Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

A water-stable, light-weight, MOF-based membrane for mitigating

polysulfides shuttling in Li-S batteries

Juan Xu, Zheng Lin, Yuan Lei, Xingrun Huang, Chao Chen*

School of Chemical Engineering and Light Industry, Guangdong University of

Technology, Guangzhou 510006, China.

E-mail: c.chen@gdut.edu.cn

Experimental section

Synthesis of PLMOF(Co)

PLMOF(Co) was prepared via a conventional hydrothermal method [1]. Typically,

1.5 mmol Co(NO₃)₂•6H₂O was dissolved in 5 mL deionized water by stirring to form the

solution A. 1.5 mmol NaOH, 1 mmol 4, 5-imidazole dicarboxylic acid and 1 mmol 4, 4, -

bipyridine were added into 5 mL deionized water with stirring to form the solution B.

Solution A and B were mixed to form a mixture, which was transferred into a 25 mL teflon-

lined autoclave and kept statically under autogenous pressure at 180 °C for 72 hours. The

resultant solid were washed with H₂O and finally dried to obtain the PLMOF (Co) product.

Fabrication of the PLMOF (Co)@G-coated separator

In a typical procedure, 5.4 mg of PLMOF (Co), 12.6 mg of graphene, and 2 mg of

PVDF was dispersed in NMP by sonication for 1 hour to form a uniform black suspension.

Specific amount of the above suspension was then deposited onto a Celgard 2400 separator by a vacuum filter. The loading amount of PLMOF (Co)@G on the PP separator was controlled to be 0.32 mg cm⁻², 0.16 mg cm⁻², and 0.08 mg cm⁻², respectively.

Visualized polysulfide adsorption and permeation tests

Li₂S₆ solution (0.2 M) was firstly prepared by mixing sublimed sulfur and Li₂S in DOL/DME solution (1:1 in vol), which was stirred at 70 °C for 12 h in the glovebox. For the adsorption test, the Li₂S₆ solution was diluted to 2 mM. 50 mg PLMOF (Co) was added to 6 mL Li₂S₆ solution for 7 h. For the diffusion test, the Li₂S₆ solution was diluted to 10 mM. The permeation process of polysulfides through the PP separator and the PLMOF (Co) @G-modified separator was tested using an H-type cell filled with dark brown Li₂S₆ solution (left) and pellucid DOL/DME solution (right).

Cells assembly and electrochemical measurements

S/CNT composite (S: CNT = 8:2 in mass) was firstly prepared using a melting diffusion method. Then the S/CNT composite, CNT and PVDF were mixed at a mass ratio of 7:2:1 in NMP to obtain the cathode slurry, which was coated on an aluminum foil, dried at 60 °C under vacuum, and cut into a 14 mm diameter plate. The average sulfur loading on the cathode was controlled to be 1.0 mg cm⁻². The electrolyte is consist of 1 M LiTFSI in DOL/DME (1 : 1 in v/v) with 1% LiNO₃ as an additive, and the electrolyte dosage was 15 μL mg⁻¹ S. The galvanostatic charge/discharge (GCD) and cycle performance were measured using a LAND battery system in the range of 1.7–2.8 V. The cyclic voltammetry (CV) and electroelectrochemical impedance spectrascopy (EIS) were performed on a CHI 650E electrochemical station. The voltage test window for the CV curve is 1.7 to 2.8 V

with a scan rate of 0.1 mV s⁻¹. EIS was performed over the scanning frequency range of 0.01 Hz-100 kHz.

Material characterization

XRD patterns were recorded using a Rigaku-mini Flex600 X-ray diffractomete (Cu Kα λ=1.54059 Å). The content of S was determined by a thermogravimetric analyzer (NETZSCH TG 209 F3) under argon atmosphere with a heating rate of 5 °C min⁻¹. X-ray photoelectron spectroscopy (XPS) was performed on an Escalab 250Xi (Thermo Fisher) with Al Kα radiation under argon atmosphere. Textural properties of samples were obtained by N₂ adsorption-desorption measurement carried out on the Belsorp-mini (II) under liquid nitrogen temperature (-196 °C). Morphologies of samples were characterized by a field-emission scanning electron microscope (FE-SEM, ZEISS sigma500) at 15 Kv and transmission electron microscope (TEM, JEOL JEM-2100 F) with energy dispersive X-ray spectroscopy (EDS). The content of metal atom was determined by the Agilent 725 inductively coupled plasma optical emission spectrometer (ICP). The UV-Vis absorption spectra were obtained using a Persee TU-1900 spectrophotometer.

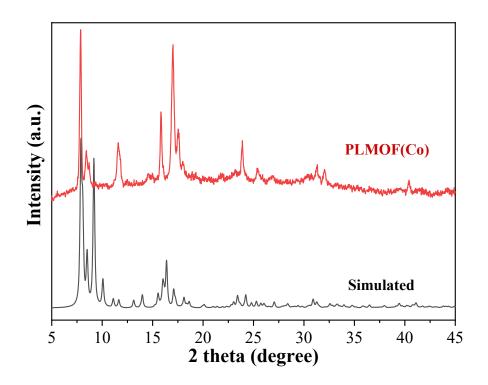


Fig. S1 XRD pattern of the PLMOF(Co).

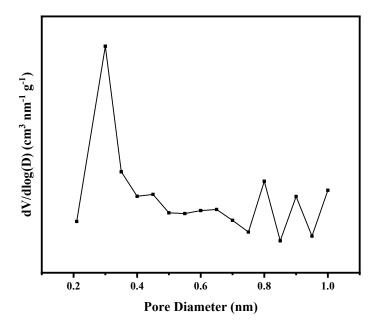


Fig. S2 Micropore size distribution curve of the PLMOF(Co) based on the MP-plot.

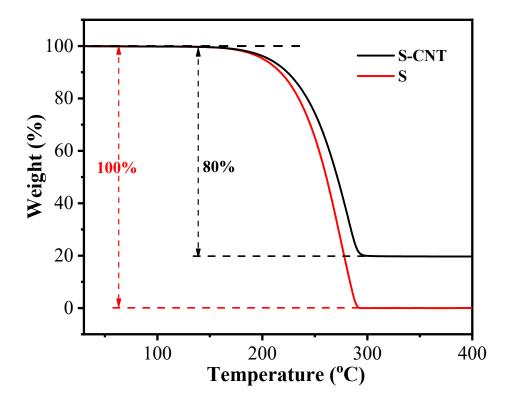
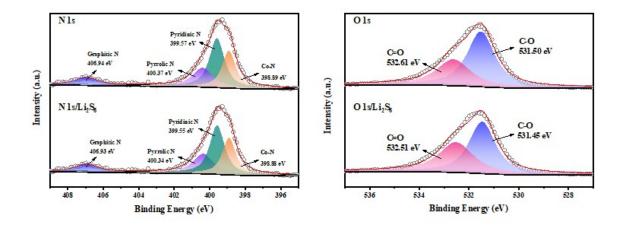



Fig. S3 TGA curves of sulfur and the S/CNT composite.

 $\label{eq:Fig.S4} \textbf{Fig. S4} \mbox{ High-resolution N1s and O1s XPS spectra of the PLMOF(Co) before and after} \\ \mbox{Li}_2S_6 \mbox{ adsorption}$

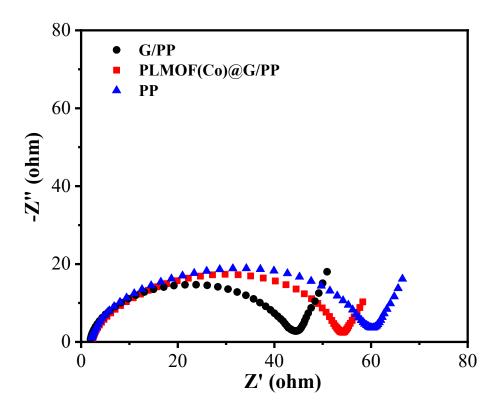
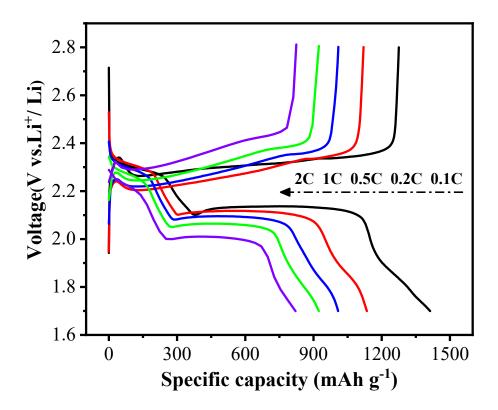
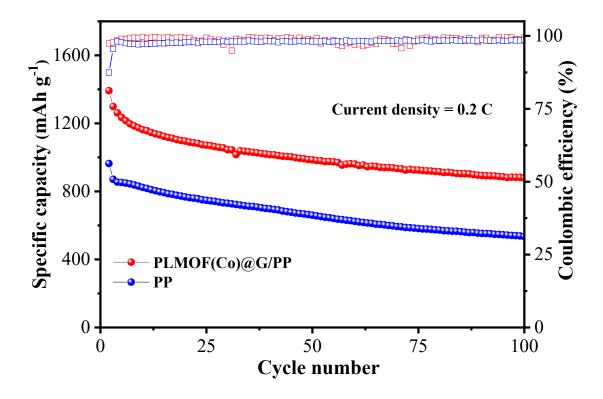




Fig. S5 Nyquist plots of cells assembled with different separators.

Fig. S6 Galvanostatic discharge-charge profile of the cell assembled with the PLMOF(Co)@G-modified separator.

Fig. S7 A comparison of cycle performances of cells assembled with PP and PLMOF(Co)@G-modified separator.

Table S1. A comparison of Li-S battery performance based on the PLMOF(Co)@G-modified separator in this work with other previously reported works.

Interlayer Materials	Cathode	C Rate	1 st Capacity (mAh g ⁻¹)	Cycle	Capacity retention (mAh g ⁻¹)	Ref.
Y-FTZB	S/Super P	0.25	987	100	~650	[2] ACS Energy Lett.
Ni ₃ (HITP) ₂	S/CNT	0.5	990	200	905	[3] Adv. Energy Mater.
B/2D MOF-Co	S/C	0.5	801	200	703	[4] Adv. Mater.
CNT@ZIF-30	S/AB	0.2	1588	100	870	[5] Energy Stor. Mater.
PSS@HKUST-1	S/Super P	0.5	1243	100	968	[6] ACS Appl. Mater. Inter.
Ni ₃ (HITP) ₂	S/Super P	0.5	-	100	~740	[7] ACS Appl. Mater. Inter.
UiO-66-NH ₂	S/SG	0.1	-	100	560	[8] J. Mater. Chem. A
VN	S/CNT	0.5	1050	100	860	[9] ACS Appl. Mater. Inter.
Cr ₃ C ₂	S/KB	0.5	865	100	~795	[10] Ind. Eng. Chem. Res.
Co ₃ Mo ₃ C	S/Super P	0.1	1251	100	905	[11] Sci. China Mater.
Ni-Co-P@C	S/CNTs	0.5	1000	100	~700	[12]

						Energy Stor. Mater.
FMSiNP	S/KB	1	1080	400	660	[13] J. Mater. Chem. A
MWCNT/NCQD	S/KB	2	953	300	600	[14] Adv. Energy Mater.
		0.2	1392	100	878	
		0.5	1325	100	956	
PLMOF(Co)	S/CNT	0.5	1325	200	846	This work
		1	1043	300	720	
		2	832	300	643	

Table S2. A comparison of interlayer loading amount in this work with previously reported studies.

Interlayer Materials	Areal density of interlayer (mg cm ⁻²)	C Rate	1 st Capacity (mAh g ⁻¹)	Cycle	Capacity retention (mAh g ⁻¹)	Ref.
Y-FTZB	1.2	0.25	987	100	~650	[2] ACS Energy Lett.
B/2D MOF-Co	0.37	0.5	801	100	795	[4] Adv. Mater.
CNT@ZIF-30	0.9	0.2	1588	100	870	[5] Energy Stor. Mater.
VN	1.52	0.5	1050	100	860	[9] ACS Appl. Mater. Inter.
Cr ₃ C ₂	0.75	0.5	865	100	~795	[10] Ind. Eng. Chem. Res.
Co ₃ Mo ₃ C	0.5	0.1	1251	100	905	[11] Sci. China Mater.
Ni-Co-P@C	0.4	0.5	1000	100	~700	[12] Energy Stor. Mater.
MWCNT/NCQD	0.15	0.5	~1120	100	~860	[14] Adv. Energy Mater.
UiO-66-S	1.1	0.2	1127	100	~1010	[15] J. Mater. Chem. A
Ti ₃ C ₂ Tx/S-A	0.7	0.1	1072	100	807	[16] J. Alloys Compd.
CNTs@CP/rGo	0.28	0.5	-	100	~800	[17] ACS Appl. Energy Mater.

	0.32		1325		956	
PLMOF(Co)	0.16	0.5	1321	100	854	This work
	0.08		1215		705	

Reference

- [1] C. Chen, Q. Jiang, H. Xu, Z. Lin, Highly efficient synthesis of a moisture-stable nitrogen-abundant metal-organic framework (MOF) for large-scale CO₂ capture, Ind. Eng. Chem. Res., 58 (2019) 1773-1777.
- [2] M. Li, Y. Wan, J. K. Huang, A.H. Assen, C. E. Hsiung, H. Jiang, Y. Han, M. Eddaoudi, Z. Lai, J. Ming, Metal-organic framework-based separators for enhancing Li-S battery stability: mechanism of mitigating polysulfide diffusion, ACS Energy Lett., 2 (2017) 2362-2367.
- [3] Y. Zang, F. Pei, J. Huang, Z. Fu, G. Xu, X. Fang, Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries, Adv. Energy Mater., 8 (2018) 1802052.
- [4] Y. Li, S. Lin, D. Wang, T. Gao, J. Song, P. Zhou, Z. Xu, Z. Yang, N. Xiao, S. Guo, Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries, Adv. Mater., 32 (2020) 1906722.
- [5] F. Wu, S. Zhao, L. Chen, Y. Lu, Y. Su, Y. Jia, L. Bao, J. Wang, S. Chen, R. Chen, Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries, Energy Stor. Mater., 14 (2018) 383-391.
- [6] Y. Guo, M. Sun, H. Liang, W. Ying, X. Zeng, Y. Ying, S. Zhou, C. Liang, Z. Lin, X.

- Peng, Blocking polysulfides and facilitating lithium-ion transport: polystyrene sulfonate@HKUST-1 membrane for lithium-sulfur batteries, ACS Appl. Mater. Inter., 10 (2018) 30451-30459.
- [7] H. Chen, Y. Xiao, C. Chen, J. Yang, C. Gao, Y. Chen, J. Wu, Y. Shen, W. Zhang, S. Li, Conductive MOF-modified separator for mitigating the shuttle effect of lithium-sulfur battery through a filtration method, ACS Appl. Mater. Inter., 11 (2019) 11459-11465.
- [8] S. Suriyakumar, A.M. Stephan, N. Angulakshmi, M.H. Hassan, M.H. Alkordi, Metalorganic framework@SiO₂ as permselective separator for lithium-sulfur batteries, J. Mater. Chem. A, 6 (2018) 14623-14632.
- [9] Y. Song, S. Zhao, Y. Chen, J. Cai, J. Li, Q. Yang, J. Sun, Z. Liu, Enhanced sulfur redox and polysulfide regulation via porous VN-modified separator for Li-S batteries, ACS Appl. Mater. Inter., 11 (2019) 5687-5694.
- [10] X. Liu, G. Feng, Y. Li, C. Xu, Q. Pan, Z. Wu, B. Zhong, X. Guo, S. Zhang, X. Xu, Novel interlayer on the separator with the Cr₃C₂ compound as a robust polysulfide anchor for lithium-sulfur batteries, Ind. Eng. Chem. Res., 59 (2020) 7538-7545.
- [11] Z. Zhang, J. N. Wang, A. Shao, D. G. Xiong, J. W. Liu, C. Y. Lao, K. Xi, S. Y. Lu, Q. Jiang, J. Yu, Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery, Sci. China Mater., 63 (2020) 2443-2455.
- [12] Z. Wu, S. Chen, L. Wang, Q. Deng, Z. Zeng, J. Wang, S. Deng, Implanting nickel and cobalt phosphide into well-defined carbon nanocages: A synergistic adsorption-electrocatalysis separator mediator for durable high-power Li-S batteries, Energy Stor.

- Mater., 38 (2021) 381-388.
- [13] X. Xiang, J.Y. Wu, Q.X. Shi, Q. Xia, Z.G. Xue, X.L. Xie, Y.S. Ye, Mesoporous silica nanoplates facilitating fast Li⁺ diffusion as effective polysulfide-trapping materials for lithium-sulfur batteries, J. Mater. Chem. A, 7 (2019) 9110-9119.
- [14] Y. Pang, J. Wei, Y. Wang, Y. Xia, Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries, Adv. Energy Mater., 8 (2018) 1702288.
- [15] J. Han, S. Gao, R. Wang, K. Wang, M. Jiang, J. Yan, Q. Jin, K. Jiang, Investigation of the mechanism of metal-organic frameworks preventing polysulfide shuttling from the perspective of composition and structure, J. Mater. Chem. A, 8 (2020) 6661-6669.
- [16] Q. Meng, Q. Jin, X. Wang, W. Lv, X. Ma, L. Li, L. Wu, H. Gao, C. Zhu, X. Zhang, 3D Ti₃C₂Tx aerogel-modified separators for high-performance Li-S batteries, J. Alloys Compd., 816 (2020) 153155.
- [17] Z. Li, S. Jiao, D. Yu, Q. Zhang, K. Liu, J. Han, Z. Guo, J. Liu, L. Wang, Cationic-polymer-functionalized separator as a high-efficiency polysulfide shuttle barrier for long-life Li-S battery, ACS Appl. Energy Mater., 4 (2021) 2914-2921.