Anticancer Ruthenium(II) Tris(pyrazolyl)methane Complexes with Bioactive Co-ligands

Alberto Gobbo, Sarah A. P. Pereira, Lorenzo Biancalana, Stefano Zacchini, M. Lúcia M. F. S. Saraiva,
Paul J. Dyson, Fabio Marchetti

University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.

LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal.

University of Bologna, Department of Industrial Chemistry "Toso Montanari", Viale Risorgimento 4, I-40136 Bologna, Italy.

Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

Supporting Information

Table of contents	Pages
IR spectra of products (Figures S1–S10)	S2-S5
NMR spectra of products (Figures S11–S39)	S6-S23
X-ray data (Tables S1-S2)	S24
NMR data in D ₂ O solutions (Figures S40–S54, Tables S3-S4)	S25-S38
ESI-MS spectra of 3 in H ₂ O (Figure S55)	S39
Graphical representation of IC ₅₀ values (Figure S56)	S40

IR spectra

Figure S1. Solid-state IR spectrum (650-4000 cm⁻¹) of Py-EA.

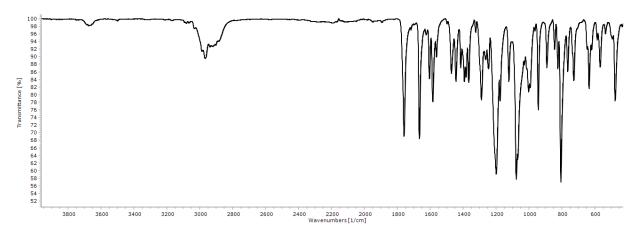


Figure S2. Solid-state IR spectrum (650-4000 cm⁻¹) of Py-FLU.

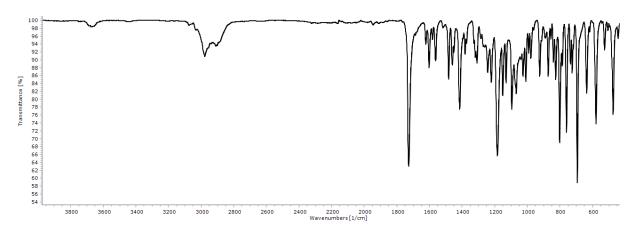


Figure S3. Solid-state IR spectrum (650-4000 cm⁻¹) of Py-IBU.

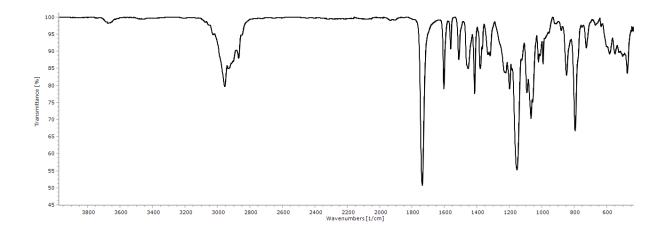


Figure S4. Solid-state IR spectrum (650-4000 cm⁻¹) of Py-NAP.

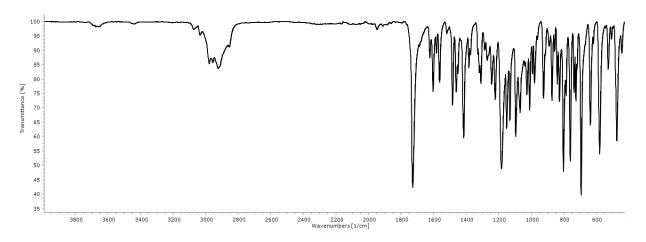


Figure S5. Solid-state IR spectrum (650-4000 cm⁻¹) of 2.

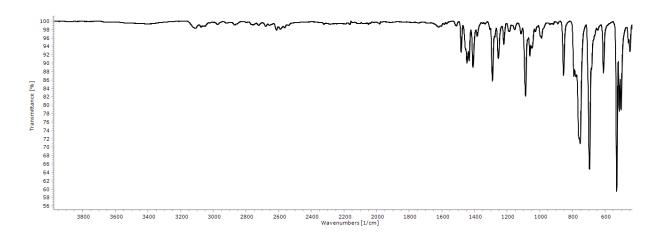


Figure S6. Solid-state IR spectrum (650-4000 cm⁻¹) of 3.

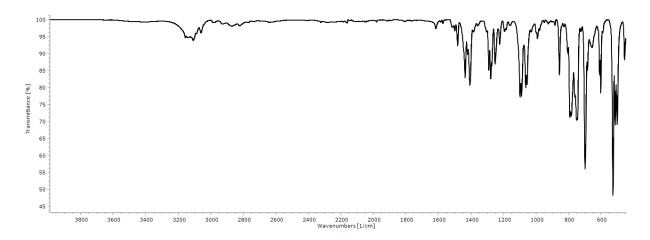


Figure S7. Solid-state IR spectrum (650-4000 cm⁻¹) of 4.

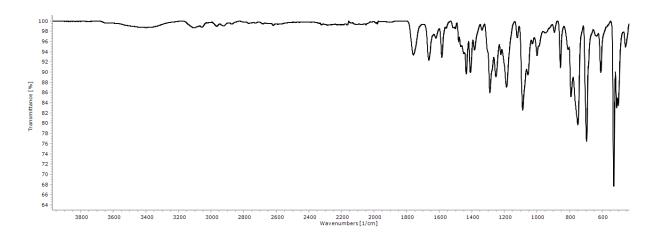


Figure S8. Solid-state IR spectrum (650-4000 cm⁻¹) of 5.

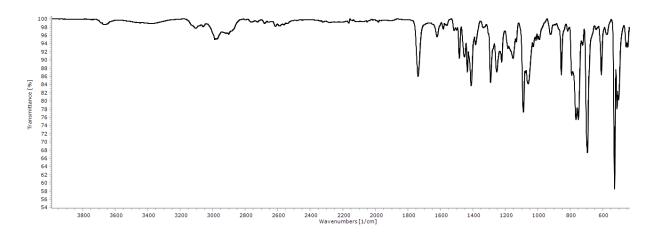


Figure S9. Solid-state IR spectrum (650-4000 cm⁻¹) of 6.

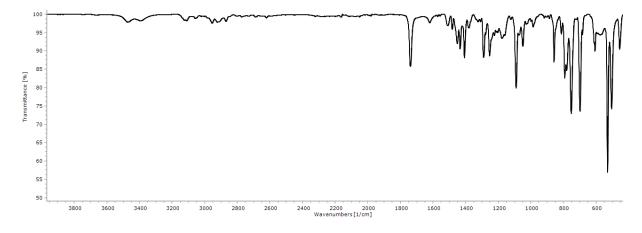
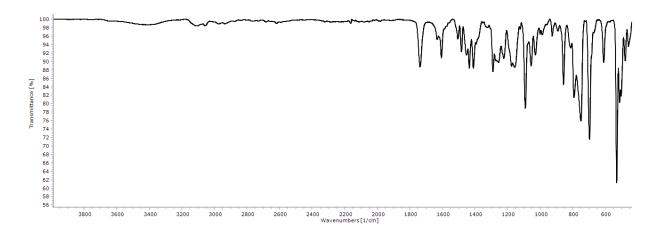



Figure S10. Solid-state IR spectrum (650-4000 cm⁻¹) of 7.

NMR spectra

Figure S11. ¹H NMR spectrum (301 MHz, CDCl₃) of Py-EA

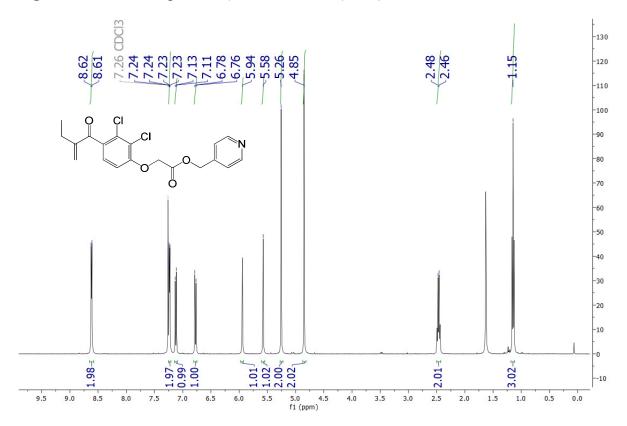


Figure S12. ¹H NMR spectrum (301 MHz, CD₂Cl₂) of Py-FLU

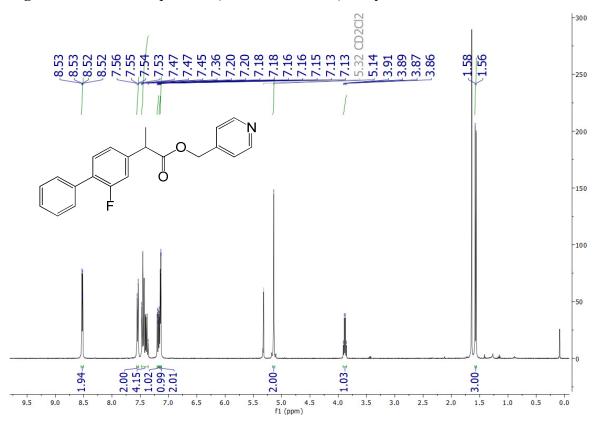


Figure S13. ¹³C NMR spectrum (76 MHz, CD₂Cl₂) of Py-FLU

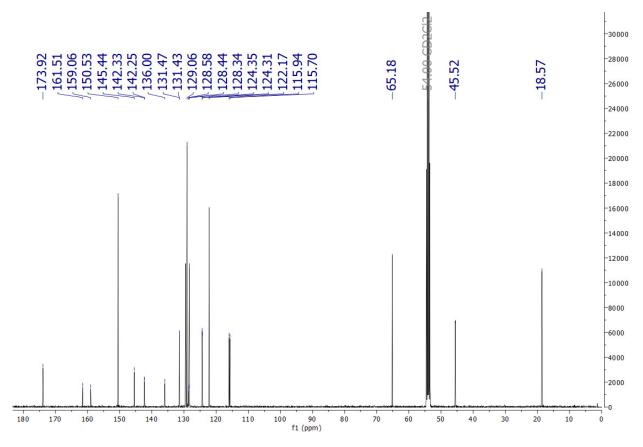


Figure S14. ¹⁹F NMR spectrum (282 MHz, CD₂Cl₂) of Py-FLU

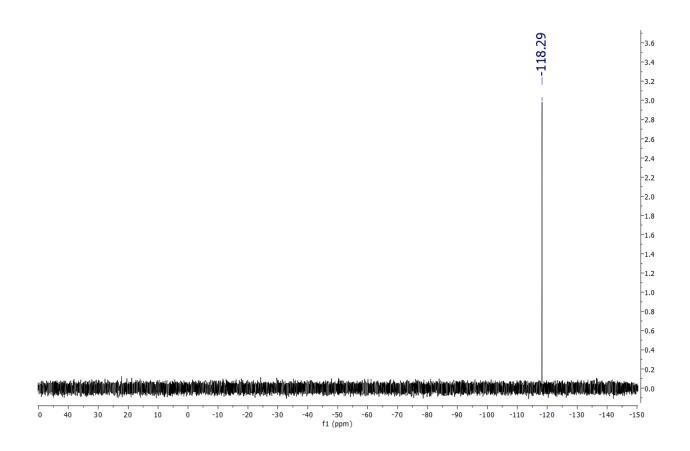


Figure S15. ¹H NMR spectrum (301 MHz, CD₂Cl₂) of Py-IBU

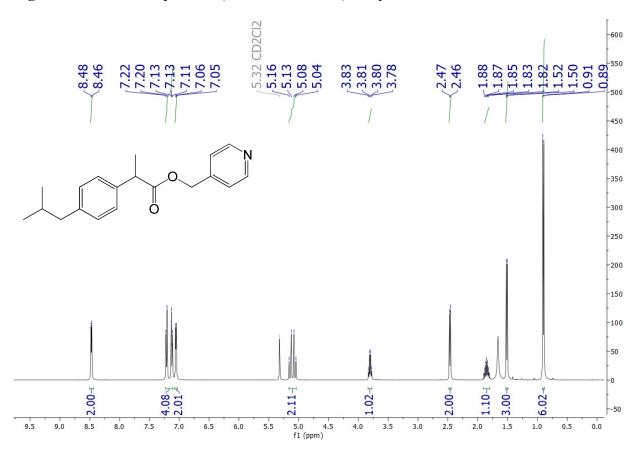


Figure S16. ¹³C NMR spectrum (76 MHz, CD₂Cl₂) of Py-IBU

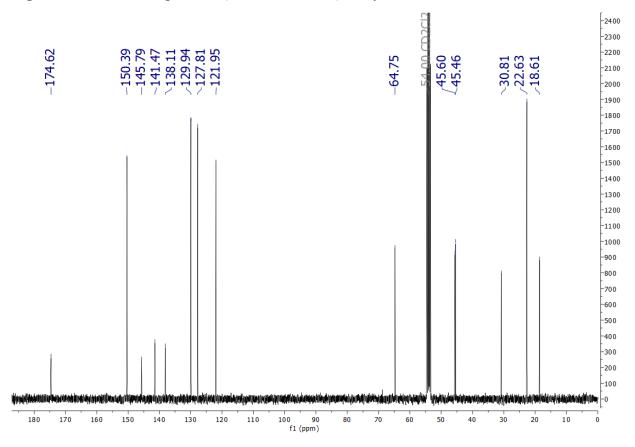


Figure S17. ¹H NMR spectrum (301 MHz, CD₂Cl₂) of Py-NAP

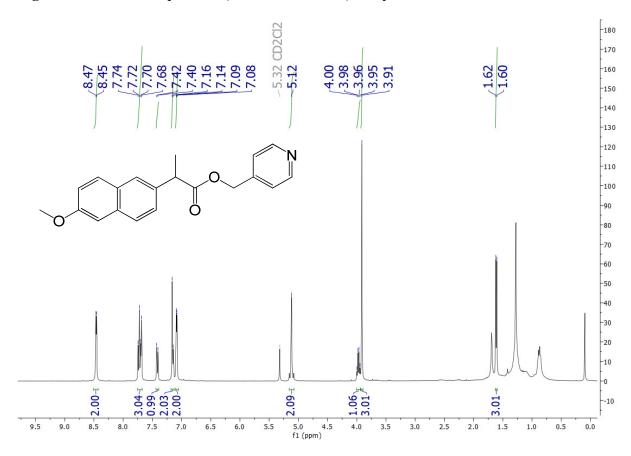


Figure S18. ¹³C NMR spectrum (76 MHz, CD₂Cl₂) of Py-NAP

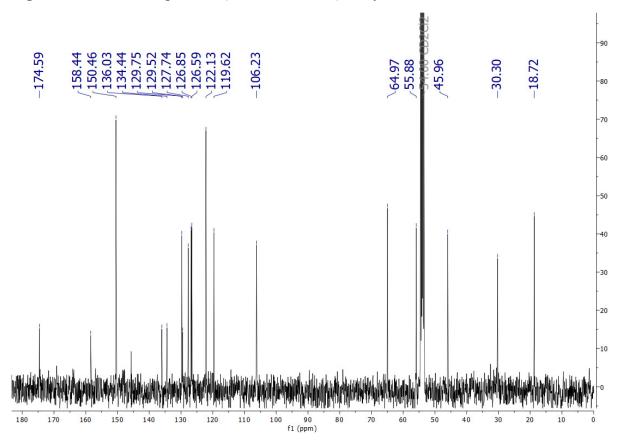


Figure S19. ¹H NMR spectrum (301 MHz, CDCl₃) of 2

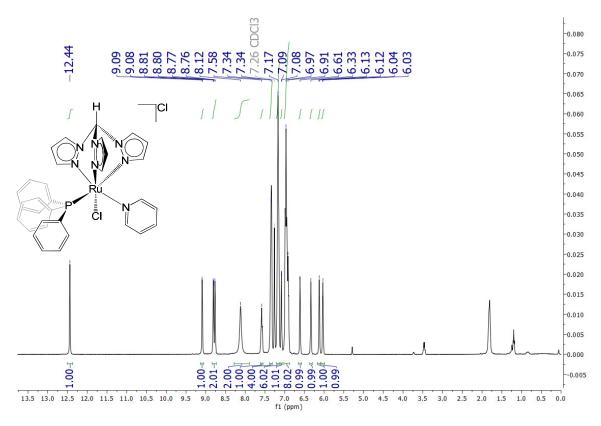


Figure S20. ¹³C NMR spectrum (76 MHz, CDCl₃) of 2

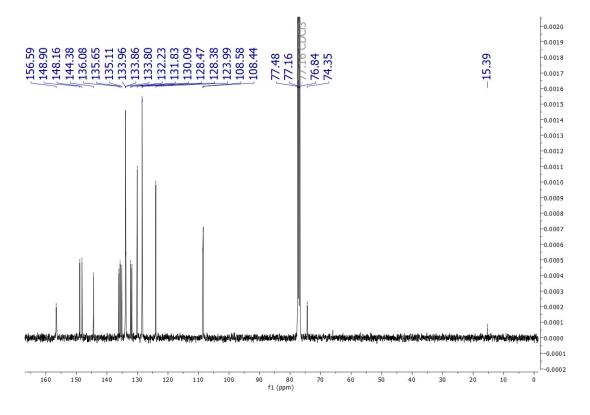


Figure S21. ³¹P NMR spectrum (121 MHz, CDCl₃) of 2

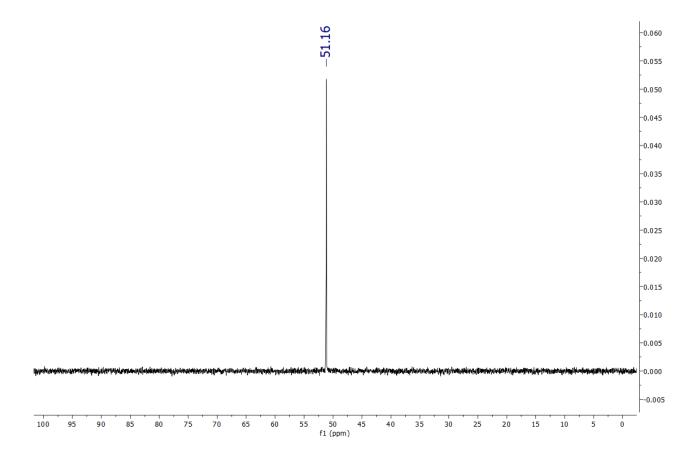


Figure S22. ¹H NMR spectrum (301 MHz, CDCl₃) of 3

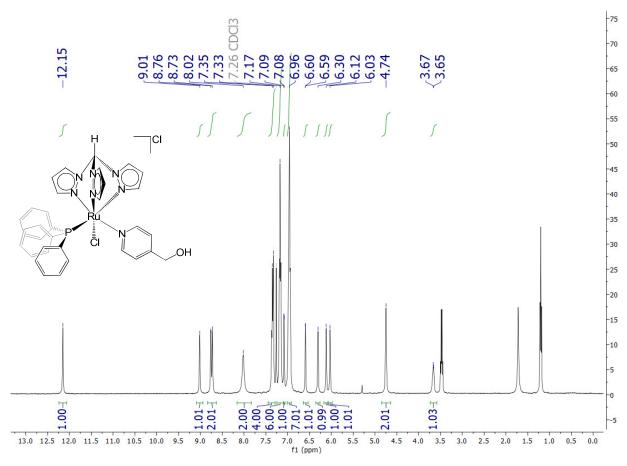


Figure S23. ³¹P NMR spectrum (121 MHz, CDCl₃) of 3

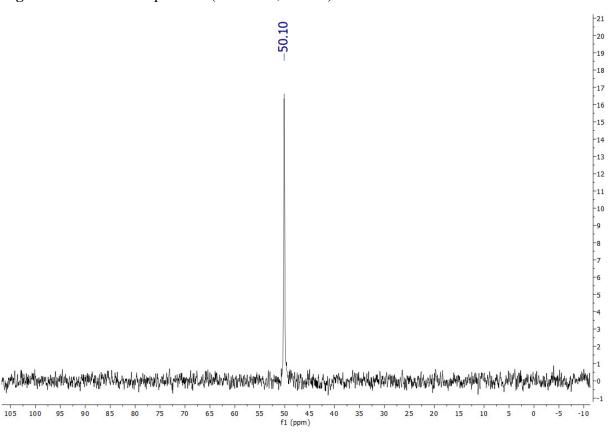


Figure S24. ¹H NMR spectrum (301 MHz, CD₃OD) of 3

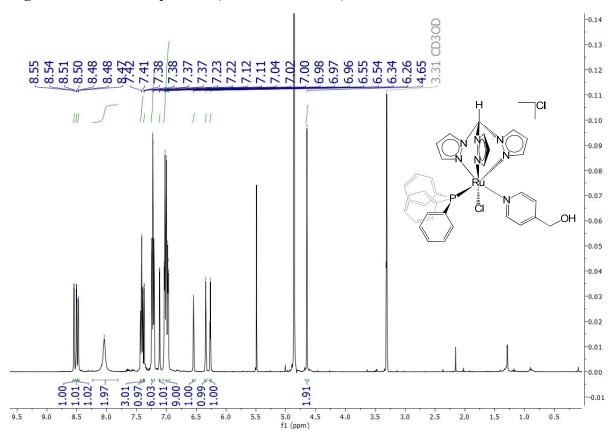


Figure S25. ¹³C NMR spectrum (126 MHz, CD₃OD) of 3

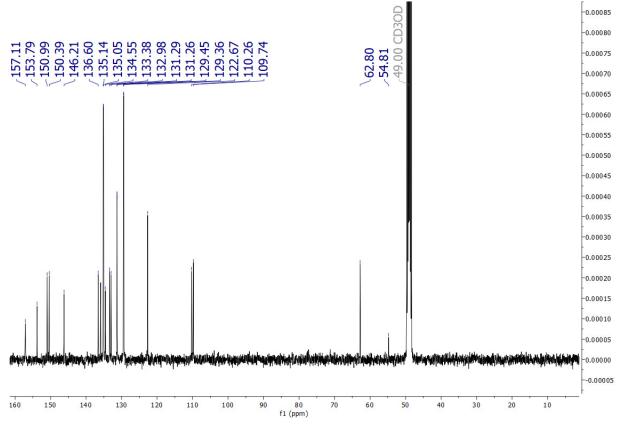


Figure S26. ³¹P NMR spectrum (202 MHz, CD₃OD) of 3

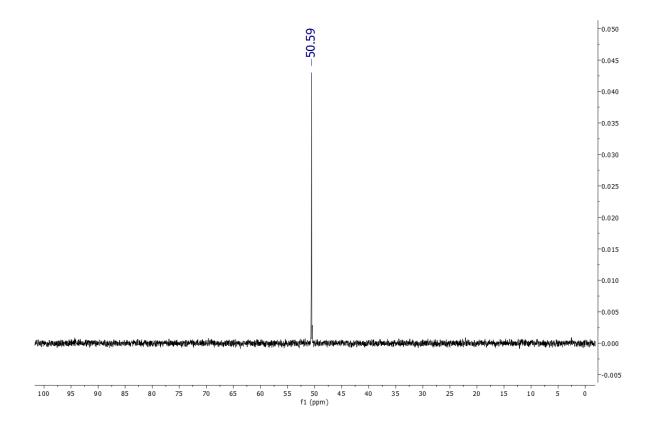


Figure S27. ¹H NMR spectrum (301 MHz, CD₂Cl₂) of 4

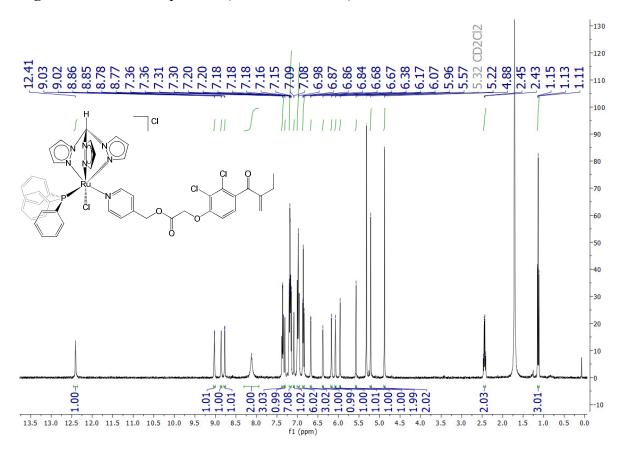


Figure S28. ¹³C NMR spectrum (76 MHz, CD₂ Cl₂) of 4

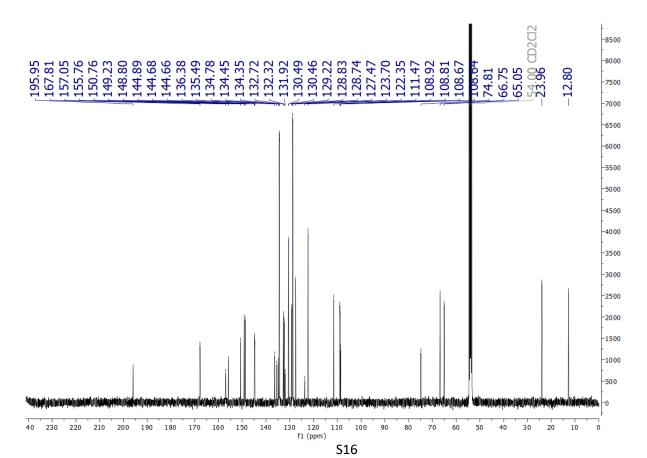


Figure S29. ³¹P NMR spectrum (121 MHz, CD₂Cl₂) of 4

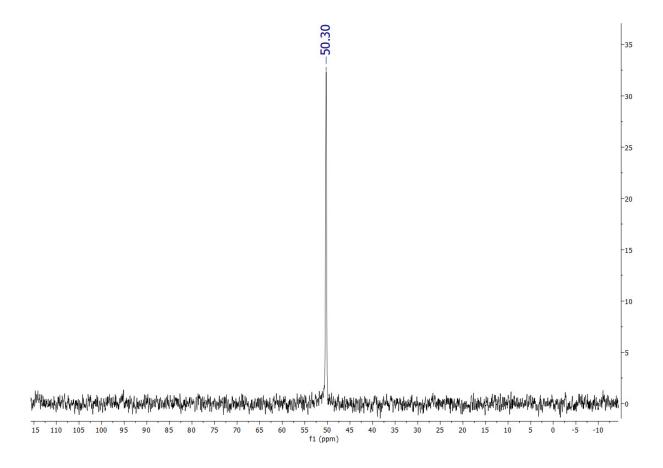


Figure S30. ¹H NMR spectrum (301 MHz, CD₂Cl₂) of 5

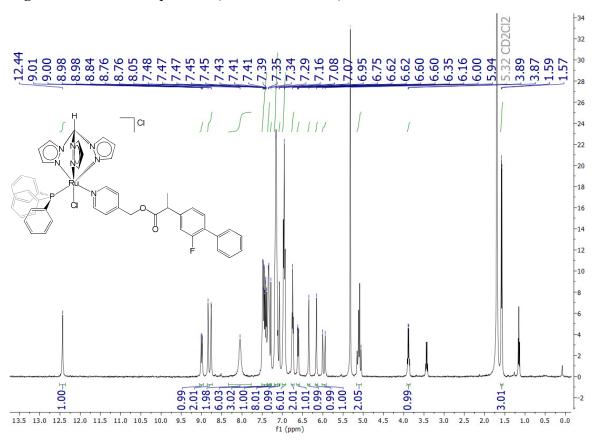


Figure S31. ¹³C NMR spectrum (76 MHz, CD₂Cl₂) of 5

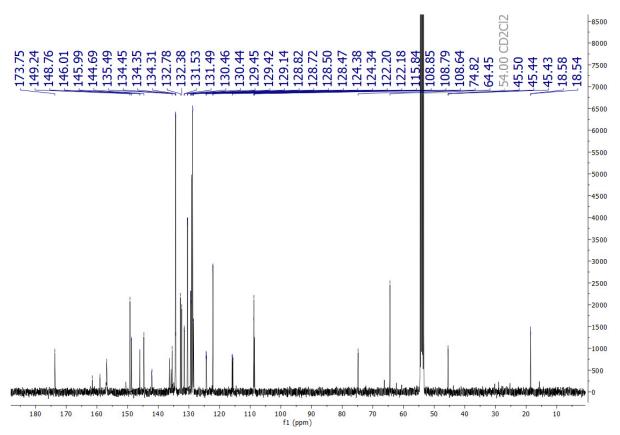


Figure S32. ³¹P NMR spectrum (121 MHz, CD₂Cl₂) of 5

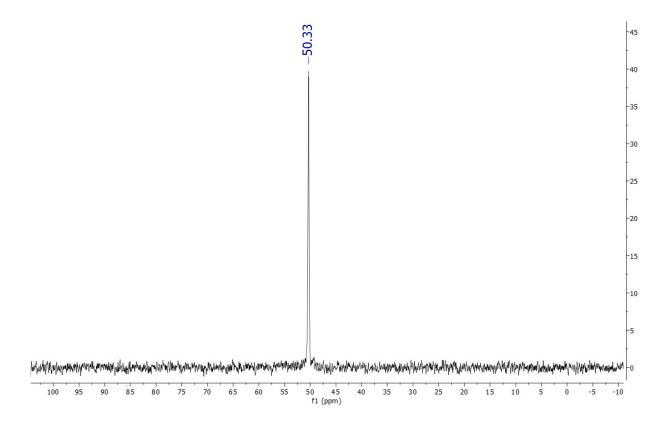


Figure S33. ¹⁹F NMR spectrum (282 MHz, CD₂Cl₂) of 5

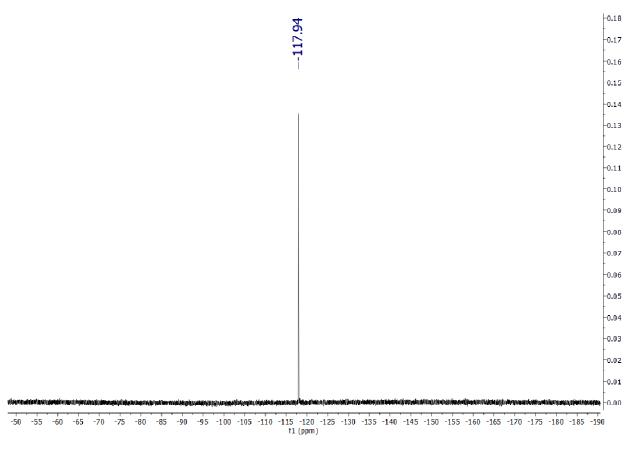


Figure S34. ¹H NMR spectrum (301 MHz, CD₂Cl₂) of 6

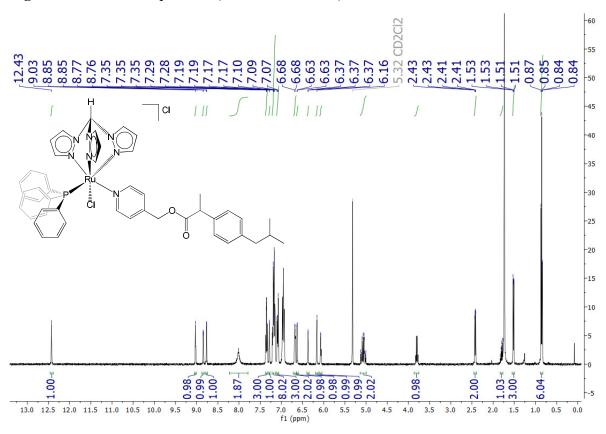


Figure S35. ¹³C NMR spectrum (76 MHz, CD₂Cl₂) of 6

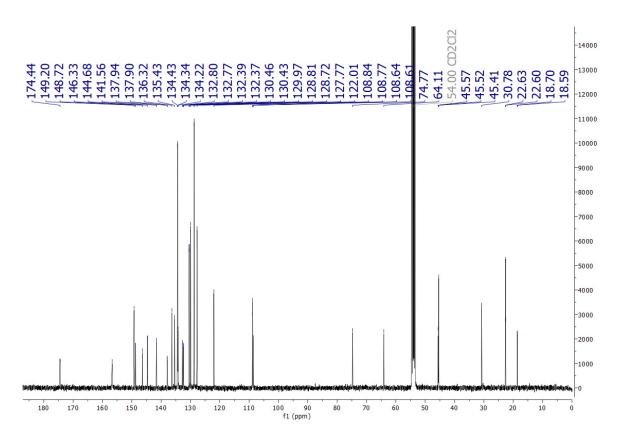


Figure S36. ³¹P NMR spectrum (121 MHz, CD₂Cl₂) of 6

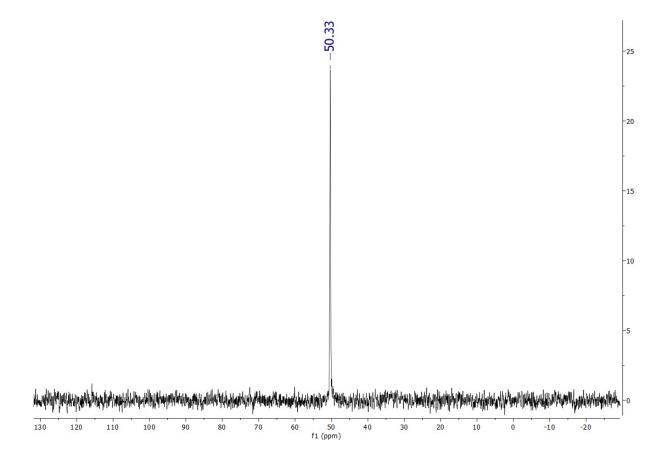


Figure S37. ¹H NMR spectrum (301 MHz, CD₂Cl₂) of 7



Figure S38. ¹³C NMR spectrum (76 MHz, CD₂Cl₂) of 7

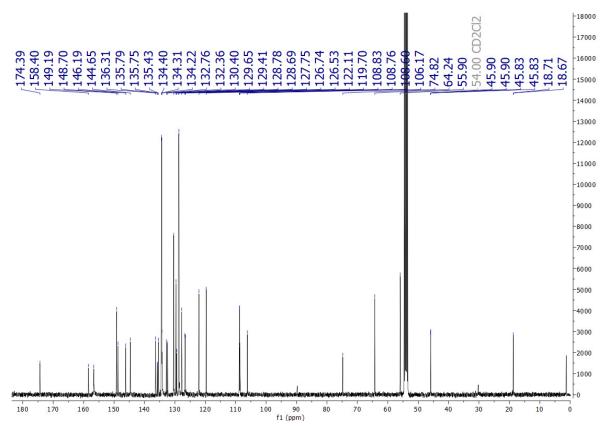
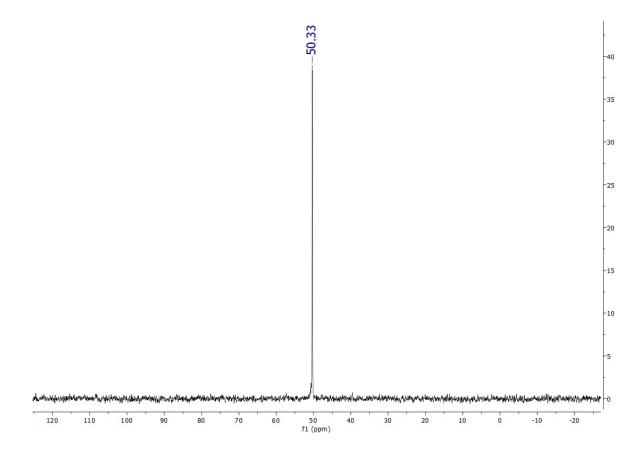
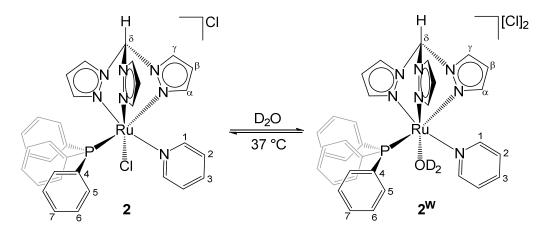



Figure S39. ³¹P NMR spectrum (121 MHz, CD₂Cl₂) of 7

Table S1. Hydrogen bonds for **2**·CH₂Cl₂·2H₂O [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(401)····Cl(2)#1	0.85(2)	2.33(3)	3.151(5)	165(7)
O(1)-H(402)····Cl(2)#2	0.85(2)	2.39(3)	3.212(5)	165(7)
O(2)-H(501)····Cl(2)#3	0.858(15)	2.389(16)	3.241(6)	172(7)
O(2)-H(502)···Cl(2)	0.859(15)	2.385(15)	3.245(6)	179(10)

Symmetry transformations used to generate equivalent atoms: #1 x, y+1, z; #2 -x+1, -y+1, -z+1; #3 -x, -y,-z+1.


Table S2. Hydrogen bonds for 3.3CHCl $_3$ [Å and °].

O(1)-H(1A)····Cl(3) 0.84 2.24		
$O(1)^{-1}(1A) O(0) 0.04 2.24$	4 3.051(3) 163.8	
O(11)-H(11)···Cl(4)#1 0.84 2.3	4 3.108(3) 151.7	

Symmetry transformations used to generate equivalent atoms: #1 x+1, y, z+1.

NMR data of complexes in aqueous solutions

Figure S40. Chloride/water exchange equilibrium for 2 in D₂O solutions.

¹H NMR (D₂O). δ/ppm (**2**) = 8.42, 8.40, (d, 3H, ${}^{3}J_{HH}$ = 2.9 Hz, C^γH); 8.09 (s-br, 2H, C¹H); 7.80 (t, 1H, ${}^{3}J_{HH}$ = 7.4 Hz, C³H); 7.44 (t, 3H, ${}^{3}J_{HH}$ = 7.2 Hz, C⁷H); 7.40, 7.10, 7.02 (d-br, 3H, C^αH); 7.24 (t-br, 6H, ${}^{3}J_{HH}$ = 7.4 Hz, C⁶H); 7.06 (t, 2H, ${}^{3}J_{HH}$ = 6.7 Hz, C²H); 6.97 (t-br, 6H, C⁵H); 6.54, 6.33, 6.18 (t-br, 3H, C^βH). δ/ppm (**2**^w) = 8.49, 8.45, 8.43 (d, 3H, ${}^{3}J_{HH}$ = 2.9 Hz, C^γH); 7.97 (s-br, 2H, C¹H); 7.85 (t, 1H, ${}^{3}J_{HH}$ = 7.4 Hz, C³H); 7.50 (t, 3H, ${}^{3}J_{HH}$ = 7.2 Hz, C⁷H); 7.44, 7.02, 6.99 (d-br, 3H, C^αH); 7.30 (t-br, 6H, C⁶H); 7.17 (t, 2H, ${}^{3}J_{HH}$ = 6.7 Hz, C²H); 6.93 (t-br, 6H, C⁵H); 6.59, 6.37, 6.20 (t-br, 3H, C^βH). C^δH not observed. ${}^{31}P\{{}^{1}H\}$ NMR (D₂O). δ/ppm = 50.2 (**2**^w), 50.0 (**2**). **2**^w/**2** ratio (from ${}^{1}H$ NMR) = 0.1 (t₀), 33.3 (after 48h at 37 °C). In DMEM-d: **2**^w/**2** ratio (from ${}^{1}H$ NMR) = 0 (t₀), 1.3 (after 24h at 37 °C).

Figure S41. ¹H NMR spectrum (301 MHz, D_2O) of $2 + 2^W$ at t_0 (blue) and after 48h (red) at 37 °C.

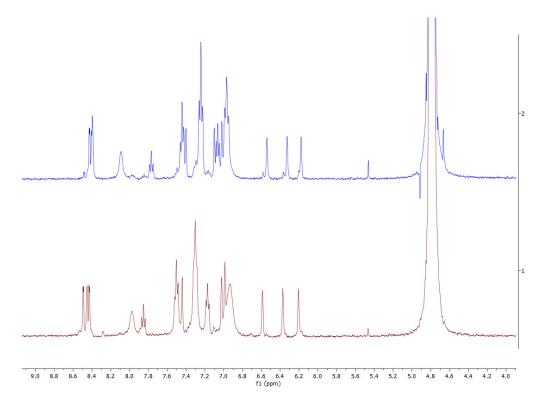
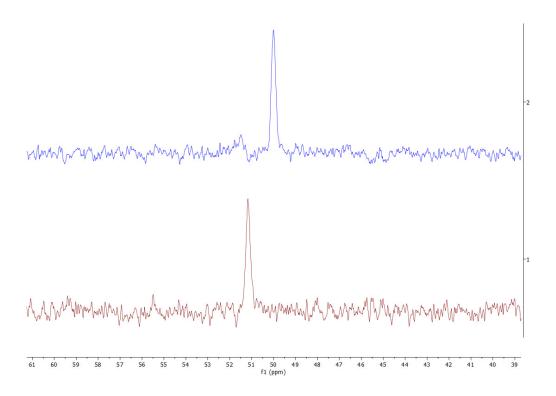
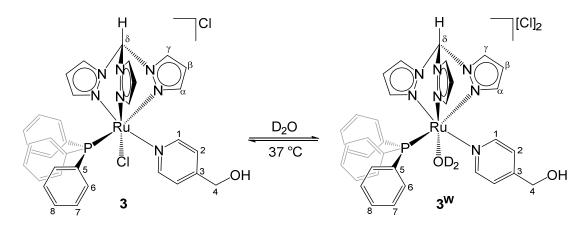
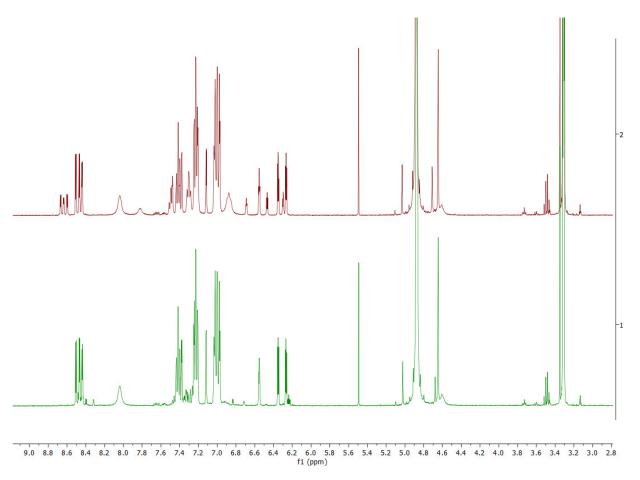


Figure S42. ³¹P NMR spectrum (121 MHz, D_2O) of $2 + 2^W$ at t_0 (blue) and after 48h (red) at 37 °C.


Figure S43. Chloride/water exchange equilibrium for 3 in D₂O solutions.

¹H NMR (D₂O). δ/ppm (**3**) = 8.44, 8.41 (m, 3H, CγH); 8.05 (s-br, 2H, C¹H); 7.48 (t-br, 3H, C⁸H); 7.41 (m, 1H, CαH); 7.28 (m, 6H, C⁷H); 7.13 (d, 2H, C²H); 7.05-7.00 (m, 8H, C⁶H + CαH); 6.56, 6.36, 6.20 (m, 3H, CβH). CδH, CH₂, OH not detected. δ/ppm (**3**^W) = 8.51, 8.46, 8.44 (m, 3H, CγH); 7.93 (s-br, 2H, C¹H); 7.51 (t-br, 3H, CβH); 7.45, 7.05, 6.99 (m, 3H, CαH); 7.31 (t-br, 6H, CγH); 7.14 (d-br 2H, C²H); 6.96 (m, 8H, C⁶H); 6.60, 6.39, 6.21 (m, 3H, CβH). CδH, CH₂, OH not detected. ³¹P{¹H} NMR (D₂O): δ/ppm = 51.1 (**3**^W), 50.0 (**3**). **3**^W/**3** ratio (from ¹H NMR) = 1.4 (t₀), ∞ (after 48h at 37 °C). In DMEM-d: **3**^W/**3** ratio (from ¹H NMR) = 0 (t₀), 1.1 (after 24h at 37 °C).

Experiments on chloride/water exchange. Compound 3 was dissolved in H₂O and maintained at 37 °C for 24h. The solution was then cooled to room temperature, the solvent was evaporated, and the obtained solid was washed with diethyl ether (2 x 3 mL). The isolated yellow powder was dissolved in CD₃OD, then ¹H NMR and ³¹P NMR spectra of the solution were recorded immediately after the preparation of the sample (red), and after 24h at room temperature (green). Both 3 and 3^w were identified in the first recorded spectrum. After 24h, only 3 was detected.

Figure S44. ¹H NMR spectra (401 MHz) of **3/3**^W in CD₃OD solution. Red: from isolated solid following chloride/water exchange in H₂O at 37 °C; green: same sample maintained in CD₃OD solution at room temperature for 24h.

Figure S45. ³¹P NMR spectra (162 MHz) of **3/3**^W in CD₃OD solution. Red: from isolated solid following chloride/water exchange in H₂O at 37 °C; green: same sample maintained in CD₃OD solution at room temperature for 24h.



Figure S46. ¹H NMR spectrum (301 MHz, D_2O) of $3 + 3^W$ at t_0 (blue) and after 48h (red) at 37 °C.

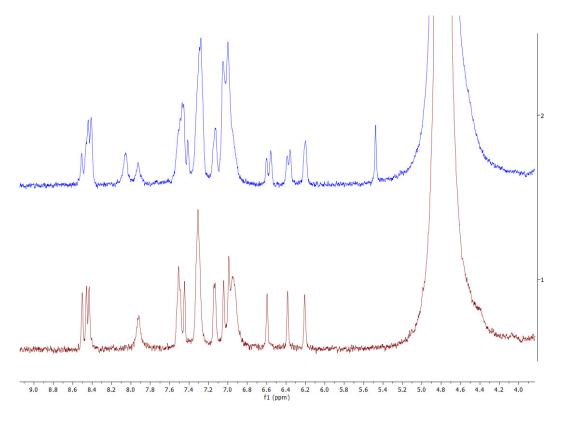


Figure S47. ³¹P NMR spectrum (121 MHz, D₂O) of $3 + 3^{W}$ at t₀ (blue) and after 48h (red) at 37 °C.

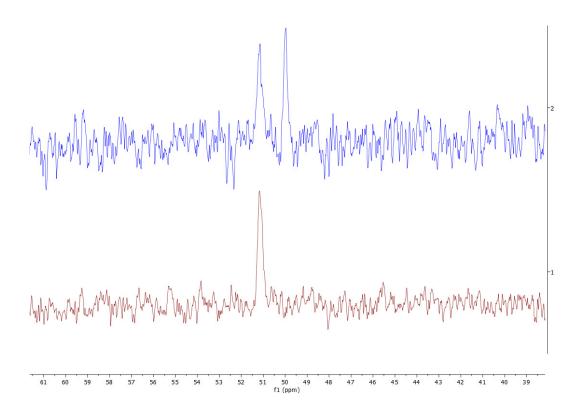
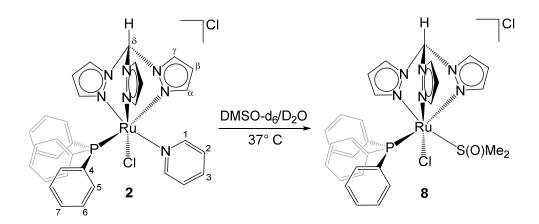
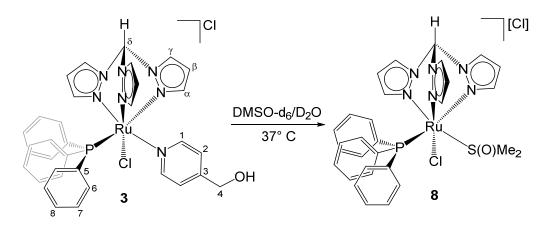




Figure S48. NMR data of 2 in DMSO-d₆/D₂O solution

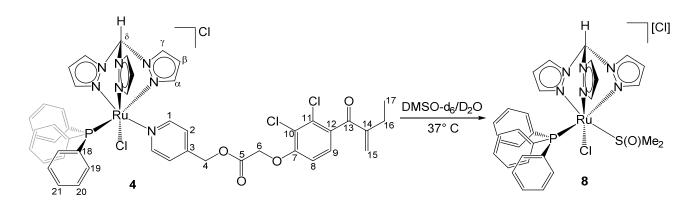

¹H NMR (DMSO-d₆/D₂O, 4:1 v/v ratio, **2**): δ/ppm = 9.80 (s, 1H, C^δH); 8.50, 8.56 (d, 3H, ³ J_{HH} = 2.8 Hz, C^γH); 7.94 (s-br, 2H, C¹H); 7.70 (t, 1H, ³ J_{HH} = 7.5 Hz, C³H); 7.39 (t, 3H, ³ J_{HH} = 7.5 Hz, C⁷H); 7.19 (m, 7H, C⁶H + C^αH); 7.00 (t, 2H, ³ J_{HH} = 6.8 Hz, C²H); 6.97, 6.88 (d, 2H, ³ J_{HH} = 2.1 Hz, C^αH); 6.85 (t-br, 6H, C⁵H); 6.55, 6.37, 6.24 (t-br, 3H, ³ J_{HH} = 2.6 Hz C^βH). ³¹P{¹H} NMR (DMSO-d₆/D₂O, 4:1 v/v ratio, **2**): δ/ppm = 51.3. DMSO-d₆ as reference. **2**/**8** ratio (from ¹H NMR) = ∞ (t₀), 3.0 (after 48h at 37 °C).

Figure S49. NMR data of 3 in DMSO-d₆/D₂O solution

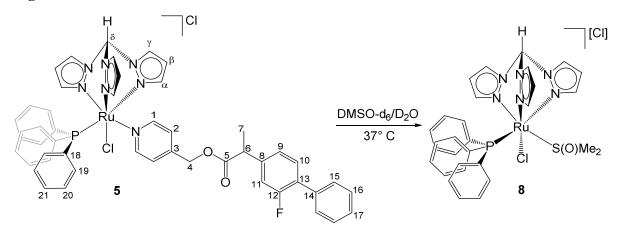

¹H NMR (DMSO-d₆/D₂O, 4:1 v/v ratio, **3**): δ/ppm = 9.78 (s, 1H, C^δH); 8.49, 8.45, (d, 3H, ${}^{3}J_{HH} = 2.8$ Hz, C^γH); 7.86 (s-br, 2H, C¹H); 7.38 (t, 3H, ${}^{3}J_{HH} = 7.5$ Hz, C⁸H); 7.24, 7.00, 6.84 (d, 3H, ${}^{3}J_{HH} = 2.2$ Hz, C^αH); 7.19 (t-br, 6H, ${}^{3}J_{HH} = 7.70$ Hz, C⁷H); 6.93 (d, 2H, ${}^{3}J_{HH} = 6.0$ Hz, C²H); 6.89 (t-br, 6H, C⁶H); 6.55, 6.36, 6.24 (t, 3H, ${}^{3}J_{HH} = 2.5$ Hz, C^βH), 4.49 (s, 2H, ${}^{3}J_{HH} = 4.8$ Hz, C⁴H). OH not observed. ³¹P{¹H} NMR (DMSO-d₆/D₂O, 4:1 v/v ratio, **3**): δ/ppm = 51.2. DMSO-d₆ as reference. **3/8** ratio (from ¹H NMR) = ∞ (t₀), 6.7 (after 48h at 37 °C).

Figure S50. NMR data of 4 in DMSO-d₆/D₂O solution

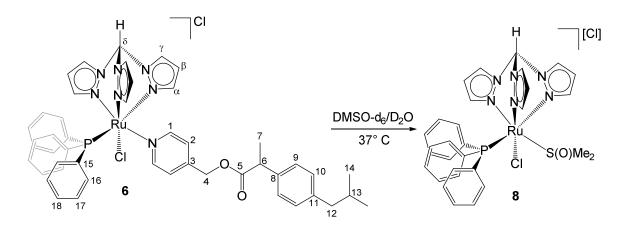

¹H NMR (DMSO-d₆/D₂O, 4:1 v/v ratio, **4**): δ/ppm = 8.49, 8.45 (m, 3H, C^γH); 7.90 (s-br, 2H, C¹H); 7.36 (t, 3H, ${}^{3}J_{HH}$ = 7.5 Hz, C²¹H); 7.24-7.12 (m, 9H, C²⁰H + C⁹H, 2C^αH); 6.99 (d, 3H, ${}^{3}J_{HH}$ = 2.2 Hz, C^αH); 6.90 (d, 2H, ${}^{3}J_{HH}$ = 6.2 Hz, C²H); 6.83 (t, 6H, ${}^{3}J_{HH}$ = 8.3 Hz, C¹⁹H); 6.81 (m, 1H, C⁸H); 6.54, 6.37, 6.22 (m, 3H, C^βH); 6.01, 5.46 (s, 2H, C¹⁵H); 5.19 (s, 2H, C⁴H); 5.11 (s, 2H, C⁶H); 2.30 (q, 2H, ${}^{3}J_{HH}$ = 7.6 Hz, C¹⁶H); 1.01 (t, 3H, ${}^{3}J_{HH}$ = 7.6 Hz, C¹⁷H). C⁸H not observed. ³¹P{¹H} NMR (DMSO-d₆/D₂O, 4:1 v/v ratio, **4**): δ/ppm = 50.3. DMSO-d₆ as reference. **4/8** ratio (from ¹H NMR) = ∞ (t₀), 3.2 (after 48h at 37 °C).

Figure S51. NMR data of 5 in DMSO-d₆/D₂O solution

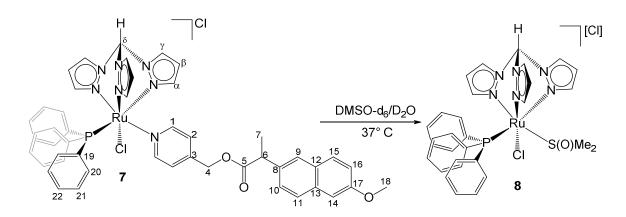

¹H NMR (DMSO-d₆/D₂O, 4:1 v/v ratio, **5**): δ/ppm = 8.47, 8.43, 8.41 (m, 3H, C^γH); 7.80 (s-br, 2H, C¹H); 7.44-7.34 (m, 9H, C¹⁵H + C¹⁷H + C¹⁰H + C¹⁶H+ C⁹H + C¹¹H + C^αH); 7.21 (t-br, 3H, C²¹H); 7.12 (t-br, 6H, C²⁰H); 6.96 (m, 1H, C^αH); 6.78-6.72 (m, 7H, C¹⁹H + C^αH); 6.65 (m, 2H, C²H); 6.51, 6.36 (m, 2H, C^βH); 6.10, 6.04 (m, 1H_{A+B}, C^βH); 5.23-5.00 (m, 2H, C⁴H); 4.00 (m, 1H, C⁶H); 1.45 (d, 3H, ${}^3J_{HH}$ = 7.1 Hz, C⁷H). C^δH not observed. ³¹P{¹H} NMR (DMSO-d₆/D₂O, 4:1 v/v ratio, **5**): δ/ppm = 50.3. DMSO-d₆ as reference. **5/8** ratio (from ¹H NMR) = ∞ (t₀), 2.1 (after 48h at 37 °C).

Figure S52. NMR data of 6 in DMSO-d₆/D₂O and DMSO-d₆ solutions

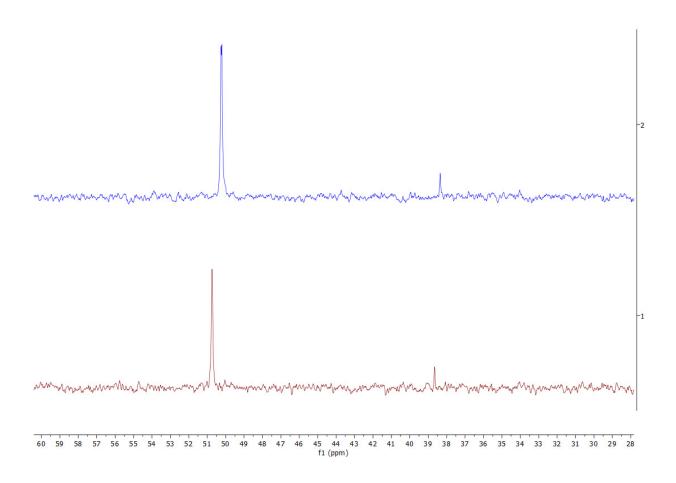
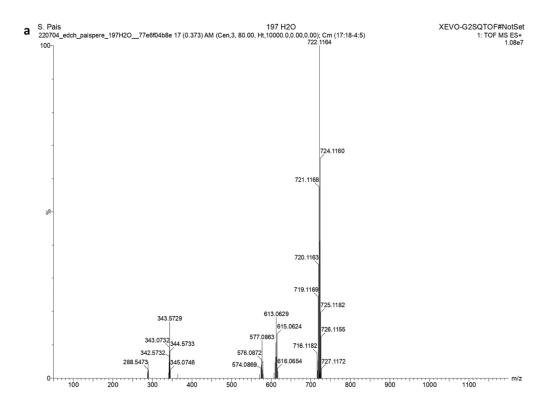

¹H NMR (DMSO-d₆/D₂O, 4:1 v/v ratio): δ/ppm = 8.51, 8.48, 8.45 (m, 3H, C^γH); 7.75 (s-br, 2H, C¹H); 7.37 (t, 3H, ${}^{3}J_{HP}$ = 7.1 Hz, C¹⁸H); 7.20-7.12 (m, 9H, C¹⁷H + C¹⁰H); 7.03-6.94 (m, 3H, C⁹H + C^αH); 6.79 (m, 7H, C¹⁶H + C²H); 6.56, 6.45, 6.43, 6.42, 6.36, 6.28, 6.26 (m, 5H, 3C^βH + 2C^αH); 5.20, 4.94 (m, 2H_{A+B}, C⁴H); 3.85 (m, 1H, C⁶H); 2.29 (m, 2H, C¹²H); 1.57 (m, 1H, C¹³H); 1.38 (m, 3H, C⁷H); 0.72, 0.66 (d, 6H_{A+B}, ${}^{3}J_{HH}$ = 6.6, Hz, C¹⁴H). C^δH not observed. ³¹P {¹H} NMR (DMSO-d₆/D₂O, 4:1 v/v ratio): δ/ppm = 50.2. DMSO-d₆ as reference. **6/8** ratio (from ¹H NMR) = ∞ (t₀), 7.7 (after 48h at 37°C). ¹H NMR (DMSO-d₆, **6**): δ/ppm = 10.27 (s, 1H, C^δH); 8.65, 8.59 (m, 3H, C^γH); 7.83 (s-br, 2H, C¹H); 7.40 (t-br, 3H, C¹⁸H); 7.22 (m, 9H, C¹⁷H + C¹⁰H); 7.07 (m, 2H, C⁹H); 6.98 (m, 1H, C^αH); 6.88 (m, 7H, C¹⁶H + C²H); 6.65, 6.57, 6.44, 6.34, 6.31 (m, 5H, 3C^βH + 2C^αH); 5.22, 5.03 (m, 2H, C⁴H); 3.90 (q-br, 1H, C⁶H); 2.36 (m, 2H, C¹²H); 1.68 (m, 1H, C¹³H); 1.43 (m, 3H, C⁷H); 0.77 (d, 6H_{A+B}, ³J_{HH} = 5.8, Hz, C¹⁴H). ³¹P {¹H} NMR (DMSO-d₆, **6**): δ/ppm = 50.7. **6/8** ratio (from ¹H NMR) = ∞ (t₀), 5.5 (after 48h at 37°C).

Figure S53. NMR data of 7 in DMSO-d₆/D₂O solution

¹H NMR (DMSO-d₆/D₂O, 4:1 v/v ratio, 7): δ/ppm = 8.47, 8.44, 8.43 (m, 3H, C^γH); 7.72-7.66 (m, 5H, C¹H + C¹¹H + C⁹H + C¹⁵H); 7.39-7.30 (m, 4H, C²²H + C¹⁰H); 7.21 (d, 1H, ${}^3J_{HH}$ = 6.7 Hz, C¹⁶H); 7.17 (m, 1H, C^αH); 7.13-7.07 (m, 7H, C²¹H + C¹⁴H); 6.96 (m, 1H, C^αH); 6.76 (t, 6H, ${}^3J_{HP}$ = 8.1 Hz, C²⁰H); 6.68, 6.65 (m, 3H, C²H + C^αH); 6.53, 6.36, 6.22 (m, 3H, C^βH); 5.19-4.96 (m, 2H, C⁴H); 4.06 (m, 1H, C⁶H); 3.80 (s, 3H, C¹⁸H); 1.49 (m, 3H, C⁷H). C^δH not observed. ³¹P{¹H} NMR (DMSO-d₆/D₂O 4:1 v/v ratio, 7): δ/ppm = 50.2. DMSO-d₆ as reference. 7/8 ratio (from ¹H NMR) = ∞ (t₀), 10 (after 48h at 37 °C).

Figure S54. 31 P NMR spectrum (121 MHz) of **3** + **8** in DMSO-d₆/D₂O (4:1 v/v ratio) (blue) and DMSO-d₆ (red) after 24h at 37 °C.


Table S3. Relative amounts of aquo-complexes in aqueous solutions after a variable time at 37 °C (calculated from ¹H NMR spectra).

Compound	Aquo species % in D₂O at t₀	Aquo species % in D ₂ O after 48h	Aquo species % in DMEM- d/DMSO-d₅ at t₀	Aquo species % in DMEM- d/DMSO-d ₆ after 24h
2	13	97	0	77
3	42	93	0	87

Table S4. Relative amounts of residual starting material in aqueous solutions after a variable time at 37 °C (calculated from 1 H NMR spectra, Me₂SO₂ as internal standard); IC₅₀ values on A2780 cancer cell line; Log P_{ow} values (see also Table 2).

Compound	Residual complex % in D ₂ O/DMSO-d ₆ after 48h	Residual complex % in DMEM- d/DMSO-d₀ after 24h	IC ₅₀	Log Pow
2	77	-	8 ± 3	-0.04 ± 0.05
3	87	-	26 ± 10	-0.25 ± 0.04
4	77	89	12 ± 2	0.46 ± 0.02
5	81	90	4.5 ± 0.6	> 2
6	87	85	5 ± 1	> 2
7	86	89	6 ± 1	> 2

Figure S55. HR-ESI-MS spectra of **3** in H₂O. a) Recorded immediately after the preparation of the sample; b) recorded after 3h at RT.

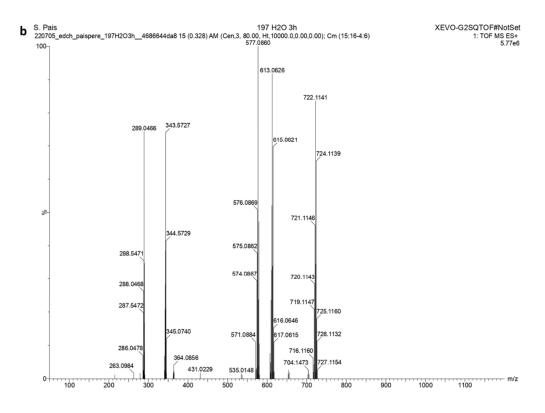
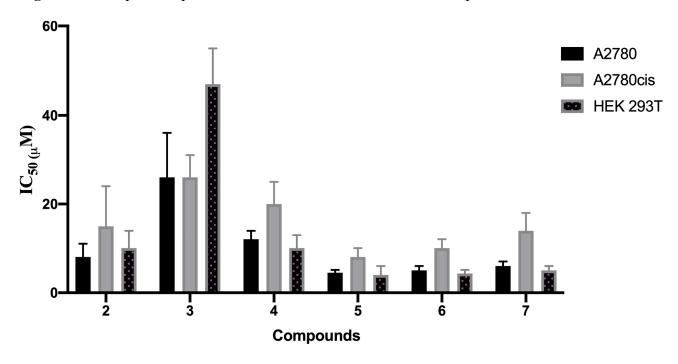



Figure S56. Graphical representation of IC₅₀ values obtained for complexes 2-7 on three cell lines.

