Supporting Information: Mesoporous Multi-Valence Manganese

Oxides Composite Nanotubes Boosting Long-Life Lithium-Ion

Fig.S1 XRD patterns for Reference group (β -MnO₂ nanotubes with C-coating) annealing at 300 °C and 500 °C.

Tab.S1Comparison of the actual crystalline phase of experimental group and reference group.

Annealing temperature		Room	300°C	500 °C
Experimental	Subjects	β -MnO ₂ NT	β-MnO ₂ NT@PDA	β-MnO ₂ NT@PDA
group	Crystalline phase	β-MnO ₂	β -MnO ₂ /Mn ₃ O ₄ @C	Mn ₃ O ₄ @C
Reference	Subjects	β -MnO ₂ NT	β -MnO ₂ NT	β -MnO ₂ NT
group	Crystalline phase	β-MnO ₂	Mn ₃ O ₄	Mn ₃ O ₄ /MnO

Fig.S2 SEM image sampling and diameter frequency distribution for (a) and (b) β -MnO₂ NT, (c) and (d) β -MnO₂/Mn₃O₄@C NT, (e) and (f) Mn₃O₄@C NT.

Tab.S2 The average diameter of all manganese oxide nanotubes obtained from Fig.S4.

Sample	Average Diameter (nm)
β -MnO ₂ NT	~440
β -MnO ₂ /Mn ₃ O ₄ @C NT	~420
Mn ₃ O ₄ @C NT	~450

Fig.S3 The EDS patterns of the β -MnO₂/Mn₃O₄@C NT and its EDS elemental mappings.

Tab.S3 According to the same equivalent circuit model, calculated Rs, Rct and C for β -MnO₂ NT, Mn₃O₄@C NT, and β -MnO₂/Mn₃O₄@C NT at initial, respectively.

Sample	initial		
ю р	Rs (Ohm)	Rct (Ohm)	C (F)
β -MnO ₂ NT	2.406	501.000	0.00327
β -MnO ₂ /Mn ₃ O ₄ @C NT	4.676	365.100	0.00652
Mn ₃ O ₄ @C NT	2.570	301.000	0.00278

Fig.S4 During the charge and discharge cycle, SEM images for (a)-(c) $Mn_3O_4@C$ NT, (d)-(i) SEM images for β -MnO₂/Mn₃O₄@C NT.

Fig.S5 The cycle property for β -MnO₂/Mn₃O₄@C NT at 1 A g⁻¹.

Tab.S4 Electrochemical performance of β -MnO₂/Mn₃O₄@C NT electrodes in this work, compared with some other manganese oxides (eg. MnO, MnO₂, Mn₂O₃, and Mn₃O₄ etc.) electrodes reported in previous literature.

Binder	Type of materials	Initial charge capacity	Cycle stability (1C = 936 mA g^{-1})
use	This work	1137 mAh g ⁻¹ at 0.2 A g ⁻¹	679 mAh g ⁻¹ after 1000 cycles at 1 A g ⁻¹
free	Porous Mn ₃ O ₄ nanosheets@3D-Cu ^[1]	1166 mAh g ⁻¹ at 0.2 A g ⁻¹	668 mAh g ⁻¹ after 1005 cycles at 1 A g ⁻¹
use	MnCO ₃ /Mn ₃ O ₄ /RGO composites ^[2]	828 mAh g ⁻¹ at 0.1 A g ⁻¹	532 mAh g ⁻¹ after 800 cycles at 1 A g ⁻¹

use	Hollow Mn ₂ O ₃ Core-shell	935 mAh g ⁻¹ at 0.1 A g ⁻¹	$620 \text{ mAh } g^{\text{-1}}$ after 500 cycles at 1 A $g^{\text{-1}}$
	Microspheres ^[3]		
use	MOFs-derived Porous	852 mAh g ⁻¹ at 0.5 A g ⁻¹	705 mAh g ⁻¹ after 250 cycles at 1 A g ⁻¹
	$Mn_2O_3^{[4]}$		
use	Porous MnO/C nanotubes ^[5]	810 mAh g ⁻¹ at 0.1 A g ⁻¹	618 mAh g ⁻¹ after 200 cycles at 0.5 A g ⁻¹
use	CNTs-entangled Mn ₃ O ₄ octahedrons ^[6]	780 mAh g ⁻¹ at 0.19 A g ⁻¹	678 mAh g ⁻¹ after 400 cycles at 0.468 A g ⁻¹
use	MnO ₂ nanoflakes@carbon nanohorns ^[7]	785 mAh g ⁻¹ at 0.1 A g ⁻¹	552 mAh g ⁻¹ after 50 cycles at 0.45 A g ⁻¹
free	Porous MnO nanoflakes@Ni foam ^[8]	570 mAh g ⁻¹ at 0.25 A g ⁻¹	569 mAh g ⁻¹ after 100 cycles at 0.25 A g ⁻¹
use	Mesoporous Mn_2O_3/RGO composites ^[9]	931 mAh g ⁻¹ at 0.2 A g ⁻¹	1015 mAh g ⁻¹ after 130 cycles at 0.23 A g ⁻¹
use	Nanoflaky MnO ₂ @carbon nanotubes ^[10]	805 mAh g ⁻¹ at 0.2 A g ⁻¹	$620 \text{ mAh} \text{ g}^{\text{-1}}$ after 50 cycles at 0.2 A g $^{\text{-1}}$
use	MnO ₂ /3D porous graphene composites ^[11]	927 mAh g ⁻¹ at 0.1A g ⁻¹	836 mAh g ⁻¹ after 200 cycles at 0.1 A g ⁻¹
sue	N-Doped MnO/Graphene	829 mAh g ⁻¹ at 0.05 A g ⁻¹	772 mAh g ⁻¹ after 90 cycles at 0.1 A g ⁻¹
	Nanosheets ^[12]	0 0	
use	Mn ₃ O ₄ @RGO nanowires ^[13]	802 mAh g ⁻¹ at 0.1 A g ⁻¹	702 mAh g ⁻¹ after 100 cycles at 0.1 A g ⁻¹
free	Mn ₂ O ₃ nanowires@Ti foil ^[14]	498 mAh g ⁻¹ at 0.1 A g ⁻¹	502 mAh g ⁻¹ after 100 cycles at 0.1 A g ⁻¹

* Compared with some other manganese oxides (eg. MnO, MnO_2 , Mn_2O_3 , and Mn_3O_4 etc.), it is clearly seen that the β -MnO₂/Mn₃O₄@C NT electrodes in this work exhibits the best property, particularly the cycle property at a high current density of 1 A g⁻¹.

Fig.S7 XRD patterns for three electrode materials for β -MnO₂ NT, β -MnO₂/Mn₃O₄@C NT, and Mn₃O₄@C NT in different stages of the cycle under 1 A g⁻¹, respectively.

Tab.S5 The actual phase structure of the three electrode materials for β -MnO₂ NT, β -MnO₂/Mn₃O₄@C NT, and Mn₃O₄@C NT in different stages of the cycle under 1 A g⁻¹ obtained from Fig.S9 and Fig. 2.

Cycle number	β-MnO ₂ NT	β-MnO ₂ /Mn ₃ O ₄ @C NT	Mn ₃ O ₄ @C NT
initial phase	β-MnO ₂	β -MnO ₂ /Mn ₃ O ₄	Mn ₃ O ₄
200th phase	Mn_2O_3		
500th phase	Mn ₃ O ₄		
800th phase			Mn ₃ O ₄
1000th phase		Mn ₃ O ₄	

* Because it takes much time to monitor the cycle process, it is very difficult. In order to reduce the workload, only limited nodes are selected for testing, but this does not affect the conclusion of the experiment.

Reference

- [1] X.-Y. Fan, Y. Cui, P. Liu, L. Gou, L. Xu, D.-L. Li, PCCP 2016, 18, 22224.
- [2] R. Zhang, D. Wang, L. C. Qin, G. W. Wen, H. Pan, Y. F. Zhang, N. Tian, Y. Zhou, X. Huang, J. Mater. Chem. A 2017, 5.
- [3] C. Zhang, C. Guo, Y. Wei, L. Hou, Phys. Chem. Chem. Phys. 2016, 18, 4739.
- [4] Z. Bai, Y. Zhang, Y. Zhang, C. Guo, B. Tang, D. Sun, J. Mater. Chem. A 2015, 3, 5266.

- [5] G. L. Xu, Y. F. Xu, H. Sun, F. Fu, X. M. Zheng, L. Huang, J. T. Li, S. H. Yang, S. G. Sun, Chem. Commun. 2012, 48, 8502.
- [6] X. Cui, Y. Wang, Q. Xu, P. Sun, X. Wang, T. Wei, Y. Sun, Nanotechnology 2017, 28, 255402.
- [7] H. Lai, J. Li, Z. Chen, Z. Huang, ACS Appl Mater Interfaces 2012, 4, 2325.
- [8] X. Li, D. Li, L. Qiao, X. Wang, X. Sun, P. Wang, D. He, J. Mater. Chem. 2012, 22.
- [9] H. S. Jadhav, G. M. Thorat, B. B. Kale, J. G. Seo, Dalton Trans 2017, 46, 9777.
- [10] H. Xia, M. O. Lai, L. Lu, J. Mater. Chem. 2010, 20, 6896.
- [11] Y. Li, Q. Zhang, J. Zhu, X. L. Wei, P. K. Shen, J. Mater. Chem. A 2014, 2, 3163.
- [12] K. Zhang, P. Han, L. Gu, L. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Dong, Z. Zhang, J. Yao, H.
- Xu, G. Cui, L. Chen, ACS Appl Mater Interfaces 2012, 4, 658.
- [13] J. G. Wang, D. Jin, R. Zhou, X. Li, X. R. Liu, C. Shen, K. Xie, B. Li, F. Kang, B. Wei, Acs Nano 2016, 10, 6227.
- [14] Y. Wang, Y. Wang, D. Jia, Z. Peng, Y. Xia, G. Zheng, Nano Lett. 2014, 14, 1080.