Synthesis of amphiphilic chiral salen complexes and

their conformational manipulation at the air-water interface

Shigehisa Akine,^{*a,b} Keisuke Nomura,^b Mizuho Takahashi,^b Yoko Sakata,^{a,b} Taizo Mori,^{* c,d} Waka Nakanishi^c and Katsuhiko Ariga^{* c,d}

Supplementary Information

a Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

b Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

c Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

d Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

1. Synthesis of aldehydes A1 and A2.

1.1. Synthesis of carboxylic acid 1.

Figure S1. ¹H NMR spectrum of compound 1 (400 MHz, CDCl₃).

1.2. Synthesis of carboxylic acid 2.

Figure S2. ¹H NMR spectrum of compound 2 (400 MHz, CDCl₃).

1.3. Synthesis of ketone 3.

Figure S3. ¹H NMR spectrum of compound 3 (400 MHz, CDCl₃).

1.4. Synthesis of compound 4.

Figure S4. ¹H NMR spectrum of compound 4 (400 MHz, CDCl₃).

1.5. Synthesis of A1.^[1]

Figure S5. ¹H NMR spectrum of compound A1 (400 MHz, CDCl₃).

[1] (a) A. V. Wiznycia, J. Desper, C. J. Levy, *Chem. Commun.*, 2005, 4693–4695; (b) M. W. van der Meijden,
E. Gelens, N. M. Quirós, J. D. Fuhr, J. E. Gayone, H. Ascolani, K. Wurst, M. Lingenfelder, R. M. Kellogg, *Chem. Eur. J.*, 2016, 22, 1484–1492; (c) N. Harada, A. Saito, N. Koumura, H. Uda, B. de Lange, W. F. Jager,
H. Wynberg, B. L. Feringa, *J. Am. Chem. Soc.*, 1997, 119, 7241–7248.

1.6. Synthesis of 1-hydroxy-2-naphthalaldehyde (A2).^[2]

Figure S6. ¹H NMR spectrum of compound A2 (400 MHz, CDCl₃).

[2] C. J. Lim, J. Y. Choi, B. H. Lee, K.-S. Oh, K. Y. Yi, Chem. Pharm. Bull., 2013, 61, 1239–1247.

- 2. Synthesis of amphiphilic chiral salen ligands $H_2L^{1a,b}$ and $H_2L^{2a,b}$.
- 2.1. ¹H and ¹³C NMR spectra of 2a.

Figure S7. ¹H NMR spectrum of compound 2a (400 MHz, CDCl₃).

Figure S8. ¹³C NMR spectrum of compound 2a (100 MHz, CDCl₃).

2.2. ¹H and ¹³C NMR spectra of 2b.

Figure S9. ¹H NMR spectrum of compound 2b (400 MHz, CDCl₃).

Figure S10. ¹³C NMR spectrum of compound 2b (100 MHz, CDCl₃).

2.3. ¹H and ¹³C NMR spectra of 3a.

Figure S11. ¹H NMR spectrum of compound **3a** (400 MHz, CDCl₃).

Figure S12. ¹³C NMR spectrum of compound 3a (100 MHz, CDCl₃).

2.4. ¹H and ¹³C NMR spectra of 3b.

Figure S13. ¹H NMR spectrum of compound **3b** (400 MHz, CDCl₃).

Figure S14. ¹³C NMR spectrum of compound **3b** (100 MHz, CDCl₃).

2.5. ¹H and ¹³C NMR spectra of H₂L^{1a}.

Figure S15. ¹H NMR spectrum of amphiphilic chiral salen ligand H₂L^{1a} (400 MHz, CDCl₃).

Figure S16. ¹³C NMR spectrum of amphiphilic chiral salen ligand H₂L^{1a} (100 MHz, CDCl₃).

2.6. ¹H and ¹³C NMR spectra of H₂L^{1b}.

Figure S17. ¹H NMR spectrum of amphiphilic chiral salen ligand H₂L^{1b} (400 MHz, CDCl₃).

Figure S18. ¹³C NMR spectrum of amphiphilic chiral salen ligand H₂L^{1b} (100 MHz, CDCl₃).

2.7. ¹H and ¹³C NMR spectra of H₂L^{2a}.

Figure S19. ¹H NMR spectrum of amphiphilic chiral salen ligand H₂L^{2a} (400 MHz, CDCl₃).

Figure S20. ¹³C NMR spectrum of amphiphilic chiral salen ligand H₂L^{2a} (100 MHz, CDCl₃).

2.8. ¹H and ¹³C NMR spectra of H₂L^{2b}.

Figure S21. ¹H NMR spectrum of amphiphilic chiral salen ligand H₂L^{2b} (400 MHz, CDCl₃).

Figure S22. ¹³C NMR spectrum of amphiphilic chiral salen ligand H₂L^{2b} (100 MHz, CDCl₃).

- 3. Synthesis of amphiphilic chiral salen metal complexes.
- 3.1. ¹H NMR spectrum of [L^{1a}Ni].

Figure S23. ¹H NMR spectrum of amphiphilic chiral salen complex [L^{1a}Ni] (400 MHz, CDCl₃).

3.2. ¹H NMR spectrum of [L^{1b}Ni].

Figure S24. ¹H NMR spectrum of amphiphilic chiral salen complex [L^{1b}Ni] (400 MHz, CDCl₃).

3.3. ¹H NMR spectrum of [L^{2a}Ni].

Figure S25. ¹H NMR spectrum of amphiphilic chiral salen complex [L^{2a}Ni] (400 MHz, CDCl₃).

3.4. ¹H NMR spectrum of [L^{2b}Ni].

Figure S26. ¹H NMR spectrum of amphiphilic chiral salen complex [L^{2b}Ni] (400 MHz, CDCl₃).

3.5. ¹H NMR spectrum of [L^{1b}Cu].

Figure S27. ¹H NMR spectrum of amphiphilic chiral salen complex [L^{1b}Cu] (400 MHz, CDCl₃).

3.6. ¹H NMR spectrum of [L^{1b}Co(MeNH₂)₂](OTf).

Figure S28. ¹H NMR spectrum of amphiphilic chiral salen complex [L^{1b}Co(MeNH₂)₂](OTf) (400 MHz, CDCl₃).

3.7. ¹H NMR spectrum of [L^{1b}Zn].

Figure S29. ¹H NMR spectrum of amphiphilic chiral salen complex [L^{1b}Zn] (400 MHz, CDCl₃).

4.1. Estimation of molecular cross-section areas.

The structures of the parent metallosalen compounds and $[L^{1b}Ni]$ were obtained by PM6 calculations. The space-filling model of each molecule was projected onto a plane perpendicular to the approximate C_2 axis of each and the projected area was used as the cross-section of the molecules.

(a) The core structure of $[L^{1a,b}Ni]$ that has no TEG or methoxy groups

cross section: 76 $Å^2$

(b) The core structure of $[L^{2a,b}\mbox{Ni}]$ that has no TEG or methoxy groups

(c) The tetra-TEG derivative [L^{1b}Ni]

Figure S30. Calculated structures of nickel(II) complexes (PM6).

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

0.5

0.4

2.5

2.0

Compressional modulus / mN m⁻¹

Compressibility / m mN⁻¹

40

30

20

10

-10

40

30

20

60

40

Suface pressure / mN m⁻¹

0

1.0 1.5 Molecular Area / nm²

Suface pressure / mN m⁻¹

60

50

40

30

20

10

(c) ₇₀

60

50

8.0

0.5

Compressional modulus / mN m⁻¹ Suface pressure / mN m⁻¹ Compressibility / m mN⁻¹ 0.3 20 40 0.2 10 30 0.1 20 0.0 10 -108.0 20 0.5 1.0 1.5 2.0 2.5 40 60 ō Molecular Area / nm² Suface pressure / mN m⁻¹ (d)₇₀ 20 Compressional modulus / mN m⁻¹ 0.4 15 Suface pressure / mN m⁻¹ 00 00 00 00 00 Compressibility / m mN⁻¹ 0.3 10 0.2 0.1 0.0 10 ٥<u>ـ</u>0 5 1.0 1.5 Molecular Area / nm² 20 60 0.5 40 2.0 ō Suface pressure / mN m⁻¹

Figure S31. C_s -A isotherms of monolayers and the corresponding π -A isotherms (shown as black lines). C_s^{-1} - π curves for the monolayers. (a) [L^{1a}Ni], (b) [L^{1b}Ni], (c) [L^{2a}Ni], and (d) [L^{2b}Ni].

4.3. UV-vis absorption spectra of LB films of amphiphilic chiral salen nickel(II) complex [L^{1b}Ni].

Figure S32. UV-vis absorption spectra of LB films of [L^{1b}Ni] after normalization.