Structural engineering of bimetallic selenides for high-energy density sodium-ion half/full batteries

Jing Zhua, Xiaoyu Chena, Lei Zhangc, Quan Wangc,* Jun Yangb,*, Hongbo Gengc,*

aCollege of Science\&State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Anhui, 230036, China

bSchool of Material Science \& Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China

cSchool of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China

E-mail address: wangquan@cslg.edu.cn; iamjyang@just.edu.cn; hbgeng@gdut.edu.cn
Figure S1. (a) XRD pattern and (b) SEM image of ZIF-8.

Figure S2. Full XPS survey spectrum of ZnSe/MoSe$_2$@NC.
Figure S3. (a) XRD pattern and (b) SEM image of ZnSe.

Figure S4. (a) XRD pattern and SEM image of MoSe$_2$.
Figure S5. BET surface area of ZnSe/MoSe$_2$@NC.

BET Surface Area: 44.09 m2/g

Figure S6. GCD curves of ZnSe: (a) initial 5 cycles at 0.1 A g$^{-1}$; (b) 0.1 to 5 A g$^{-1}$.
Figure S7. GCD curves of MoSe$_2$: (a) initial 5 cycles at 0.1 A g$^{-1}$; (b) 0.1 to 5 A g$^{-1}$.

Figure S8. Capacitive contribution in CV curves under the scan rate of (a) 0.4 mV s$^{-1}$, (b) 0.6 mV s$^{-1}$, (c) 0.8 mV s$^{-1}$ and (d) 1.0 mV s$^{-1}$.