Electronic Supplementary Information (ESI)

for

Structural insight to halide-coordinated $[Fe_4S_4X_nY_{4-n}]^{2-}$ clusters (X, Y = Cl, Br, I) from XRD and Mössbauer spectroscopy

Andreas O. Schüren,^{a,b} Benjamin M. Ridgway,^b Florencia Di Salvo,^{b,c} Luca M. Carrella,^d Verena K. Gramm,^aElisa Metzger (née Rothe),^e Fabio Doctorovich,^{b,c} Eva Rentschler,^d Volker Schünemann,^e Uwe Ruschewitz,^{*,a} Axel Klein^{*,a}

^a University zu Köln, Fakultät für Mathematik und Naturwissenschaften, Department für Chemie, Institut für Anorganische Chemie

^b INQUIMAE-CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Piso 3, C1428EGA, Buenos Aires Argentina.

^c Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Intendente Güiraldes 2160, Pabellón 2, Piso 3, C1428EGA, Buenos Aires, Argentina.

^d Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, 55128 Mainz, Germany.

^e Technische Universität Kaiserslautern, Fachbereich Physik, AG Biophysik und medizinische Physik, 67663 Kaiserslautern, Germany.

Contents:

A - Experimental Section

B - Supporting Figures

Fig. S1 Resonance Raman spectra of solid samples of $(BTMA)_2[Fe_4S_4Br_4]$ (1), $(BTMA)_2[Fe_4S_4Br_2I_2]$ (4), $(BTMA)_2[Fe_4S_4Br_2CI_2]$ (2), and $(BTMA)_2[Fe_4S_4CI_2I_2]$ (3) at 458 or 514 nm irradiation.

Fig. S2 Crystal structure of (BTMA)₃[Fe₆S₆Cl₆] (6) and view on the prismane cluster trianions [Fe₆S₆Cl₆]³⁻.

 $Fig. \ S3 \ A symmetric unit for the crystal structure of (BTMA)_3 [Fe_6S_6Cl_6] \ (6) and completed unit cell.$

Fig. S4 Intermolecular interactions in $(BTMA)_3[Fe_6S_6Cl_6]$ (6).

Fig. S5 Orientation of the mixed-halide compounds (BTMA)₂[Fe₄S₄X₂Y₂] viewed along the crystallographic *a* axis and overlaid cores of the mixed-halide clusters.

Fig. S6 Split occupancies and numbering for the $[Fe_4S_4Br_4]^{2-}$ (A) and the mixed-halide clusters $[Fe_4S_4X_2Y_2]^{2-}$ (B, C, and D) with selected S-S and X-X/Y distances (from single crystal XRD of $(BTMA)_2[Fe_4S_4X_{4-x}Y_x]$ (X, Y = Cl, Br, I; x = 0 or 2) at 173 K.

Fig. S7 Powder X-ray diffractogram of (BTMA)₃[Fe₆S₆Cl₆] (6).

Fig. S8 ⁵⁷Fe Mössbauer spectra of (BTMA)₂[Fe₄S₄Br₄] (1) and (BTMA)₂[Fe₄S₄I₄] (5) at 77 K.

 $Fig. \ S9 \ {}^{57}Fe \ M\"ossbauer \ spectra \ of \ (BTMA)_2[Fe_4S_4Br_2Cl_2] \ (2) \ and \ (BTMA)_2[Fe_4S_4Br_2L_2] \ (4) \ at \ 77 \ K.$

Fig. S10 ⁵⁷Fe Mössbauer spectrum of (BTMA)₃[Fe₆S₆Cl₆] (6) at 77 K.

Fig. S11 57 Fe Mössbauer spectrum of (BTMA)₂[Fe₄S₄Cl₂I₂] (3) at 77 K analysed with two "crossed" doublets and a relative area of 1:1.

Fig. S12 Temperature dependence of molar magnetic susceptibility depicted as $\chi_M T$ vs. *T* for (BTMA)₂[Fe₄S₄Br₄] (1), (BTMA)₂[Fe₄S₄Br₂Cl₂] (2), (BTMA)₂[Fe₄S₄Cl₂L₂] (3), and (BTMA)₂[Fe₄S₄Br₂L₂] (4).

Fig. S13 Temperature dependence of molar magnetic susceptibility depicted as $\chi_M T$ vs. *T* for (BTMA)₂[Fe₄S₄Br₄] (1), (BTMA)₂[Fe₄S₄Br₂Cl₂] (2), (BTMA)₂[Fe₄S₄Cl₂L₂] (3), and (BTMA)₂[Fe₄S₄Br₂L₂] (4).

Fig. S14 Temperature dependence of molar magnetic susceptibility depicted as $\chi_M T$ vs. *T* for (BTMA)₂[Fe₄S₄Br₄] (1), (BTMA)₂[Fe₄S₄Br₂Cl₂] (2), (BTMA)₂[Fe₄S₄Cl₂L₂] (3), and (BTMA)₂[Fe₄S₄Br₂L₂] (4).

C - Supporting Tables

Table S1. Selected crystallographic and refinement data for (BTMA)2[Fe4S4Br4].

 $\label{eq:constraint} \textbf{Table S2} \ \text{Essential metrics of } [Fe_4S_4Br_4]^{2\text{-}}.$

Table S3. Selected crystallographic and refinement data for (BTMA)₂[Fe₄S₄X₂Y₂] with X,Y = Cl, Br, I.

Table S4. Selected crystallographic and refinement data for (BTMA)₂[Fe₄S₄Br₂I₂].

Table S5 Selected metrics of $(BTMA)_2[Fe_4S_4X_4]$ and $(BTMA)_2[Fe_4S_4X_2Y_2]$ with X, Y = Cl, Br, I. Part I. **Table S6** Selected metrics of $(BTMA)_2[Fe_4S_4X_4]$ and $(BTMA)_2[Fe_4S_4X_2Y_2]$ with X, Y = Cl, Br, I, Part II. **Table S7** Metrical data showing the Fe₄ tetrahedron distortion and compression in $(Q)_2[Fe_4S_4X_4]$ and $(Q)_2[Fe_4S_4X_2Y_2]$ structures with X, Y = Cl, Br, I and Q = Ph_4P⁺, Et_4N⁺, and *n*Pr_4N⁺. **Table S8** Selected crystallographic and refinement data for $(BTMA)_3[Fe_6S_6Cl_6]$ (6).

Table S9 Essential metrics in [Fe₆S₆Cl₆]³⁻.

Table S10 Freely refined halide ratios in (BTMA)2[Fe4S4X2Y2] structures.

A - Experimental Section

Materials and procedures

The compounds were prepared and crystallised following already published procedures ¹ by diffusion techniques from layered MeCN/diethyl ether mixtures at –18 °C over a period of 3 weeks. After filtration, washing with diethyl ether and drying under anaerobic and dry atmosphere (argon) using *Schlenck* techniques the opaque black rod shape crystals were stored and prepared for analytics in an argon-filled glove box at room temperature. A sample of (BTMA)₂[Fe₄S₄I₄] (**5**) for Mössbauer studies was taken from the batches of the previous study.¹ The UV-vis-NIR absorption data for the compounds in MeCN solution was previously reported.¹

(BTMA)₂**[Fe**₄**S**₄**Br**₄**]** (1). Black needle-shaped crystals. **Yield:** 4.20 g (87%). **ESI-MS(-)** (acetone): m/z (%) =335.6479 (100) [Fe₄S₄Br₄]^{2–}, 821.4260 (60) [BTMA+Fe₄S₄Br₄][–], 590.3813 (4) [Fe₄S₄Br₃][–], 622.3710 (4) [Fe₄S₄Br₃O₂][–], 671.2970 (4) [Fe₄S₄Br₄][–], 694.2866 (2) [Na+Fe₄S₄Br₄][–], 678.3131 (7) [Li+Fe₄S₄Br₄][–]. **Elemental analysis** for C₂₀H₃₂Br₄Fe₄N₂S₄ (971.37): calcd. C 24.72, H 3.32, N 2.88, S 13.20; found C 24.70, H 3.33, N 2.88, S 13.21. **FIR** (PE pellet): ν_{max} (cm⁻¹): 610 (w), 515 (w), 453 (m), 418 (w), 377 (s), 307 (s), 269 (w), 260 (sh), 227 (m), 214 (w).

 $(BTMA)_{2}[Fe4S_{4}Br_{2}Cl_{2}] (2) Black needle-shaped crystals. Yield: 7.81 g (89%). ESI-MS(-) (acetone): m/z (%) = 335.6492 (44) [Fe4S_{4}Br_{4}]^{2-}, 313.6743 (90) [Fe4S_{4}Br_{3}Cl]^{2-}, 291.6992 (100) [Fe4S_{4}Br_{2}Cl_{2}]^{2-}, 268.7258 (19) [Fe4S_{4}BrCl_{3}]^{2-}, 245.7521 (43) [Fe4S_{4}Cl_{4}]^{2-}, 821.4248 (11) [BTMA+Fe4S_{4}Br_{4}]^{-}, 777.4755 (36) [BTMA+Fe4S_{4}Br_{3}Cl]^{-}, 731.5284 (47) [BTMA+Fe4S_{4}Br_{2}Cl_{2}]^{-}, 687.5786 (27) [BTMA+Fe4S_{4}BrCl_{3}]^{-}, 643.6280 (6) [BTMA+Fe4S_{4}Cl_{4}]^{-}, 590.3805 (2) [Fe4S_{4}Br_{3}]^{-}, 546.4314 (13) [Fe4S_{4}Br_{2}Cl_{1}^{-}, 502.4818 (24) [Fe4S_{4}BrCl_{2}]^{-}, 456.5348 (11) [Fe4S_{4}Cl_{3}]^{-}, 622.3699 (1) [Fe4S_{4}Br_{3}O_{2}]^{-}, 578.4210 (10) [Fe4S_{4}Br_{2}ClO_{2}]^{-}, 534.4714 (17) [Fe4S_{4}BrCl_{2}O_{2}]^{-}, 488.5246 (8) [Fe4S_{4}Cl_{3}O_{2}]^{-} Elemental analysis for C_{20}H_{32}Cl_{2}Br_{2}Fe_{4}N_{2}S_{4} (882.47): calcd. C 27.21, H 3.17, N 3.65, S 14.53; found C 27.20, H 3.18, N 3.64, S 14.55. FIR (PE pellet): v_{max} (cm^{-1}): 609 (w), 515 (w), 453 (m), 419 (w), 378 (m), 356 (s), 347 (sh), 306 (s), 270 (m), 260 (sh), 233 (m).$

(BTMA)₂**[Fe**₄**S**₄**Cl**₂**I**₂**] (3)** Black needle-shaped crystals. **Yield:** 7.48 g (77%). **ESI-MS(-)** (acetone): m/z (%) = 429.6239 (42) [Fe₄S₄I₄]²⁻, 383.6560 (100) [Fe₄S₄ClI₃]²⁻, 337.6883 (46) [Fe₄S₄Cl₂I₂]²⁻, 292.7184 (3) [Fe₄S₄Cl₃I]²⁻, 245.7523 (19) [Fe₄S₄Cl₄]²⁻, 1009.3728 (2) [BTMA+Fe₄S₄I₄]⁻, 917.4389 (9) [BTMA+Fe₄S₄ClI₃]⁻, 825.5033 (15) [BTMA+Fe₄S₄Cl₂I₂]⁻, 733.5675 (9) [BTMA+Fe₄S₄Cl₃I]⁻, 643.6284 (3) [BTMA+Fe₄S₄Cl₄]⁻, 732.3404 (<1) [Fe₄S₄I₃]⁻, 640.4057 (7) [Fe₄S₄ClI₂]⁻, 548.4708 (21) [Fe₄S₄Cl₂I]⁻, 456.5353 (16) [Fe₄S₄Cl₃]⁻, 764.3302 (<1) [Fe₄S₄I₃O₂]⁻, 672.3954 (5) [Fe₄S₄ClI₂O₂]⁻, 580.4606 (17) [Fe₄S₄Cl₂O₂]⁻, 488.5251 (12) [Fe₄S₄Cl₃O₂]⁻. **Elemental analysis** for C₂₀H₃₂Cl₂I₂Fe₄N₂S₄ (976.47): calcd. C 24.59, H 3.30, N 2.87, S 13.13; found C 24.57, H 3.31, N 2.88, S 13.15. **FIR** (PE pellet): v_{max} (cm⁻¹): 609 (w), 513 (w), 452 (m), 416 (w), 378 (s), 356 (s), 346 (sh), 290 (s), 272 (m), 260 (m), 228 (m), 212 (m).

 $(BTMA)_{2}[Fe_{4}S_{4}Br_{2}I_{2}] (4) Black needle-shaped crystals. Yield: 9.03 g (85%). ESI-MS(-) (acetone): m/z$ $(%) = 429.6232 (28) [Fe_{4}S_{4}I_{4}]^{2-}, 405.6303 (72) [Fe_{4}S_{4}Br_{1}]^{2-}, 382.6360 (96) [Fe_{4}S_{4}Br_{2}I_{2}]^{2-}, 359.6419 (42)$ $[Fe_{4}S_{4}Br_{3}I]^{2-}, 335.6488 (14) [Fe_{4}S_{4}Br_{4}]^{2-}, 1009.3717 (2) [BTMA+Fe_{4}S_{4}I_{4}]^{-}, 961.3868 (7) [BTMA+Fe_{4}S_{4}Br_{1}I_{3}]^{-}, 915.3993 (14) [BTMA+Fe_{4}S_{4}Br_{2}I_{2}]^{-}, 867.4132 (9) [BTMA+Fe_{4}S_{4}Br_{3}I]^{-}, 821.4241 (2) [BTMA+Fe_{4}S_{4}Br_{4}]^{-}, 732.3395 (<1) [Fe_{4}S_{4}I_{3}]^{-}, 684.3543 (2) [Fe_{4}S_{4}Br_{1}I_{2}]^{-}, 638.3662 (5) [Fe_{4}S_{4}Br_{2}I_{2}]^{-}, 590.3805 (6) [Fe_{4}S_{4}Br_{3}]^{-}, 764.3295 (<1) [Fe_{4}S_{4}I_{3}O_{2}]^{-}, 716.3439 (1) [Fe_{4}S_{4}Br_{1}O_{2}]^{-}, 670.3558 (4) [Fe_{4}S_{4}Br_{2}IO_{2}]^{-}, 622.3701 (4)$ $[Fe_{4}S_{4}Br_{3}O_{2}]^{-}. Elemental analysis for C_{20}H_{32}Br_{2}I_{2}Fe_{4}N_{2}S_{4} (1065.37): calcd. C 22.54, H 3.03, N 2.63, S \\$ 12.03; found C 22.55, H 3.01, N 2.61, S 12.01. **FIR** (PE pellet): v_{max} (cm⁻¹): 609 (w), 514 (w), 452 (m), 416 (w), 376 (s), 306 (s), 291 (s), 272 (m), 260 (m), 232 (m), 210 (m).

(**BTMA**)₃[**Fe**₆**S**₆**Cl**₆] (6) Black column-shaped crystals. Yield: 7.18 g (91%). **Elemental analysis** for C₃₀H₄₈Cl₆Fe₆N₃S₆ (1190.35): calcd. C 30.26, H 4.06, N 3.53, S 16.16; found C 30.30, H 4.05, N 3.51, S 16.17. **FIR** (PE pellet): v_{max} (cm⁻¹): 612 (w), 513 (w), 454 (m), 419 (w), 381 (sh), 351 (s), 300 (m), 283 (sh), 250 (sh), 200 (w), 214 (w).

B - Supporting Figures

Fig. S1 Resonance Raman spectra of solid samples of (BTMA)₂[Fe₄S₄Br₄] (**1**) (A), (BTMA)₂[Fe₄S₄Br₂I₂] (**4**) (B), (BTMA)₂[Fe₄S₄Br₂Cl₂] (**2**) (C), and (BTMA)₂[Fe₄S₄Cl₂I₂] (**3**) (D) at 458 or 514 nm irradiation.

Fig. S2 Crystal structure of $(BTMA)_3[Fe_6S_6Cl_6]$ (6) (left; viewed along crystallographic *b* axis) and views on the prismane cluster trianions $[Fe_6S_6Cl_6]^{3-}$ (right).

Fig. S3 Asymmetric unit for the crystal structure of (BTMA)₃[Fe₆S₆Cl₆] (**6**) (**A**) and completed unit cell (**B**).

Fig. S4 Intermolecular interactions in $(BTMA)_3[Fe_6S_6Cl_6]$ (6). Only H atoms involved in the short contacts are shown; distances are in Å.

Fig. S5 Orientation of the mixed-halide compounds (BTMA)₂[Fe₄S₄X₂Y₂] (**A**: Cl₂Br₂, **B**: Br₂I₂, **C**: Cl₂I₂), viewed along the crystallographic *a* axis and overlaid cores of the mixed-halide clusters (**D**, **E**, and **F**).

Fig. S6 Split occupancies and numbering for the $[Fe_4S_4Br_4]^{2-}$ (A) and the mixed-halide clusters $[Fe_4S_4X_2Y_2]^{2-}$ (B, C, and D) with selected Fe...Fe distances (from single crystal XRD of $(BTMA)_2[Fe_4S_4X_4 \times Y_x]$ (X, Y = Cl, Br, I; x = 0 or 2) at 173 K.

Fig. S7 Powder X-ray diffractogram of $(BTMA)_3[Fe_6S_6Cl_6]$ (6) recorded at 298 K (Beamline P02.1, DESY, Hamburg/Germany; $\lambda = 0.207203$ Å). For comparison, the simulated PXRD patterns of $(BTMA)_3[Fe_6S_6Cl_6]$ (6) and $(BTMA)_2[Fe_4S_4Br_4]$ (1) calculated from the known single crystal XRD data are shown.

Fig. S8 ⁵⁷Fe Mössbauer spectra of (BTMA)₂[Fe₄S₄Br₄] (**1**) (A) and (BTMA)₂[Fe₄S₄I₄] (**5**) (B) at 77 K (dots: collected data, red line curve fits with parameters given in Table 3 in the manuscript or in the text). The minor species Y in the B plot with δ = 0.42 mm·s⁻¹, ΔE_Q = 0 mms⁻¹ and Γ = 0.61 mm·s⁻¹ accounts to 11% and has parameters typical of (NEt₄)[FeI₄].²

Fig. S9 ⁵⁷Fe Mössbauer spectra of (BTMA)₂[Fe₄S₄Br₂Cl₂] (**2**) (A) and (BTMA)₂[Fe₄S₄Br₂I₂] (**4**) (B) at 77 K (dots: collected data, red line curve fit with parameters given in Table 3).

Fig. S10 ⁵⁷Fe Mössbauer spectrum of (BTMA)₃[Fe₆S₆Cl₆] (**6**) at 77 K (dots: collected data, red line curve fit with parameters given in Table 3). The minor species B with δ = 1.40 mm·s⁻¹, ΔE_Q = 1.01 mms⁻¹, and Γ = 0.40 mm·s⁻¹ accounts to 4% and has parameters typical of FeCl_{2.3}

Fig. S11 ⁵⁷Fe Mössbauer spectrum of (BTMA)₂[Fe₄S₄Cl₂I₂] (**3**) at 77 K analysed with two "crossed" doublets and a relative area of 1:1 (dots: collected data, black line curve A: fit with δ_A = 0.54 mm s⁻¹, ΔE_{QA} = 1.03 mm s⁻¹, Γ_A = 0.40 mm s⁻¹ and B: δ_B = 0.37 mm s⁻¹, ΔE_{QB} = 0.98 mm s⁻¹, Γ_B = 0.45 mm s⁻¹.

Fig. S12 Temperature dependence of molar magnetic susceptibility depicted as $\chi_M T$ vs. *T* for homoleptic cluster (BTMA)₂[Fe₄S₄Br₄] (**1**) (black) and heteroleptic clusters (BTMA)₂[Fe₄S₄Br₂Cl₂] (**2**) (green), (BTMA)₂[Fe₄S₄Cl₂I₂] (**3**) (red), and (BTMA)₂[Fe₄S₄Br₂I₂] (**4**) (blue). The solid lines correspond to the best fit obtained with the HDvV-Hamiltionian with the given parameter *J*₁, *J*₂, and *g*. Additional a TIP was included for (BTMA)₂[Fe₄S₄Br₂Cl₂] (**2**) (green) and (BTMA)₂[Fe₄S₄Cl₂I₂] (**3**) (red).

Fig. S13 Temperature dependence of molar magnetic susceptibility depicted as $\chi_M T$ vs. *T* for homoleptic cluster (BTMA)₂[Fe₄S₄Br₄] (1) (black) and heteroleptic clusters (BTMA)₂[Fe₄S₄Br₂Cl₂] (2) (green), (BTMA)₂[Fe₄S₄Cl₂I₂] (3) (red), and (BTMA)₂[Fe₄S₄Br₂I₂] (4) (blue). The solid lines correspond to the best fit obtained with the HDvV-Hamiltionian with the given parameter *J*₁, *J*₂, and fixed *g* = 2.00.

Fig. S14 Temperature dependence of molar magnetic susceptibility depicted as $\chi_M T$ vs. *T* for homoleptic cluster (BTMA)₂[Fe₄S₄Br₄] (**1**) (black) and heteroleptic clusters (BTMA)₂[Fe₄S₄Br₂Cl₂] (**2**) (green), (BTMA)₂[Fe₄S₄Cl₂I₂] (**3**) (red), and (BTMA)₂[Fe₄S₄Br₂I₂] (**4**) (blue). The solid lines correspond to the best fit obtained with the Bleany-Bowers equation derived from HDE with the given parameter *J*, *B*, and g.

Bleany-Bowers equation derived from the Heisenberg double-exchange (HDE)¹⁰:

$$E_{\pm} = -JS(S+1) \pm B(S+\frac{1}{2}) \tag{1}$$

$$\chi_{M}T = \frac{N_{A}g^{2}\mu_{B}^{2}}{4k} \cdot \frac{e^{4y}(e^{2y}+1)+10e^{3x}(e^{7y}+e^{3y})+35e^{8x}(e^{8y}+e^{2y})+84e^{15x}(e^{9y}+e^{y})+165e^{24x}(e^{10y}+1)}{e^{4y}(e^{2y}+1)+2e^{3x}(e^{7y}+e^{3y})+3e^{8x}(e^{8y}+e^{2y})+4e^{15x}(e^{9y}+e^{y})+5e^{24x}(e^{10y}+1)}$$
(2)

$$x = -\frac{J}{kT}; y = -\frac{B}{kT}$$

C - Supporting Tables

	(BTMA)2[Fe4S4Br4]
T/K	293(2)
CCDC	2048374
empirical formula	$C_{20}H_{32}Br_4Fe_4N_2S_4$
formula weight/g·mol ⁻¹	971.75
crystal system / space group	monoclinic / Cc
a/Å	12.9908(13)
b/Å	14.8857(13)
c/Å	17.3507(18)
β/°	95.318(8)
volume/Å ³ / Z	3340.8(6) / 4

Table S1. Selected crystallographic and refinement data for (BTMA)₂[Fe₄S₄Br₄] (1).

Qcalcg/cm ³	1.932
µ/mm⁻¹	6.750
F(000)	1896.0
crystal size/mm ³	$1.0 \times 0.2 \times 0.2$
radiation	MoKα (λ = 0.71073 Å)
2Θ range for data collection/°	4.172 to 54.644
index ranges	$-16 \le h \le 16, -19 \le k \le 19, -22 \le l \le 22$
reflections collected	20221
independent reflections	7052 [Rint = 0.0426, Rsigma = 0.0329]
data/restraints/parameters	7052/2/308
goodness-of-fit on F ²	1.087
final R indexes [I>= 2σ (I)]	$R_1 = 0.0510$, $wR_2 = 0.1306$
final R indexes [all data]	$R_1 = 0.0682, wR_2 = 0.1494$
largest diff. peak/hole / e Å⁻³	0.59/-0.61
Flack parameter	-0.005(18)

Table S2 Essential metrics of [Fe₄S₄Br₄]²⁻.^a

distances	[Å]	distances	[Å]	distances	[Å]
Fe1–S2	2.292(4)	Fe3–S4	2.263(4)	Fe1…Fe2	2.776(2)
Fe1–S3	2.269(4)	Fe4–S1	2.303(4)	Fe1…Fe3	2.772(2)
Fe1–S4	2.305(4)	Fe4–S2	2.262(4)	Fe1…Fe4	2.769(2)
Fe2–S1	2.249(4)	Fe4–S3	2.297(3)	Fe2…Fe3	2.759(3)
Fe2–S2	2.299(4)	Fe1–Br1	2.354(2)	Fe2…Fe4	2.748(2)
Fe2–S4	2.300(4)	Fe2–Br2	2.332(2)	Fe3…Fe4	2.717(2)
Fe3–S1	2.292(3)	Fe3–Br3	2.332(2)		
Fe3–S3	2.300(4)	Fe4–Br4	2.340(2)		
angles	[°]	angles	[°]	angles	[°]
Br3–Fe3–Fe1	148.63(9)	Br2–Fe2–Fe3	147.03(10)	Br1–Fe1–Fe4	150.38(10)
Br3–Fe3–Fe2	145.71(10)	Br2–Fe2–Fe4	145.79(11)	Br4–Fe4–Fe1	151.03(10)
Br3–Fe3–Fe4	138.53(10)	Br1–Fe1–Fe2	140.06(10)	Br4–Fe4–Fe2	143.34(9)
Br2–Fe2–Fe1	141.45(10)	Br1–Fe1–Fe3	144.61(9)	Br4–Fe4–Fe3	138.03(10)
S1-Fe4-Br4	108.30(11)	S3–Fe3–Br3	113.41(12)	S4–Fe2–Br2	114.30(13)
S2–Fe4–Br4	120.03(12)	S4–Fe3–Br3	119.66(12)	S2–Fe1–Br1	115.70(12)
S3–Fe4–Br4	115.17(12)	S1–Fe2–Br2	116.39(12)	S3–Fe1–Br1	118.87(12)
S1–Fe3–Br3	110.25(11)	S2–Fe2–Br2	113.43(13)	S4–Fe1–Br1	110.62(12)
Fe2–S1–Fe3	74.83(11)	Fe1–S2–Fe4	75.11(12)	Fe3–S3–Fe4	72.46(11)
Fe2–S1–Fe4	74.24(11)	Fe2–S2–Fe4	74.08(12)	Fe1–S4–Fe2	73.93(11)
Fe3–S1–Fe4	72.50(11)	Fe1–S3–Fe3	74.69(12)	Fe1–S4–Fe3	74.72(12)
Fe1–S2–Fe2	74.19(12)	Fe1–S3–Fe4	74.87(11)	Fe2–S4–Fe3	74.42(11)

^a From single crystal XRD of (BTMA)₂[Fe₄S₄Br₄] (Table S1).

Tuble obtocheeled erystanographie and remientent data for (brinn)/[retors 217] whithy r

	(BTMA)2[Fe4S4Br2Cl2]		(BTMA)2[Fe4S4Cl2I2]		
T in K	293(2)	173(2)	293(2)	173(2)	
CCDC	2048953	2048376	2048954	2048375	
empirical formula	C20H32Br2.09Cl1.91Fe4N2S4	C20H32Br2Cl2Fe4N2S4	C20H32Cl1.65Fe4I2.35N2S4	C20H32Cl1.76Fe4I2.24N2S4	
formula weight in g·mol ⁻¹	886.95	882.83	1008.59	998.53	
crystal system / space group	monoclinic / Cc	monoclinic / Cc	monoclinic / Cc	monoclinic / Cc	
a/Å	12.8775(5)	12.79122(18)	13.1754(3)	13.0899(4)	
b/Å	14.7140(6)	14.6187(2)	14.7340(4)	14.6471(4)	
c/Å	17.3223(7)	17.1838(2)	17.5672(4)	17.4361(5)	
β/°	95.142(3)	94.8717(13)	96.3025(19)	96.225(3)	
volume in Å ³ / Z	3269.01(22) / 4	3201.62(8) / 4	3389.65(14) / 4	3323.28(18) / 4	
Qcalcg in cm ³	1.802	1.832	1.976	1.996	

μ in mm ⁻¹	4.726	4.714	4.206	4.197	
F(000)	1759.0	1752.0	1946.0	1930.0	
crystal size in mm ³	$0.5 \times 0.4 \times 0.3$	$0.098 \times 0.049 \times 0.012$	$0.8 \times 0.4 \times 0.3$	$0.14 \times 0.06 \times 0.04$	
2Θ range for data collection in $^\circ$	4.212 to 53.658	7.642 to 59.02	7.358 to 58.982	7.906 to 58.966	
index ranges	$-16 \le h \le 16, -18 \le k \le 18,$	$-17 \leq h \leq 17,-20 \leq k$	$-16 \le h \le 17, -19 \le k \le 19,$	$-18 \le h \le 16, -19 \le k \le$	
index ranges	$-21 \le l \le 21$	$\leq 20, -23 \leq l \leq 23$	$-23 \le l \le 24$	19, −23 ≤ l ≤ 21	
reflections collected	22278	24700	25715	23842	
independent reflections	6579 [Rint = 0.0637,	7728 [Rint = 0.0354,	8159 [Rint = 0.0810,	7917 [Rint = 0.0428,	
independent renections	$R_{sigma} = 0.0403$]	Rsigma = 0.0405] Rsigma = 0.0810]		$R_{sigma} = 0.0491$]	
data/restraints/parameters	6579/2/311	7728/2/372	8159/2/344	7917/4/373	
goodness-of-fit on F ²	1.074	1.044	1.036	1.003	
final R indexes [[5-2] ([)]	$P_{1} = 0.0446$ yy $P_{2} = 0.1171$	$R_1 = 0.0289$, $wR_2 =$	$P_{1} = 0.0402 \text{ w/}P_{2} = 0.0082$	$R_1 = 0.0302$, $wR_2 =$	
iniai K indexes [17–20 (1)]	$K_1 = 0.0440, WK_2 = 0.1171$	0.0487	$K_1 = 0.0493$, $WK_2 = 0.0982$	0.0488	
final R indoxos [all data]	$P_{4} = 0.0402$ to $P_{2} = 0.1212$	$R_1 = 0.0377, wR_2 =$	$P_{1} = 0.1002 \text{ to } P_{2} = 0.1275$	$R_1 = 0.0390, wR_2 =$	
iniai K indexes [an data]	$K_1 = 0.0493, WK_2 = 0.1212$	0.0512	$K_1 = 0.1003, WK_2 = 0.1273$	0.0528	
largest diff. peak/hole in e Å-3	0.41/-0.41	0.35/-0.34	0.54/-0.72	0.44/-0.36	
Flack parameter	-0.012(19)	-0.020(9)	-0.05(4)	-0.020(18)	

^a Radiation: MoK α (λ = 0.71073 Å).

Table S4. Selected crystallographic and refinement data for (BTMA)2[Fe4S4Br2I2]

	(BTMA)2[Fe4S4Br2I2]					
T in K	293(2)	173(2)				
CCDC	2055695	2048378				
empirical formula	C20H32Br2.12Fe4I1.88N2S4	$C_{20}H_{32}Br_2Fe_4I_2N_2S_4$				
formula weight in g·mol ⁻¹	1059.86	1065.73				
crystal system / space group	monoclinic / Cc	monoclinic / Cc				
a/Å	13.210(2)	13.0906(3)				
b/Å	14.957(2)	14.8245(3)				
c/Å	17.513(2)	17.3176(4)				
β/°	96.12(3)	95.942(2)				
volume in Å ³ / Z	3440.5(2) / 4	3342.63(12) / 4				
Qcalcg in cm ³	2.046	2.118				
μ in mm ⁻¹	6.060	6.203				
F(000)	2031.0	2040.0				
crystal size in mm ³	$0.5 \times 0.4 \times 0.3$	$0.093 \times 0.037 \times 0.02$				
radiation	MoKα (λ = 0.71073 Å)	MoKα (λ = 0.71073 Å)				
2Θ range for data collection in $^\circ$	4.126 to 54.608	7.254 to 59.164				
index ranges	$-17 \le h \le 16, -19 \le k \le 19, -22 \le l \le 22$	$-18 \le h \le 17, -20 \le k \le 20, -24 \le l \le 23$				
reflections collected	26772	72621				
independent reflections	7401 [$R_{int} = 0.0355$, $R_{sigma} = 0.0225$]	8613 [R _{int} = 0.0451, R _{sigma} = 0.0290]				
data/restraints/parameters	7401/2/312	8613/4/358				
goodness-of-fit on F ²	1.062	1.046				
final R indexes [I>= 2σ (I)]	$R_1 = 0.0365, wR_2 = 0.0892$	$R_1 = 0.0237, wR_2 = 0.0399$				
final R indexes [all data]	$R_1 = 0.0439$, $wR_2 = 0.0960$	$R_1 = 0.0305$, $wR_2 = 0.0421$				
largest diff. peak/hole in e Å ⁻³	0.69/-0.61	0.37/-0.40				
Flack parameter	0.017(12)	-0.021(9)				

$\label{eq:constraint} \textbf{Table S5} \ Selected \ metrics \ of \ (BTMA)_2[Fe_4S_4X_4] \ and \ (BTMA)_2[Fe_4S_4X_2Y_2] \ with \ X,Y = Cl, \ Br, \ I, \ Part \ I.$

	$[Fe_4S_4Br_4]^{2-}$	[Fe4S4Br2Cl2] ²⁻		$[Fe_4S_4Cl_2I_2]^{2-}$		$[Fe_4S_4Br_2I_2]^{2-}$	$[Fe_4S_4I_4]^{2-a}$	
δ in g/cm ³	1.932	1.802		1.976		2.046		2.192
distances	in Å	in Å		in Å		in Å		in Å
T in K	293	293	173	293	173	293	173	293
Fe(1)…Fe(2)	2.776(2)	2.775(2)	2.738(1)	2.767(2)	2.748(1)	2.766(2)	2.718(1)	2.759(2)

Fe(1)…Fe(3)	2.772(2)	2.773(2)	2.750(1)	2.760(2)	2.748(1)	2.765(2)	2.703(1)	2.756(2)
Fe(1)…Fe(4)	2.769(2)	2.765(2)	2.767(1)	2.758(3)	2.751(1)	2.758(2)	2.749(1)	2.754(2)
Fe(2)…Fe(3)	2.759(3)	2.762(2)	2.763(1)	2.750(2)	2.755(1)	2.757(2)	2.746(1)	2.750(2)
Fe(2)…Fe(4)	2.748(2)	2.748(2)	2.738(1)	2.734(3)	2.731(1)	2.735(2)	2.742(1)	2.726(2)
Fe(3)…Fe(4)	2.717(2)	2.725(2)	2.719(1)	2.725(3)	2.731(1)	2.716(2)	2.737(1)	2.696(2)
avd. value	2.757(22)	2.758(2)	2.746(1)	2.749(2)	2.744(1)	2.749(8)	2.733(1)	2.740(2)
Fe1–X/Y	2.354(2)	2.335(2)	2.210(1) 2.323(5)	2.548(2)	2.551(1)	2.524(1)	2.367(1) 2.514(1)	2.557(2)
Fe2–X/Y	2.332(2)	2.295(2)	2.342(3) 2.340(2)	2.500(5) 2.495(4)	2.248(1) 2.360(2)	2.477(1)	2.409(1) 2.545(4)	2.522(2)
Fe3–X/Y	2.332(2)	2.284(2)	2.223(1) 2.330(1)	2.230(2) 2.340(3)	2.2400(2) 2.5126(2)	2.380(2)	2.452(1) 2.479(4)	2.520(3)
Fe4–X/Y	2.340(2)	2.256(2)	2.200(1) 2.316(1)	2.560(3) 2.399(1)	2.237(15) 2.483(4)	2.438(2)	2.368(4) 2.411(1)	2.495(3)
X/Y···X/Y ^b distances between clusters	Br3…Br4 3.814(2) Br2…Br4 4.871(3) Br1…Br2 5.238(3) Br1…Br4	Br/Cl3···Br/Cl4 3.75(2) Br/Cl2···Br/Cl4 5.299(2) Br/Cl1···Br/Cl2 5.161(2) Br/Cl1···Br4Cl4	Br/Cl3…Br/C l4 3.75(2) Br/Cl2…Br/C l4 5.39(3) Br/Cl1…Br/C l2 5.18(3) Br/Cl1…Br/C	I/Cl3…I/Cl4 3.80(4) I/Cl2…I/Cl4 4.77(4) Br/Cl1…I/Cl2 4.87(3) I/Cl1…I/Cl4	I/Cl3…I/Cl4 3.74(2) I/Cl1…I/Cl3 4.87(2) Br/Cl1…I/Cl2 4.952(6) I/Cl1…I/Cl4	I/Br3…I/Br4 3.849(25) I/Br2…I/Br4 5.340 (1) Br/Br1…I/Br 2 5.086(1) I/Br1…I4Br4	I/Br3…I/Br4 3.79(3) I/Br1…I/Br3 4.59 (5) Br/Br1…I/Br 2 5.137(14) I/Br1…I/Br4	I3…I4 3.918(2) I2…I3 4.510 I1…I4 5.121 I1…I3
	5.328(3)	5.439(3)	14 5.25(4)	5.31(3)	5.30(3)	6.987(2)	5.27(3)	5.413(2)

^a From Ref. 6. ^b Shorter distances; for mixed clusters, distances correspond to the average values.

Table S6 Selected metrics of $(BTMA)_2[Fe_4S_4X_4]$ and $(BTMA)_2[Fe_4S_4X_2Y_2]$ with X,Y = Cl, Br, I, Part II.

column	1	2	3	4	5	6	7	8	9	10
	Br ₄	Δ to av.	Br ₂ Cl ₂	Δ to av.			Cl ₂ I ₂	Δ to av.		
δ in g/cm ³	1.932		1.802				1.976			
T in K	293		293		173		293		173	
Fe(1)…Fe(2)	2.776(2)	+0.019	2.775(2)	+0.017	2.767(1)	+0.021	2.767(2)	+0.018	2.755(1)	+0.011
Fe(1)…Fe(3)	2.772(2)	+0.015	2.773(2)	+0.015	2.763(1)	+0.017	2.760(2)	+0.011	2.751(1)	+0.007
Fe(1)…Fe(4)	2.769(2)	+0.012	2.765(2)	+0.007	2.750(1)	+0.004	2.758(3)	+0.009	2.748(1)	+0.005
Fe(2)…Fe(3)	2.759(3)	+0.002	2.762(2)	+0.004	2.738(1)	-0.008	2.750(2)	+0.001	2.748(1)	+0.004
Fe(2)…Fe(4)	2.748(2)	-0.009	2.748(2)	-0.010	2.738(1)	-0.008	2.734(3)	-0.006	2.731(1)	-0.013
Fe(3)…Fe(4)	2.717(2)	-0.040	2.725(2)	-0.033	2.719(1)	-0.027	2.725(3)	-0.024	2.731(1)	-0.013
avd. value	2.757(2)		2.758(2)		2.746(1)		2.749(2)		2.744(1)	
largest Δ ^a	0.059		0.050		0.048		0.042		0.024	

column	11	12	13	14	15	16	Br3 Br3 S3 Br3 S3 Br4
	Br ₂ I ₂	Δ to av.			I4 a	Δ to av.	
δ in g/cm ³	2.046				2.192		Fe3 Fe Br4 5.51 Fe3
T in K	293		173		293		S4 S1 S2
Fe(1)…Fe(2)	2.766(2)	+0.017	2.749(1)	+0.016	2.759(3)	+0.019	S4 S2
Fe(1)…Fe(3)	2.765(2)	+0.016	2.746(1)	+0.013	2.756(2)	+0.016	Fez
Fe(1)…Fe(4)	2.757(2)	+0.008	2.742(1)	+0.009	2.754(3)	+0.014	🖕 Br2 🛛 Br2 🌑
Fe(2)…Fe(3)	2.758(2)	+0.009	2.737(1)	+0.004	2.750(3)	+0.010	numbering scheme
Fe(2)…Fe(4)	2.735(2)	-0.014	2.718(1)	-0.015	2.726(3)	-0.014	
Fe(3)…Fe(4)	2.716(2)	-0.033	2.703(1)	-0.030	2.696(3)	-0.440	
avd. value	2.749(8)		2.733(1)		2.740(2)		
largest Δ ^a	0.050		0.043		0.063		

^a Difference between smallest and largest value. ^b From Ref. 4.

		- , -, ,	~	, . , .			
	Ph ₄ P ⁺		Et ₄ N ⁺	$n Pr_4 N^+$			
cluster	[Fe4S4Cl4] ²⁻	[Fe4S4Br2Cl2] ²⁻	$[Fe_4S_4Br_4]^{2-}$	[Fe4S4I4] ²⁻	[Fe4S4(SH)4] ²⁻	[Fe4S4Cl4] ²⁻	[Fe4S4Cl4] ²⁻
refs	[5]	[5]	[5]	[6]	[7]	[8]	[9]
space group	C2/c	C2/c	C2/c	I41/a	C2/c	P21/c	<i>P</i> 21/n
density in g/cm ³	1.55	1.65	1.76	1.90	1.50	1.63	1.45
T in K	294	294	294	283–303	294	283-303	213
distances in Å							
Fe(1)…Fe(2)	2.778(1)	2.777(2)	2.767(2)	2.743(2)	2.770(3)	2.777(1)	2.789(1)
Fe(1)…Fe(1b)	2.775(2)	2.765(4)	2.747(3)	2.755(2)	2.762(4)	2.746(1)	2.769(1)
Fe(1)…Fe(2b)	2.773(1)	2.769(3)	2.760(2)	2.755(2)	2.769(3)	2.776(1)	2.770(1)
Fe(1b)…Fe(2b)	2.773(1)	2.769(3)	2.760(2)	2.755(2)	2.769(3)	2.765(1)	2.768(1)
Fe(2)…Fe(2b)	2.751(2)	2.760(3)	2.767(2)	2.755(2)	2.738(3)	2.764(1)	2.771(1)
Fe(2)…Fe(1b)	2.778(1)	2.777(2)	2.767(2)	2.743(2)	2.770(3)	2.765(1)	2.753(1)
averaged value	2.771(10)	2.770(7)	2.761(8)	2.751(6)	2.763(13)	2.766(11)	2.770(12)
largest Δ in $Å^a$	0.027	0.017	0.020	0.012	0.032	0.031	0.036
Fe–X	2.204(3) 2.211(3)	2.321(3) (Br/Cl) 2.291(3) (Br/Cl)	2.338(2) 2.345(2)	2.541(1)	2.269(5) 2.256(4)	2.216	2.210(1) 2.212(1) 2.197(1)
X…X distances between clusters	No data available	No data available	4.040(1) 6.846(1) 6.874(1)	4.336(1) 6.441(1) 9.163(1)	4.240(1)	3.964(1) 4.599(1) 4.751(1) 5.536(1)	4.391(1) 4.711(1) 7.113(1)

Table S7 Metrical data showing the Fe₄ tetrahedron distortion and compression in (Q)₂[Fe₄S₄X₄] and (Q)₂[Fe₄S₄X₂Y₂] structures with X, Y = Cl, Br, I and Q = Ph₄P⁺, Et₄N⁺, and nPr_4N^+ .

^a Difference between smallest and largest value.

Table S8 Selected crystallographic and refinement data for (BTMA)3[Fe6S6Cl6] (6)

formula	C30H48Cl6Fe6N3S6	radiation	MoKα (λ = 0.71073 Å)
formula weight in g·mol ⁻¹	1190.87	T in K	293(2)
size in mm	$1.0\times0.5\times0.3$	F(000)	1206.0
crystal system	triclinic	$Q_{calc}g/cm^3$	1.626
space group	ΡĪ	20 range data collection/°	3.418 to 53.628
a/Å	10.2381(5)	index ranges	$-11 \le h \le 12, -15 \le k \le 15, -25 \le l \le 25$
b/Å	12.3598(6)	reflections collected	33479
c/Å	19.934(1)	independent reflections	10306 [$R_{int} = 0.1106$, $R_{sigma} = 0.0729$]
<i>α</i> /°	104.898(4)	data/restraints/parameters	10306/0/469
β/°	89.793(4)	goodness-of-fit on F ²	0.998
γ/°	93.675(4)	final R indexes [I>= 2σ (I)]	$R_1 = 0.0387$, $wR_2 = 0.0938$
Volume in Å ³ / Z	2432.4(2) / 2	Final R indexes [all data]	$R_1 = 0.0589$, $wR_2 = 0.1066$
μ in mm ⁻¹	2.354	Larg. diff. peak/hole in e Å-3	0.53/-0.61
CCDC	2048377		

Table S9 Essential metrics in [Fe₆S₆Cl₆]³⁻.^a

distances	in Å	distances	in Å	distances	in Å
Fe1–Cl1	2.2036(10)	Fe5–Cl5	2.1949(11)	Fe2…Fe3	2.7536(6)
Fe2–Cl2	2.2178(10)	Fe6-Cl6	2.2128(10)	Fe4…Fe5	2.7603(6)

Fe3–Cl3	2.2130(11)	Fe1…Fe2	2.7628(7)	Fe4…Fe6	2.7752(6)
Fe4–Cl4	2.2146(10)	Fe1…Fe3	2.7614(7)	Fe5…Fe6	2.7620(7)
Fe1–S1	2.2930(9)	Fe3–S1	2.2759(10)	Fe5–S4	2.2754(9)
Fe1–S2	2.2695(9)	Fe3–S2	2.2912(9)	Fe5–S5	2.2810(9)
Fe1–S3	2.2649(10)	Fe3–S3	2.2655(9)	Fe5–S6	2.2740(9)
Fe2–S1	2.2792(10)	Fe4–S4	2.2682(9)	Fe6–S4	2.2964(9)
Fe2–S2	2.2703(9)	Fe4–S5	2.2659(9)	Fe6–S5	2.2755(10)
Fe2–S3	2.2893(9)	Fe4–S6	2.2854(9)	Fe6-S6	2.2736(10)
angles	in °	angles	in °	angles	in °
Cl1–Fe1–S1	113.07(4)	S2–Fe1–S1	105.62(4)	Fe2–S1–Fe1	74.35(3)
Cl1–Fe1–S2	111.94(4)	S3–Fe1–S1	105.63(4)	Fe3–S1–Fe1	74.37(3)
Cl1–Fe1–S3	109.90(5)	S3–Fe1–S2	110.44(3)	Fe3–S1–Fe2	113.02(3)
Cl2-Fe2-S1	111.76(4)	S1-Fe2-S3	105.28(4)	Fe1–S2–Fe2	114.70(4)
Cl2-Fe2-S2	109.29(4)	S2-Fe2-S1	111.54(4)	Fe1–S2–Fe3	74.52(3)
Cl2-Fe2-S3	113.19(4)	S2-Fe2-S3	105.60(3)	Fe2–S2–Fe3	74.26(3)
Cl3–Fe3–S1	111.84(4)	S1-Fe3-S2	105.47(4)	Fe1–S3–Fe2	74.70(3)
Cl3–Fe3–S2	113.63(4)	S3–Fe3–S1	111.83(4)	Fe1–S3–Fe3	114.64(4)
Cl3–Fe3–S3	108.26(5)	S3–Fe3–S2	105.69(3)	Fe3–S3–Fe2	74.39(3)
Cl4–Fe4–S4	109.02(4)	S4–Fe4–S5	112.72(4)	Fe4–S4–Fe5	114.13(4)
Cl4–Fe4–S5	111.60(4)	S4-Fe4-S6	105.31(3)	Fe4–S4–Fe6	74.88(3)
Cl4–Fe4–S6	112.62(4)	S5–Fe4–S6	105.42(3)	Fe6-S4-Fe5	74.34(3)
Cl5-Fe5-S4	109.83(5)	S5-Fe5-S4	105.75(4)	Fe4–S5–Fe5	74.76(3)
Cl5–Fe5–S5	115.96(5)	S6-Fe5-S4	110.81(3)	Fe4-S5-Fe6	113.36(4)
Cl5–Fe5–S6	109.08(5)	S6-Fe5-S5	105.29(3)	Fe5–S5–Fe6	74.63(3)
Cl6–Fe6–S4	114.26(4)	S4-Fe6-S5	105.24(3)	Fe5–S6–Fe4	74.52(3)
Cl6–Fe6–S5	111.42(4)	S6–Fe6–S4	104.78(3)	Fe6–S6–Fe4	75.00(3)
Cl6–Fe6–S6	109.05(4)	S6-Fe6-S5	111.92(4)	Fe6–S6–Fe5	114.96(4)

^a From single crystal XRD of (BTMA)₃[Fe₆S₆Cl₆]. Colour code: Fe–S between six-membered chairs; S– Fe–S inside chair; Fe–S–Fe inside chair.

Table S10 Freely refined halide ratios in (BTMA)₂[Fe₄S₄X₂Y₂] structures.^a

2		3		4	
Br	Cl	Cl	Ι	Br	Ι
2.00	2.00	1.76	2.24	2.00	2.00

^a From a preliminary refinement with X and Y occupancies freely refined from single crystal XRD at 173 K (full final data from refinement using SUMP in Tables S3 and S4).

References

- 1 A. O. Schüren, V. K. Gramm, M. Dürr and A. Foi, I. Ivanović-Burmazović, F. Doctorovich, U. Ruschewitz and A. Klein, Halide coordinated homoleptic [Fe₄S₄X₄]²⁻ and heteroleptic [Fe₄S₄X₂Y₂]²⁻ clusters (X, Y = Cl, Br, I)— alternative preparations, structural analogies and spectroscopic properties in solution and solid state, *Dalton Trans.* 2016, **45**, 361–375.
- 2 D. J. Evans, G. García, M. D. Santana and M. C. Torralba, About the synthesis of the prismane [NEt₄]₂[Fe₆S₆I₆], *Inorg. Chim. Acta* 1999, **284**, 296–299.
- 3 K. Ôno, A. Ito and T. Fujita, The Mössbauer Study of the Ferrous Ion in FeCl₂; *J. Phys. Soc. Jpn.* 1964, **19**, 2119–2126.
- 4 G. B. Wong, M. A. Bobrik and R. H. Holm, Inorganic Derivatives of Iron Sulfide Thiolate Dimers and Tetramers: Synthesis and Properties of the Halide Series [Fe₂S₂X₄]²⁻ and [Fe₄S₄X₄]²⁻ (X = Cl, Br, I), *Inorg. Chem.* 1978, **17**, 578–584.
- 5 A. Müller, N. H. Schladerbeck, E. Krickemeyer, H. Bögge, K. Schmitz, E. Bill and A. X. Trautwein, Darstellung von Metall-Schwefel-Clustern durch einfache Reaktion von Metallsalzen mit H₂S: R₂(NH₄)[Cu₃S₁₂], R₂[Cu₄S₁₂]·CH₃CN, R₂[Cu₄S_{12.8}], R₂[Fe₂S₂(S₅)₂], R₂[Fe₄S₄Br₄], R₂[Fe₄S₄Br₂Cl₂], R₂[Fe₄S₄Cl₄], R₂[Fe₂S₂Cl₄] (R = PPh₄) und [Fe(DMF)₆][Fe₂S₂Cl₄], Z. Anorg. Allg. Chem. 1989, **570**, 7–36.
- 6 S. Pohl and W. Saak, Structural Distortion of Fe₄S₄I_{4²⁻} Clusters through Iodine-Iodine Contacts: Crystal Structures of (Ph₄P)₂Fe₄S₄I₄ and (Me₃NCH₂Ph)₂Fe₄S₄I₄, *Z. Naturforsch. b* 1988, **43b**, 457–462.
- 7 A. Müller, N. H. Schladerbeck and H. Bögge, [Fe₄S₄(SH)₄]²⁻, the simplest synthetic analogue for a ferredoxin *Chem. Comunm.* **1987**, 35–36.
- 8 M. A. Bobrik, K. O. Hodgson and R. H. Holm, Inorganic Derivatives of Iron-Sulfide-Thiolate Dimers and Tetramers. Structures of Tetrachloro-*p*-disulfido-diferrate(III) and Tetrakis(chloro-µ₃-sulfido-iron) Dianions, *Inorg. Chem.* 1977, 16, 1851–1858.
- 9 B. M. Segal, H. R. Hoveyda and R. H. Holm, Terminal Ligand Assignments Based on Trends in Metal-Ligand Bond Lengths of Cubane-Type[Fe₄S₄]^{2+,+} Clusters. *Inorg. Chem.* 1998, 37, 3440–3443.
- 10 J. T. Henthorn, G. E. Cutsail, T. Weyhermüller and S. DeBeer, Stabilization of intermediate spin states in mixed-valent diiron dichalcogenide complexes, *Nat. Chem.* 2022, **14**, 328–333.