Electronic Supplementary Information (ESI)

Solvothermal synthesis and device fabrication of a Eu³⁺-based metal-organic framework as a turn-on and blue-shift fluorescence sensor toward Cr³⁺, Al³⁺ and Ga³⁺

Yu Li, Ding-Gui Cai, Zi-Hao Zhu, Hui Xu,* Teng-Fei Zheng, Jing-Lin Chen, Sui-Jun Liu* and He-Rui Wen

School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.

*Corresponding authors. E-mail: sjliu@jxust.edu.cn (S.-J. Liu), xuhuijlu@163.com (H. Xu). Tel: +86-797-8312204.

CONTENTS

Section 1. Experimental Section (page 3)

Section 2. Supplementary Tables and Structural Figures (page 4-page

7)

Section 3. Supplementary Characterizations (page 8-page 21)

Section 1. Experimental Section

1. Materials and Instrumentations.

5,5'-(benzo[c][1,2,5]thiadiazole-4,7-diyl) All starting materials including diisophthalic acid (H₄BTDI) were reagent grade and used by the purchase without further purification. The powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku Miniflex 600 instrument. Elemental analysis (C, H, N and S) was performed on a vario EL cube elemental analyzer. The IR spectra were measured in the range of 4000-400 cm⁻¹ with KBr pellets on a Bruker Alpha FT-IR spectrometer. Thermogravimetric analysis (TGA) was carried out on a NETZSCH STA2500 (TG/DTA) thermal analyzer under a N₂ flow at a heating rate of 10 °C min⁻¹. Fluorescence spectra were obtained using a F4600 (Hitachi) FL spectrophotometer. The ultraviolet visible (UV-vis) absorption spectra were collected on a UV-vis 2550 spectrophotometer. X-Ray photoelectron spectra (XPS) were recorded with an Axis Ultra DLD spectrometer. The amount of Cr³⁺, Al³⁺ and Ga³⁺ ions in JXUST-25 after sensing was measured on a HORIBA ULTIMA2 single channel instrument by inductive coupled plasma (ICP) emission spectroscopy analyses.

2. Crystallographic studies for JXUST-25.

Single-crystal X-ray diffraction data were obtained on a Bruker D8 QUEST diffractometer with Mo-K α radiation ($\lambda = 0.71073$ Å) using ω scan mode. The SAINT program was used for integration of the diffraction profiles.^{S1} The structure was solved with direct methods and refined by using full-matrix least squares on F² with SHELXL-2017/1.^{S2} All non-H atoms were confirmed by successive difference Fourier syntheses and treated isotropically. Moreover, all hydrogen atoms were calculated in idealized positions on a geometric basis and refined with restrictions. The disorder atoms could be visible in ORTEP drawing of JXUST-25 (Fig. S1b). Because of the limited crystal quality, the DMF molecule of JXUST-25 has been masked. The summary of the crystal data and structural refinements of JXUST-25 is provided in Table S1 (ESI) and Table 1. Selected bond lengths and bond angles of JXUST-25 are listed in Table S2 (ESI).

Table S1. Selected bond lengths (Å) and angles (°) for JXUST-25 ^a .							
Eu1—O1 ⁱ	2.3189(15)	Eu1—O5 ⁱⁱⁱ	2.3693(15)				
Eu1—O2 ⁱⁱ	2.3796(15)	Eu1—O6 ^{iv}	2.3772(16)				
Eu1—O4	2.4218(16)	Eu1—O7 ^v	2.4623(15)				
Eu1—O3	2.5031(16)	Eu1—O8 ^v	2.5417(16)				
O2 ⁱⁱ —Eu1—O1 ⁱ	125.20(6)	O6 ^{iv} —Eu1—O5 ⁱⁱⁱ	128.11(5)				
O3—Eu1—O1 ⁱ	83.26(5)	$O7^v$ —Eu1—O1 ⁱ	96.31(5)				
O3—Eu1—O2 ⁱⁱ	139.29(6)	O7 ^v —Eu1—O2 ⁱⁱ	125.57(6)				
O4—Eu1—O1 ⁱ	134.74(6)	O7 ^v —Eu1—O3	70.20(6)				
O4—Eu1—O2 ⁱⁱ	90.41(5)	O7 ^v —Eu1—O4	79.94(6)				
O4—Eu1—O3	52.78(5)	O7 ^v —Eu1—O5 ⁱⁱⁱ	149.33(6)				
O5 ⁱⁱⁱ —Eu1—O1 ⁱ	81.14(6)	O7 ^v —Eu1—O6 ^{iv}	79.37(5)				
O5 ⁱⁱⁱ —Eu1—O2 ⁱⁱ	77.86(6)	$O8^v$ —Eu1—O1 ⁱ	139.17(5)				
O5 ⁱⁱⁱ —Eu1—O3	79.16(5)	O8 ^v —Eu1—O2 ⁱⁱ	73.95(5)				
O5 ⁱⁱⁱ —Eu1—O4	80.51(6)	O8 ^v —Eu1—O3	104.44(5)				
O6 ^{iv} —Eu1—O1 ⁱ	74.47(6)	O8v—Eu1—O4	71.35(6)				
O6 ^{iv} —Eu1—O2 ⁱⁱ	80.08(6)	O8v—Eu1—O5 ⁱⁱⁱ	139.53(5)				
O6 ^{iv} —Eu1—O3	139.80(5)	O8v—Eu1—O6 ^{iv}	74.55(5)				
O6 ^{iv} —Eu1—O4	145.90(6)	O8 ^v —Eu1—O7 ^v	52.11(5)				

Section 2. Supplementary Tables and Structural Figures

^aSymmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, -*y*, -*z*+1; (iv) *x*, *y*-1, *z*+1; (v) -*x*, -

y+1, -*z*+1.

ions	label	shape	symmetry	Distortion (τ)
Eu1	OP-8	Octagon	$D_{8\mathrm{h}}$	32.730
	HPY-8	Heptagonal pyramid	$C_{7\mathrm{v}}$	21.251
	HBPY-8	Hexagonal bipyramid	$D_{6\mathrm{h}}$	15.558
	CU-8	Cube	$O_{ m h}$	9.048
	SAPR-8	Square antiprism	$D_{ m 4d}$	2.876
	TDD-8	Triangular dodecahedron	D_{2d}	2.566
	JGBF-8	Johnson gyrobifastigium J26	D_{2d}	14.451
	JETBPY-8	Johnson elongated triangular bipyramid J14	$D_{3\mathrm{h}}$	28.303
	JBTPR-8	Biaugmented trigonal prism J50	C_{2v}	2.554
	BTPR-8	Biaugmented trigonal prism	C_{2v}	1.633
	JSD-8	Snub diphenoid J84	D_{2d}	5.178
	TT-8	Triakis tetrahedron	T _d	9.841
	ETBPY-8	Elongated trigonal bipyramid	$D_{3\mathrm{h}}$	22.377

Table S2. SHAPE analysis of Eu^{III} ions in **JXUST-25**.

	Detection	Detection	Detection		luminescence	
Complex	limit of	limit of	limit of	Medium	effect	Ref.
	Cr ³⁺	A1 ³⁺	Ga ³⁺			
{[(CH ₂) ₂ NH ₂][Eu(BTDI)]·H ₂ O·DMF},	0.073 ppm 0.006 ppm 0.030 t	0.030 ppm		Turn-on and	This	
(JXUST-25)	$(1.41 \ \mu M)$	$(0.21 \mu M)$	$(0.44 \ \mu M)$	DMF	blue-shift	work
	9 94 nM	7 79 nM	/	. ,		
Tb-TCPP	$(0.010 \ \mu M)$	$(0.008 \ \mu M)$	- DMF	Turn-on	S3	
{[Zn(BIBT)(oba)]·DMA}	(0.010 µ101)	(0.000 µ)				
(JXUST-3)	0.049 µM	0.055 μM	-	EtOH	Turn-off	S4
$\{[Co_2(BIBT)_2(BTC)_2(H_2O)_2]:$ solvents $\}_{r}$						
(JXUST-2)	$0.10 \mu M$	$0.10\mu M$		DMAc	Turn-on	S5
[7, (5, NIL 1, 2, 1, 4, -) (NIL 1,, 4, 4, 1) DME	7.97	5.50 ··M		ЦО	T	5(
$[2n_2(5-NH_2-1,3-bac)_2(N1-bpy-44)]$ ·DMF	$/.8/\mu M$	$5.59 \mu\text{M}$	-	H_2O	Turn-off	50
{[Tb ₂ (ADIP)(H ₂ ADIP)(HCOOH)(H ₂ O) ₂]	-	0.069 μM	$0.079\mu\mathrm{M}$	EtOH	Turn-on and	\$7
$\cdot 2DMF \cdot 2H_2O\}_n$					blue-shift	57
${[Cd(BBZB)(2,6-NDC)] \cdot CH_3OH}_n$	_	0.081 ppm	0.047 ppm	DME	Turn-on and	58
(JXUST-6)	-	0.001 ppin	0.047 ppm	DIVII	red-shift	50
${[Zn_2(BBIP)_2(NDC)_2] \cdot H_2O}_n (JXUST-$	-	0.17 ppm	0.69 ppm	EtOH	Turn-on and	50
5)					red-shift	39
$\{[(CH_3)_2NH_2][Eu(BTDB)_2]\cdot 2H_2O\}_n$		2.0	10.2	DME	T	\$10
(JXUST-11)	-	2.9 ppm	10.2 ppm	DML	i um-on	510

Table S3. The comparison of the detection limit between JXUST-25 and some selected MOFsensors toward Cr³⁺, Al³⁺ and Ga³⁺.

References

- S1 SAINT, Version 6.02a, Bruker AXS Inc, Madison, WI, 2002.
- S2 G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv., 2015, A71, 3-8.
- S3 C. Fu, X. Sun, G. Zhang, P. Shi and P. Cui, *Inorg. Chem.*, 2021, 60, 1116-1123.
- S4 S. L. Yao, Y. C. Xiong, X. M. Tian, S. J. Liu, H. Xu, T. F. Zheng, J. L. Chen and H. R. Wen, *CrystEngComm*, 2021, 23, 1898-1905.
- S5 X. M. Tian, S. L. Yao, C. Q. Qiu, T. F. Zheng, Y. Q. Chen, H. Huang, J. L. Chen, S. J. Liu and H. R. Wen, *Inorg. Chem.*, 2020, **59**, 2803-2810.
- S6 J. R. Zhang, J. J. Lee, C. H. Su, M. J.; Tsai, C. Y. Li and J. Y. Wu, *Dalton Trans.*, 2020, 49, 14201-14215.
- S7 T. L. Ren, X. N. Zhang, J. J. Hu, H. R. Wen, S. J. Liu and Y. Peng, *Dalton Trans.*, 2022, **51**, 14858-14864.
- S8 B. L. Chai, S. L. Yao, X. Xie, H. Xu, T. F. Zheng, J. Y. Li, J. L. Chen, S. J. Liu and H. R. Wen, *Cryst. Growth Des.*, 2022, 22, 277-284.
- S9 L. H. Wu, S. L. Yao, H. Xu, T. F. Zheng, S. J. Liu, J. L. Chen, N. Li and H. R. Wen, *Chin. Chem. Lett.*, 2022, **33**, 541-546.
- S10 J. Li, Y. L. Zhu, H. Xu, T. F. Zheng, S. J. Liu, Y. Q. Wu, J. L. Chen, Y. Q. Chen and H. R. Wen, *Inorg. Chem.*, 2022, 61, 3607-3615.

(b)

Fig. S1 (a) The coordination mode of BTDI⁴⁻ ligand in **JXUST-25**. (b) The probability ORTEP drawing of the asymmetric unit of **JXUST-25**.

Section 3. Supplementary Characterizations

Fig. S2 The IR spectra of JXUST-25 before and after treated with Cr^{3+} , Al^{3+} , Ga^{3+} and Zn^{2+} at room temperature.

(b)

Fig. S3 The simulated and experimental PXRD patterns of (a) the as-synthesized sample of JXUST-25; (b) the samples of JXUST-25 soaked in DMF for 3, 5 and 7 days; (c) the samples of JXUST-25 soaked in DMF for 2 and 3 days; (d) the samples of JXUST-25 immersed in common solvents for 24 h; (e) JXUST-25 in aqueous solution with different pH values for 6 h; (f) JXUST-25 after sensing Cr^{3+} , Al^{3+} and Ga^{3+} for 5 cycles.

Fig. S4 The TGA curve for JXUST-25 under N_2 atmosphere.

(b)

Fig. S5 (a) The emission spectra of H₄BTDI and JXUST-25 in the solid state and in DMF solution ($\lambda_{ex} = 368$ nm); (b) the naked-eye photographs of JXUST-25 dispersed in the aqueous solution containing Al³⁺, Cr³⁺ and Ga³⁺ under UV-lamp with the wavelength of 365 nm.

Fig. S6 CIE chromaticity diagram showing the color coordinates of JXUST-25 upon the addition of Cr^{3+} , Al^{3+} and Ga^{3+} .

(c) Fig. S7 Competitive experiments of JXUST-25 in sensing (a) Cr^{3+} , (b) Al^{3+} and (c) Ga^{3+} with the interference of other metal ions (0.2 M) in DMF solution.

Fig. S8 Time-dependent emission spectra of **JXUST-25** in DMF suspension after adding (a) $Cr^{3+} (5 \times 10^{-4} \text{ mol/L})$, (b) $Al^{3+} (5 \times 10^{-4} \text{ mol/L})$ and (c) $Ga^{3+} (5 \times 10^{-4} \text{ mol/L})$ at room temperature.

Fig. S9 The PXRD patterns of JXUST-25 in DMF solution after adding Cr^{3+} , Al^{3+} and Ga^{3+} for 24 h.

(a)

Fig. S10 XPS of (a) JXUST-25, (b) JXUST-25 treated with Cr^{3+} , (c) JXUST-25 treated with Al^{3+} , (d) JXUST-25 treated with Ga^{3+} , and (e) JXUST-25 treated with Zn^{2+} . The samples of JXUST-25 were soaked in 1 mM Cr^{3+} , Al^{3+} , Ga^{3+} and Zn^{2+} solutions for 24 h.

(b)

Fig. S11 The luminescence decay curves of (a) **JXUST-25**, (b) **JXUST-25** treated with Cr^{3+} , (c) **JXUST-25** treated with Al³⁺ and (d) **JXUST-25** treated with Ga³⁺ at room temperature.

Fig. S12 UV-vis absorption spectra of different metal ions in DMF solutions.

(a)

Fig. S13 The UV-vis absorption spectra of **JXUST-25** dispersed in DMF solution after adding different concentration of (a) Cr^{3+} , (b) Al^{3+} and (c) Ga^{3+} .