Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Ultrafast charge separation in WC@C/CdS heterojunction enables efficient visible-light-driven hydrogen generation

Lu Chen^{a*}, Feng Chen^a, Shaoming Ying^a, Ruowen Liang^a, Guiyang Yan^a, Xuxu Wang^{b*}, Yuzhou Xia^{a*}

^aDepartment of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China

^b State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, PR China

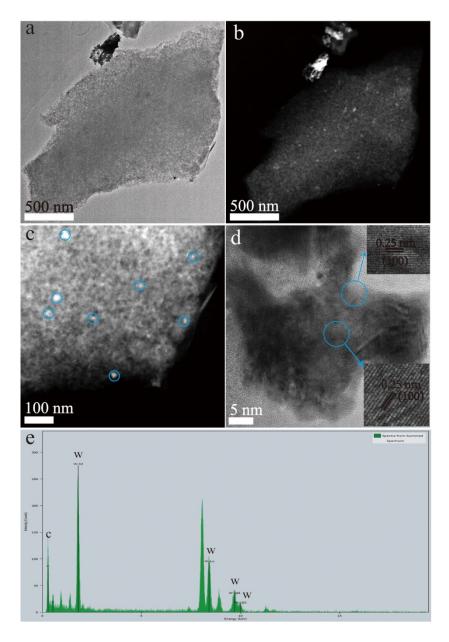


Fig. S1 (a-d) TEM $\,{}^{^{}}_{^{}}$ STEM and HRTEM images of WC@C, (e) EDX image of WC@C sample

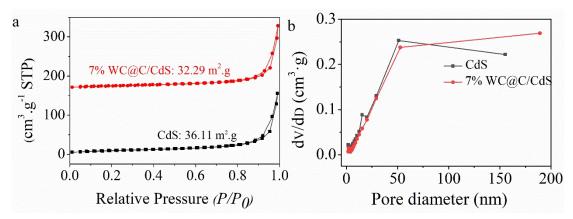


Fig. S2 (a) N_2 adsorption–desorption isotherms, (b) pore size distribution of the CdS and WC@C (7 wt%)/CdS samples.

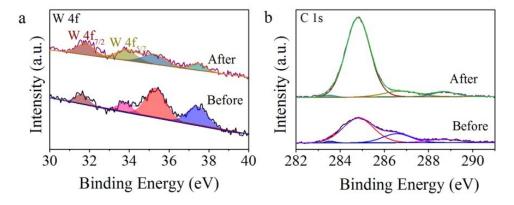


Fig. S3 XPS spectra of (a) W 4f and (b) C 1s of WC@C (7 wt%)/CdS before and after photocatalytic reaction