			
8094	C_s	1	41.54	11.20			
7957	C_2	2	27.54	45.37			
7922	C_s	3	60.77	53.92			
7921	C_1	3	40.49	45.28			
7893	C_1	3	32.62	39.01			
7892	C_2	2	3.63	7.53			
7887	C_2	3	35.88	42.98			
7886	C_1	3	41.31	48.48			
7854	C_{2v}	3	33.99	39.38			
7852	C_1	3	43.85	43.40			
7851	C_1	3	31.44	47.86			
7850	C_2	3	49.66	54.59			
7849	C_1	3	33.87	36.33			
7848	C_1	3	53.66	59.98			

Table S1. Relative energies ΔE (kcal·mol⁻¹) of Li₃@C₇₀ and Be₃@C₇₀ isomers at the M06-2X/def2-TZVP level

anu	Da) cluster	is in nee su	ale
Systems	$d_{\mathrm{M1-M2}}$	d_{M2-M3}	$d_{\rm M1-M3}$
Li ₃	3.38	2.79	2.79
Na ₃	3.22	3.22	4.78
K_3	4.17	6.29	4.17
Be ₃	2.17	2.17	2.17
Mg_3	3.48	3.48	3.48
Ca ₃	4.32	4.32	4.32
Sr ₃	5.23	5.21	5.24
Ba ₃	5.79	5.79	5.79

Table S2. The relaxed M-M distances d_{M-M} (Å) of M₃ (M = Li, Na, K, Be, Mg, Ca, Sr and Ba) clusters in free state

Isomers	NPA Charge	Natural electron configuration populations
Li ₃ @C ₇₀	0.58/0.62/0.62	Li1: $2s^{0.34}2p^{0.07}3s^{0.01}$
		Li2: $2s^{0.31}2p^{0.06}3s^{0.01}$
		Li3: $2s^{0.31}2p^{0.06}3s^{0.01}$
Na ₃ @C ₇₀	0.62/0.57/0.68	Na1: $3s^{0.34}3p^{0.02}4s^{0.01}3d^{0.01}$
_		Na2: $3s^{0.39}3p^{0.02}4s^{0.01}$
		Na3: $3s^{0.28}3p^{0.02}4s^{0.01}3d^{0.01}$
K ₃ @C ₇₀	0.90/0.91/0.90	K1: $4s^{0.12}3d^{0.02}4d^{0.01}$
		K2: $4s^{0.12}3d^{0.02}4d^{0.01}$
		K3: $4s^{0.12}3d^{0.02}4d^{0.01}$
Be ₃ @C ₇₀	0.67/0.56/0.67	Be1: $2s^{1.19}2p^{0.13}3d^{0.01}$
		Be2: $2s^{1.25}2p^{0.19}3d^{0.01}$
		Be3: $2s^{1.19}2p^{0.13}3d^{0.01}$
Mg ₃ @C ₇₀	1.35/1.17/1.35	Mg1: $3s^{0.56}3p^{0.04}3d^{0.04}$
		Mg2: $3s^{0.73}3p^{0.06}3d^{0.04}$
		Mg3: $3s^{0.56}3p^{0.04}3d^{0.04}$
$Ca_3@C_{70}$	1.16/1.25/1.27	$Ca1: 4s^{0.62}3d^{0.16}4p^{0.01}5s^{0.01}4d^{0.01}5p^{0.04}$
		$Ca2: 4s^{0.56}3d^{0.13}5s^{0.01}4d^{0.01}5p^{0.04}$
		$Ca3: 4s^{0.50}3d^{0.17}5s^{0.01}4d^{0.01}5p^{0.04}$
Sr ₃ @C ₇₀	1.56/1.56/1.55	Sr1: $5s^{0.36}6s^{0.01}6p^{0.10}$
		Sr2: $5s^{0.36}6s^{0.01}6p^{0.10}$
		Sr3: $5s^{0.37}6s^{0.01}6p^{0.11}$
Ba ₃ @C ₇₀	1.89/1.89/1.89	Ba1: $6s^{0.13}6p^{0.02}7p^{0.02}$
		Ba2: $6s^{0.13}6p^{0.02}7p^{0.02}$
		Ba3: 6s ^{0.12} 6p ^{0.01} 7p ^{0.03}

Table S3. Natural population analysis (NPA) charges (e) and natural electronconfiguration populations for metal atoms in M3@C70

Figure S1. Relative energies of different $Li_3@C_{70}$ and $Be_3@C_{70}$ isomers.

Figure S2. The optimized geometries of M₃ (M = Li, Na, K, Be, Mg, Ca, Sr and Ba). Li, Na, K, Be, Mg, Ca, Sr and Ba atoms are marked with green, yellow, mauve, ochre, orange, blue, pink and ice blue color, respectively.

Figure S3. Plots of potential energy versus the time of trajectory of (a) Li₃@C₇₀, (b) Na₃@C₇₀, (c) K₃@C₇₀, (d) Be₃@C₇₀, (e) Mg₃@C₇₀, (f) Ca₃@C₇₀, (g) Sr₃@C₇₀, and (h) Ba₃@C₇₀ using the ADMP method. The structures at the start and end of trajectory are also depicted.

Figure S4. Variations of M-M bond length and M-M-M bond angle versus the time of trajectory for M₃ clusters in M₃@C₇₀ using the ADMP method.

Figure S5. Structure snapshots at different time at 500 K for (a) $Li_3@C_{70}$, (b) Na₃@C₇₀, (c) K₃@C₇₀, (d) Be₃@C₇₀, (e) Mg₃@C₇₀, (f) Ca₃@C₇₀, (g) Sr₃@C₇₀, and (h) Ba₃@C₇₀.

Figure S6. Plots of potential energy versus the time of trajectory of M₃ clusters at 500 K. The structures at the start and end of trajectory are also depicted.

Figure S7. Custom colored 3D isosurface of electron localization function (ELF) maps for $M_3@C_{70}$.