Electronic Supplementary Information

Effects of nitric acid concentration for nitration of fused [1,2,5]oxadiazolo[3,4-d]pyrimidine-5,7diamine

Ajay Kumar Chinnam,^a Yongxing Tang,^b Richard J. Staples,^c Jean'ne M. Shreeve*^a

^a Department of Chemistry, University of Idaho, Moscow, ID 83844-2343 USA, Email: <u>jshreeve@uidaho.edu</u>

^b Nanjing University of Science and Technology, Nanjing, 210094, China

[°] Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

Table of Contents

1.	Experimental Section	S2
2.	Theoretical Calculations	S3
3.	X-Ray Crystallographic data	S5
4.	NMR spectra for compounds 2, 3, and 5	S19
5.	DSC Thermograms	S23
6.	References	S24

1. Experimental Section

Caution! Nitramine-based energetic materials are potentially explosive and could explode under certain conditions (e.g., impact, friction, or electric discharge). Appropriate safety precautions, such as wearing safety glasses, face shields, ear plugs, and gloves is always necessary while handling these materials. They should be only prepared in small quantities.

General methods

The reagents and solvents were purchased from AK Scientific and VWR in analytical grade and were used as received. ¹H, and ¹³C NMR spectra were recorded on a 300 MHz (Bruker AVANCE 300) nuclear magnetic resonance spectrometer operating at 300.13 and 75.48 MHz, respectively. The ¹⁵N spectra were obtained on a 500 MHz (Bruker AVANCE 500) nuclear magnetic resonance spectrometer operating at 50.69 MHz. Tetramethyl silane and nitromethane are used as references for ¹H, ¹³C, and ¹⁵NMR spectra, respectively. The thermal decomposition points were obtained on a differential scanning calorimeter (TA Instruments Company, Model: Q2000) at a scan rate of 5 °C min⁻¹. IR spectra were recorded on a FT-IR spectrometer (Thermo Nicolet AVATAR 370) as thin films using KBr plates. The density was measured at room temperature by employing a Micromeritics AccuPyc II 1340 gas pycnometer. The impact and friction tester. Elemental analyses (C, H, N) were determined using a Vario Micro cube Elementar Analyser.

Single yellow block crystals (2) of dimensions $0.12 \times 0.09 \times 0.06 \text{ mm}^3$, single colorless needleshaped crystals (3) of dimensions $0.12 \times 0.06 \times 0.04 \text{ mm}^3$, and single yellow colorless irregularshaped crystals (5) of dimensions $0.21 \times 0.09 \times 0.02 \text{ mm}^3$ were selected and mounted on nylon loops with Paratone oil on a XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystal was kept at a steady T = 100.01(10) K during data collection. The structures were solved with the ShelXT¹ solution program using dual methods and Olex2 1.5-alpha and Olex2² as the graphical interface. The model was refined with ShelXL 2018/3³ using full matrix least squares minimization on F2.

5-Amino-[1,2,5]oxadiazolo[3,4-d]pyrimidin-7(4H)-ylidene)nitramide (2); To a hot oven dried 100 mL round bottomed flask with a stir bar was added freshly distilled 100% nitric acid (4.0 mL). It was cooled to -5 °C using an ice-cold salt mixture. To this, [1,2,5]oxadiazolo[3,4-d]pyrimidine-5,7-diamine 1⁴ (0.5 g, 3.28 mmol) was added in small portions while maintaining the reaction temperature below 0 °C. The resulting mixture was stirred at ice-bath temperature for 3 hours. After that, the reaction mixture was poured into crushed ice (50.0 grams) and stirred for 10 minutes. A yellow precipitate was formed and collected by filtration. The solid product was washed with cold water (5.0 mL) and dried at ambient temperature to give the yellow solid product 4 (0.6 g, 93%). Yellow solid. T_{dec} (5 °C min⁻¹): 196 °C (onset); ¹H NMR (300 MHz, *d*₆-DMSO): (ppm) 8.48 (b, s, 1H, <u>NH</u>), 7.58 (s, 2H, <u>NH</u>₂); ¹³C NMR (75 MHz, *d*₆-DMSO): (ppm) 154.7, 152.8, 150.0, 137.2; IR (KBr pellet): v 3449, 3343, 3282, 3221, 3079, 2981, 2225, 1666, 1589, 1565,

1484, 1435, 1385, 1304. 1102. 1032, 1003, 897, 868, 827, 770, 704, 581, 552, 503, 465 cm⁻¹; Elemental analysis for $C_4H_3N_7O_3$ (197.11): calcd: C, 24.37; H, 1.53; N, 49.74%. Found: C, 24.15; H, 1.90; N, 49.56%.

4-Carboxy-N-(diaminomethylene)-1,2,5-oxadiazol-3-aminium nitrate (3); *Method A*: To a dry 100 mL round bottomed flask charged with a stir bar was added 70% nitric acid (5.0 mL). To this, [1,2,5]oxadiazolo[3,4-d]pyrimidine-5,7-diamine 1^4 (0.5 g, 3.28 mmol) was added in small portions at ambient temperature. The resulting mixture was stirred at room temperature for 3 hours. After that, the reaction mixture was poured into crushed ice (50.0 grams) and stirred for 10 minutes. A clear solution formed, and the solvent was slowly evaporated using an air-blower. Colorless block crystals started forming after the solution was reduced to half. They were collected by filtration and dried at ambient temperature to give the yellow solid product **3** (0.73 g, 95%).

Method B: Compound [1,2,5]oxadiazolo[3,4-d]pyrimidine-5,7-diamine 1⁴ (0.50 g, 3.28 mmol) was added to nitric acid (15%, 5 mL). The reaction mixture was heated to 70 °C and stirred for 1.5 h. After that, the dilute nitric acid was reduced by air-blower at room temperature to give colorless crystals of **3** (0.67 g, 88%). Colorless crystals. T_{dec} (5 °C min⁻¹): 179 °C (onset); ¹H NMR (300 MHz, DMSO-d₆): (ppm) 13.69 (b, s, 1H, <u>CO₂H</u>), 10.05 (b, s, 1H, <u>NH</u>), 8.33 (b, s, 4H, <u>2NH₂</u>); ¹³C NMR (75.46 MHz, DMSO-d₆): (ppm) 159.2, 154.8, 150.6, 142.5; IR (KBr pellet): v 3359, 3280, 3134, 2509, 1735, 1695, 1607, 1561, 1531, 1452, 1422, 1384, 1308, 1274, 1172, 1051, 1033, 1000, 943, 911, 830, 819, 795, 727, 693, 669, 598, 545, 527 cm⁻¹. Elemental analysis for C₄H₆N₆O₆ (234.13): calcd: C, 20.52; H, 2.58; N, 35.90%. Found: C, 20.74; H, 2.69; N, 37.35%.

Cesium (5-amino-[1,2,5]oxadiazolo[3,4-d]pyrimidin-7-yl)(nitro)amide (5); A dried 50 mL round bottom flask was charged with a stir bar and compound **2** (0.5 g, 2.53 mmol) in acetonitrile (5.0 mL). To this, aqueous cesium carbonate [(0.41 g, 1.27 mmol; dissolved in water (1.0 mL)] was added dropwise at ambient temperature. The resulting mixture was stirred at room temperature for 3 hours. A yellow precipitate was formed and collected by vacuum filtration to give a pure yellow solid product **5** (0.80 g, 97%). Yellow solid. T_{dec} (5 °C min⁻¹): 249 °C (onset); ¹H NMR (300 MHz, d_6 -DMSO): (ppm) 6.62 (s, 2H, <u>NH₂</u>); ¹³C NMR (75 MHz, d_6 -DMSO): (ppm) 164.7, 162.5, 154.5, 137.0; IR (KBr pellet): v 3440, 3333, 3229, 1635, 1599, 1525, 1478, 1425, 1383, 1349. 1233. 1105, 1051, 994, 859, 786, 718, 573 cm⁻¹; Elemental analysis for C₄H₆N₆O₆ (234.13): calcd: C, 14.60; H, 0.61; N, 29.80%. Found: C, 14.21; H, 0.86; N, 28.19%.

2. Theoretical Calculations

The gas phase heats of formation were computed using isodesmic reactions (Scheme 1). The enthalpy of reaction is obtained by combining the MP2/6-311++G** energy difference for the reactions, the scaled zero-point energies (ZPE), values of thermal correction (HT), and other thermal factors.⁵ The solid-state heats of formation for neutral compound, **2** was estimated by subtracting gas-phase enthalpies with the corresponding enthalpy of sublimation ($^{\Delta H_{sub}}$). In

equation 1, T represents either the melting point or the decomposition temperature when no melting occurs prior to decomposition).⁶

$$\Delta H_{sub} = 188/Jmol^{-1}K^{-1} \times T \tag{1}$$

For salts **3** and **5**, the solid-state enthalpy of formation is obtained using a Born–Haber energy cycle.⁷

Isodesmic reactions

Scheme 1.

Table S1 Calculated zero point energy (ZPE), values of the correction (Hr), total energy (E0) and gas-state heats of formation (HOF).

Compound	ZPE	HT	E0	HOF	
					_

	[Hartree /Particle]	[Hartree /Particle]	[kJ mol ⁻¹]	(gas) [kJ mol ⁻¹]
2	0.104457	0.116538	-761.2426764	395.98
2a	0.102811	0.112126	-557.1613606	368.716
3	0.130109	0.141924	-653.6984105	835.99
3a	0.077560	0.086054	-504.8619225	-202.26
Anion of 5	0.091944	0.103461	-760.7472464	272.83
5a	0.069003	0.075487	-446.6854977	435.67
NH ₂ NO ₂	0.039257	0.043909	-260.4931748	-6.11
GC	0.088401	0.094647	-205.2570335	575.85
CH ₃ NH ₂	0.064026	0.068401	-95.5938424	-23.00
NHNO ₂ -	0.026168	0.030444	-259.936099	-6.74
NH ₃	0.034384	0.038203	-56.4154647	-45.90
CH ₄	0.044793	0.048605	-40.3796224	-74.6

2. X-Ray Crystallographic data¹⁻³

Table S2 Crystallographic data and structure determination details for 2, 3, and 5

	2	3	5
CCDC number	2194109	2194110	2194111
$D_{\text{calc.}}$ (g cm ⁻³)	1.929	1.814	2.617
$T(\mathbf{K})$	100(2)	100(2)	100(18)
Crystal system	Orthorhombic	Orthorhombic	triclinic
Space group	Pnma	Pbca	<i>P</i> -1
a (Å)	13.2552(15)	12.7205(2)	7.72210(14)
b (Å)	6.7087(8)	8.76982(17)	8.01862(17)
c (Å)	7.6337(7)	15.3669(2)	8.13576(19)
α (°)	90	90	111.928(2)
β (°)	90	90	103.0549(18)
γ (°)	90	90	106.0137(17)
$V(Å^3)$	678.83(13)	1714.27(5)	417.516(17)
Z	4	8	2
<i>⊕</i> min°	4.044	5.758	6.309
∂max°	31.021	78.760	79.935
Rint	0.0341	0.0306	0.0439
GoF	1.040	1.033	1.112
wR ₂ (all data)	0.1845	0.0805	0.0678
$\mathrm{wR}_2[I > 2\sigma(I)]$	0.1683	0.0786	0.0678
R_1 (all data)	0.0789	0.0341	0.0258
$R_1[I > 2\sigma(I)]$	0.0639	0.0307	0.0256

Compound 2

Figure S1. Molecular structure of 2

Figure S2. Ball-and-stick packing diagram of 2 viewed up the c axis

Table S3: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³)

Atom	Х	У	Z	U_{eq}
01	5655.7(16)	7500	11001(3)	18.3(6)
02	7355.6(13)	5894(3)	3449(2)	19.7(5)
N1	5376.0(17)	7500	5167(3)	12.7(6)
N2	6352(2)	7500	9676(3)	16.4(6)
N3	4657.4(19)	7500	10345(4)	15.3(6)
N4	4068.7(18)	7500	7369(3)	14.3(6)
N5	7080.8(18)	7500	6014(3)	13.0(6)
N6	7247(2)	7500	4157(3)	15.0(6)
N7	3714(2)	7500	4419(3)	15.9(6)
C1	6116(2)	7500	6384(4)	12.5(6)
C2	5825(2)	7500	8212(4)	12.7(6)
C3	4779(2)	7500	8656(4)	13.2(6)
C4	4402(2)	7500	5663(4)	13.0(6)

for **2**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Table S4: Anisotropic Displacement Parameters (×10⁴) for **2**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$ \$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	10.3(11)	37.8(14)	6.8(10)	0	0.2(7)	0
02	23.0(9)	21.2(9)	15.0(8)	-3.6(6)	4.3(6)	0.6(7)
N1	7.0(12)	19.4(14)	11.7(12)	0	0.5(8)	0
N2	10.8(12)	28.4(15)	10.1(12)	0	1.6(9)	0
N3	7.5(12)	22.9(14)	15.5(13)	0	-0.2(9)	0
N4	5.6(10)	24.4(15)	13.0(12)	0	-0.4(8)	0
N5	7.8(12)	24.8(14)	6.5(11)	0	0.4(8)	0
N6	10.6(12)	22.4(14)	11.9(12)	0	1.3(9)	0
N7	9.5(12)	24.9(14)	13.2(12)	0	-1.7(9)	0
C1	8.1(14)	15.5(15)	13.7(14)	0	0.0(9)	0
C2	7.9(12)	16.3(15)	13.8(14)	0	0.4(10)	0
C3	8.0(13)	16.8(15)	14.8(14)	0	0.5(10)	0
C4	8.1(14)	18.7(15)	12.3(14)	0	-0.2(9)	0

 Table S5: Bond Lengths in Å for 2.

Atom	Atom	Length/Å
01	N2	1.369(3)
01	N3	1.415(3)
02	N6	1.214(2)
N1	C1	1.351(4)
N1	C4	1.345(4)
N2	C2	1.318(4)
N3	C3	1.299(4)
N4	C3	1.361(4)
N4	C4	1.375(4)
٧5	N6	1.434(3)
٧5	C1	1.310(4)
٧7	C4	1.316(4)
.1	C2	1.447(4)
22	C3	1.427(4)

Atom	Atom	Atom	Angle/°
N2	01	N3	111.7(2)
C4	N1	C1	120.2(3)
C2	N2	01	105.6(2)
C3	N3	01	103.6(2)
C3	N4	C4	117.5(2)
C1	N5	N6	111.3(2)
021	N6	02	125.2(3)
02	N6	N5	117.26(13)
021	N6	N5	117.26(13)
N1	C1	C2	118.0(3)
N5	C1	N1	124.1(3)
N5	C1	C2	117.9(3)
N2	C2	C1	132.5(3)
N2	C2	C3	108.3(3)
C3	C2	C1	119.2(3)
N3	C3	N4	129.1(3)
N3	C3	C2	110.9(3)
N4	C3	C2	120.0(3)
N1	C4	N4	125.1(3)
N7	C4	N1	117.5(3)
N7	C4	N4	117.4(3)

 $---^{1}+x,3/2-y,+z$

Table S7: Torsion Angles in $^{\circ}$ for **2**.

Atom	Atom	Atom	Atom	Angle/°
01	N2	C2	C1	180.000(1)
01	N2	C2	C3	0.000(1)
01	N3	C3	N4	180.000(1)
01	N3	C3	C2	0.000(1)
N1	C1	C2	N2	180.000(1)
N1	C1	C2	C3	0.000(1)
N2	01	N3	C3	0.000(1)
N2	C2	C3	N3	0.000(1)
N2	C2	C3	N4	180.000(1)
N3	01	N2	C2	0.000(1)
N5	C1	C2	N2	0.000(1)
N5	C1	C2	C3	180.000(1)
N6	N5	C1	N1	0.000(1)
N6	N5	C1	C2	180.000(0)
C1	N1	C4	N4	0.000(1)
C1	N1	C4	N7	180.000(0)
C1	N5	N6	021	93.1(2)
C1	N5	N6	02	-93.1(2)
C1	C2	C3	N3	180.000(1)
C1	C2	C3	N4	0.000(1)
C3	N4	C4	N1	0.000(1)
C3	N4	C4	N7	180.000(0)
C4	N1	C1	N5	180.000(0)
C4	N1	C1	C2	0.000(1)
C4	N4	C3	N3	180.000(1)

Atom	Atom	Atom	Atom	Angle/°
C4	N4	С3	C2	0.000(1)
¹ +>	x,3/2-y,+z			

Table S8: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **2**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	Х		у	Z	U _{eq}
H4	3420.62	7500		7619.01	17
H7A	3899.17	7500		3312.2	19
H7B	3069.73	7500		4695.11	19

Table S9: Hydrogen Bond information for 2.

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/deg
N4	H4	$N5^1$	0.88	2.06	2.910(3)	162.1
	¹ -1/2+x,3	/2-y,3/2-z				

Compound 3

Figure S3. Molecular structure of 3

Figure S4. Ball-and-stick packing diagram of 3 viewed up the a axis

Atom	х	у	Z	U_{eq}
01	8326.6(7)	7351.1(11)	2470.9(6)	15.9(2)
02	5694.6(7)	5482.4(11)	3499.7(6)	16.6(2)
03	6816.7(7)	3932.1(11)	4219.9(6)	15.5(2)
N1	7346.6(8)	6878.0(12)	2715.5(7)	14.9(2)
N2	9103.2(9)	6506.8(13)	2886.0(7)	15.3(2)
N3	9066.2(9)	4438.5(13)	3893.8(7)	13.8(2)
N4	10795.4(9)	5146.9(14)	3585.7(7)	15.7(2)
N5	10461.4(9)	3174.7(13)	4523.3(7)	15.8(2)
C1	7491.1(10)	5772.1(14)	3268.7(8)	13.0(3)
C2	8598.8(10)	5529.8(14)	3372.0(8)	13.0(3)
C3	6623.2(10)	4958.3(14)	3715.1(8)	12.5(3)
C4	10129.0(10)	4250.4(15)	3993.3(8)	13.1(3)
04	4387.6(7)	3824.5(12)	4363.0(7)	21.9(2)
05	3020.1(7)	4737.1(12)	3707.5(6)	20.3(2)
06	2837.2(7)	3050.1(11)	4735.9(6)	19.5(2)
N6	3394.7(8)	3874.8(13)	4263.0(7)	14.3(2)

Table S10: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **3**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Table S11: Anisotropic Displacement Parameters (×10⁴) for **3**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	<i>U</i> ₁₁	U ₂₂	U 33	U 23	U ₁₃	U ₁₂
01	12.4(4)	17.1(5)	18.2(4)	2.6(4)	0.9(3)	-0.5(3)
02	10.2(4)	21.2(5)	18.6(4)	5.2(4)	0.1(3)	1.3(3)
03	13.8(4)	16.4(5)	16.5(4)	2.4(4)	-0.7(3)	1.0(3)
N1	11.9(5)	16.6(5)	16.1(5)	-0.8(4)	1.8(4)	-1.5(4)

Atom	<i>U</i> ₁₁	U ₂₂	U 33	U 23	U ₁₃	<i>U</i> ₁₂
N2	13.2(5)	15.9(5)	16.8(5)	0.0(4)	0.1(4)	1.7(4)
N3	10.6(5)	14.3(5)	16.6(5)	1.5(4)	0.7(4)	-1.1(4)
N4	10.3(5)	18.3(6)	18.4(5)	3.2(4)	1.0(4)	0.6(4)
N5	11.1(5)	18.1(6)	18.2(5)	2.3(4)	0.3(4)	-1.0(4)
C1	11.8(6)	14.2(5)	13.1(5)	-2.1(5)	-0.2(4)	0.8(4)
C2	11.8(6)	13.8(6)	13.5(5)	-3.8(5)	0.7(4)	-0.1(4)
C3	11.2(6)	14.2(6)	11.9(5)	-2.5(5)	0.2(4)	0.1(4)
C4	12.0(6)	15.2(6)	12.2(5)	-4.0(5)	-0.3(4)	-0.2(5)
04	8.9(4)	28.2(6)	28.6(5)	11.7(4)	-0.7(4)	-0.6(4)
05	14.2(5)	26.1(5)	20.7(5)	9.4(4)	-2.1(4)	1.4(4)
06	15.3(5)	21.6(5)	21.6(5)	5.9(4)	3.2(4)	-5.4(4)
N6	11.4(5)	16.1(5)	15.4(5)	0.1(4)	0.5(4)	-0.8(4)

Table S12: Bond Lengths in Å for 3.

Atom	Atom	Length/Å
01	N1	1.3666(13)
01	N2	1.3896(14)
02	C3	1.3100(15)
03	C3	1.2134(16)
N1	C1	1.3027(17)
N2	C2	1.3052(17)
N3	C2	1.3829(17)
N3	C4	1.3705(16)
N4	C4	1.3150(17)
N5	C4	1.3161(17)
C1	C2	1.4338(17)
C1	C3	1.4828(17)
04	N6	1.2731(14)
05	N6	1.2360(15)
06	N6	1.2466(15)

Table S13: Bond Angles in ° for **3**.

Atom	Atom	Atom	Angle/°
N1	01	N2	111.13(9)
C1	N1	01	106.07(10)
C2	N2	01	105.25(10)
C4	N3	C2	124.90(11)
N1	C1	C2	108.74(11)
N1	C1	C3	123.72(11)
C2	C1	C3	127.53(11)
N2	C2	N3	125.08(12)
N2	C2	C1	108.82(11)
N3	C2	C1	126.10(11)
02	C3	C1	112.68(11)
03	C3	02	127.21(12)
03	C3	C1	120.11(11)
N4	C4	N3	120.72(12)
N4	C4	N5	121.08(12)
N5	C4	N3	118.18(12)
05	N6	04	119.15(11)
05	N6	06	122.57(11)

Atom	Atom	Atom	Angle/°	
06	N6	04	118.29(11)	

Table S14: Torsion Angles in ° for 3.

Atom	Atom	Atom	Atom	Angle/°
01	N1	C1	C2	-0.47(13)
01	N1	C1	C3	178.29(11)
01	N2	C2	N3	179.01(11)
01	N2	C2	C1	-0.60(13)
N1	01	N2	C2	0.33(13)
N1	C1	C2	N2	0.71(14)
N1	C1	C2	N3	-178.90(11)
N1	C1	C3	02	-0.66(17)
N1	C1	C3	03	179.62(12)
N2	01	N1	C1	0.11(13)
C2	N3	C4	N4	0.65(19)
C2	N3	C4	N5	179.02(11)
C2	C1	C3	02	177.87(11)
C2	C1	C3	03	-1.9(2)
C3	C1	C2	N2	-177.99(12)
C3	C1	C2	N3	2.4(2)
C4	N3	C2	N2	1.8(2)
C4	N3	C2	C1	-178.69(12)

Table S15: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **3**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	у	Z	U _{eq}
H2	5190(20)	4940(30)	3808(15)	48(6)
H3	8684(17)	3860(20)	4168(13)	30(5)
H4A	11493(17)	5010(20)	3657(12)	25(4)
H4B	10576(16)	5800(20)	3232(13)	28(5)
H5A	10020(17)	2600(20)	4806(12)	31(5)
H5B	11148(17)	3050(20)	4579(12)	27(5)

 Table S16: Hydrogen Bond information for 3.

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/deg
02	H2	04	0.93(2)	1.65(3)	2.5764(13)	174(2)
N4	H4A	05 ¹	0.90(2)	1.96(2)	2.8587(15)	175.2(18)
N4	H4B	N2	0.84(2)	2.04(2)	2.6855(16)	133.0(18)
N5	H5A	04 ²	0.87(2)	1.96(2)	2.8051(15)	163.6(19)
1.4	21.10	1 10 1				

----¹1+x,+y,+z; ²1/2+x,1/2-y,1-z

Compound 5

Figure S5. Molecular structure of 5

Figure S6. Ball-and-stick packing diagram of 5

Table S17: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **5**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
Cs1	-2359.9(3)	2451.0(3)	665.5(3)	14.54(10)
01	1152(4)	2439(4)	3468(4)	15.7(5)
02	8643(4)	6550(4)	10734(4)	16.4(5)
03	7113(4)	8444(4)	11532(4)	19.0(6)
N1	2087(5)	1344(5)	2546(5)	14.9(6)
N2	2301(5)	3743(5)	5355(5)	15.1(6)

Atom	X	У	Z	U_{eq}
N3	5214(5)	1335(5)	3690(5)	14.3(6)
N4	7029(5)	3694(5)	7111(4)	12.1(6)
N5	8200(5)	1644(5)	5378(5)	14.6(6)
N6	5636(5)	5873(4)	8751(4)	12.7(6)
N7	7208(5)	6965(5)	10373(4)	12.2(6)
C1	3781(5)	1970(5)	3890(5)	12.2(7)
C2	6727(5)	2207(5)	5342(5)	11.7(7)
C3	5675(5)	4369(5)	7272(5)	10.7(7)
C4	3890(5)	3449(5)	5615(5)	12.3(7)

Table S18: Anisotropic Displacement Parameters (×10⁴) for **5**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	<i>U</i> ₁₁	U 22	U 33	U 23	U ₁₃	<i>U</i> ₁₂
Cs1	12.34(15)	16.25(14)	13.64(14)	5.33(10)	2.7(1)	7.76(10)
01	8.8(13)	19.6(13)	15.1(13)	6.0(11)	1.9(11)	5.5(11)
02	10.5(13)	18.6(13)	15.0(13)	4.0(11)	0.5(11)	7.6(11)
03	18.6(15)	16.9(13)	11.9(13)	-2.0(11)	2.8(11)	8.5(11)
N1	12.1(16)	15.7(15)	13.0(15)	5.0(13)	2.7(13)	4.0(13)
N2	9.6(15)	16.6(15)	12.7(15)	4.9(13)	0.2(12)	2.0(12)
N3	10.2(15)	15.5(15)	13.4(15)	4.4(12)	2.2(12)	4.6(12)
N4	8.1(14)	12.5(14)	10.0(14)	2.2(12)	1.5(12)	2.0(12)
N5	10.2(16)	14.3(16)	13.8(16)	0.8(13)	2.4(13)	6.8(13)
N6	10.4(15)	13.8(14)	10.2(14)	3.9(12)	2.5(12)	3.3(12)
N7	11.7(14)	12.8(14)	9.4(13)	3.1(11)	4.2(12)	3.6(12)
C1	11.7(18)	12.0(16)	10.0(16)	5.0(13)	1.9(14)	2.8(14)
C2	7.7(17)	10.2(15)	11.0(16)	2.5(13)	1.4(13)	0.1(13)
C3	9.1(17)	11.3(16)	11.2(16)	5.9(13)	3.9(13)	2.4(13)
<u>C4</u>	10.4(17)	12.7(16)	14.2(17)	7.3(14)	4.5(14)	3.6(14)

 Table S19:
 Bond Lengths in Å for 5.

Atom	Atom	Length/Å
Cs1	01	3.129(3)
Cs1	02 ¹	3.138(3)
Cs1	O2 ²	3.327(3)
Cs1	O3 ³	3.436(3)
Cs1	034	3.477(3)
Cs1	N1 ⁵	3.286(3)
Cs1	N2 ³	3.504(3)
Cs1	N3 ⁶	3.629(3)
Cs1	N3 ⁵	3.373(3)
Cs1	N4 ¹	3.373(3)
Cs1	N6 ³	3.221(3)
Cs1	C1 ⁵	3.703(4)
01	N1	1.399(4)
01	N2	1.382(4)
02	N7	1.246(4)
03	N7	1.243(4)
N1	C1	1.319(5)
N2	C4	1.298(5)
N3	C1	1.357(5)

Atom	Atom	Length/Å
N3	C2	1.341(5)
N4	C2	1.400(5)
N4	C3	1.313(5)
N5	C2	1.333(5)
N6	N7	1.345(5)
N6	C3	1.362(5)
C1	C4	1.425(5)
C3	C4	1.456(5)

----¹-1+x,+y,-1+z; ²1-x,1-y,1-z; ³-x,1-y,1-z; ⁴-1+x,-1+y,-1+z; ⁵-x,-y,-z; ⁶-1+x,+y,+z

Table S20: Bond Angles in ° for 5.

Atom	Atom	Atom	Angle/°
01	Cel	021	110.85(7)
01		02^{2}	72 55(7)
01		02	59 91(7)
01	Cs1	034	157 12(7)
01	Cs1	N15	84 45(8)
01	Cs1	N24	86 87(7)
01	Cs1	N36	82 74(7)
01	Cs1	N35	123 89(8)
01	Cs1	N41	135 09(7)
01	Cs1	N64	133.07(7) 133.47(7)
01	Cs1	C1 ⁵	104 51(8)
02^{1}	Cs1	02^{2}	70.05(8)
02^{2}	Cs1	033	110 50(7)
02^{1}	Cs1	033	168 73(7)
02^{2}	Cs1	0.3^{4}	129 37(7)
02^{1}	Cs1	0.3^{4}	86 01(7)
02^{1}	Cs1	N1 ⁵	124 25(8)
02^{2}	Cs1	N24	11702(7)
02^{1}	Cs1	N24	63.24(7)
02^{2}	Cs1	N36	155.29(7)
02^{1}	Cs1	N3 ⁵	113.23(7)
02^{1}	Cs1	N3 ⁶	120.47(7)
02 ²	Cs1	N3 ⁵	91.70(7)
02 ²	Cs1	$N4^1$	62.99(7)
02 ¹	Cs1	$N4^1$	48.55(7)
02 ¹	Cs1	$N6^4$	67.72(7)
02 ²	Cs1	C1 ⁵	75.90(7)
02 ¹	Cs1	C1 ⁵	119.22(7)
034	Cs1	03 ³	101.25(6)
O3 ³	Cs1	$N2^4$	108.12(7)
034	Cs1	$N2^4$	87.32(7)
03 ³	Cs1	N36	54.50(7)
034	Cs1	N36	75.20(7)
034	Cs1	C1 ⁵	78.60(7)
O3 ³	Cs1	C1 ⁵	71.08(7)
N1 ⁵	Cs1	O2 ²	64.30(7)
N1 ⁵	Cs1	O3 ³	63.55(7)
N1 ⁵	Cs1	034	99.03(7)
N1 ⁵	Cs1	$N2^4$	170.28(8)
N1 ⁵	Cs1	N3 ⁵	41.99(8)

Atom	Atom	Atom	Angle/°
N1 ⁵	<u>(s1</u>	N36	114 37(8)
N15	Col	NA1	82 15(8)
N15	Cs1	C15	20.67(8)
N24	Cs1	N36	59 98(7)
N24	Cs1	C15	165 31(8)
N25	Col	034	5713(7)
N25	Col	033	78 04(7)
N25	Col	N24	144.21(8)
N35	Cs1	N26	10254(7)
N25		NJ1	102.34(7)
N36	Col	C15	11154(8)
N35	Cs1	C15	21 47(8)
Ν <i>Δ</i> 1	Col	033	21.7(0) 1/2 21(7)
NA1	Col	034	67.66(7)
NA1	Col	N24	107.00(7)
N4 ¹	Cs1	N26	107.17(0) 141.45(7)
NA ¹	Col	C1 ⁵	71 1.1(8)
N ⁴	Cs1	0.2^{2}	136 41(7)
N64	Col	02	3704(7)
N64	Cs1	033	11304(7)
N64	Col	N15	136.03(8)
N64	Col	N24	130.33(0)
N64	Col	N25	95 07(8)
N64	Col	N26	63 01(7)
N64	Col	ΝΛ1	80.98(8)
N64	Col	C15	116 53(8)
NU N1	01	Ce1	113 52(19)
N2	01	Cs1	130.9(2)
N2	01	N1	1121(3)
$Cs1^7$	02	$Cs1^2$	109 95(8)
N7	02	$Cs1^7$	113 7(2)
N7	02	$Cs1^2$	1264(2)
$Cs1^4$	02	Cs18	78 75(6)
N7	03	Cs1 ⁸	1195(2)
N7	03	Cs1 ⁴	99 7(2)
01	N1	Cs1 ⁵	155 8(2)
C1	N1	Cs1 ⁵	97 8(2)
C1	N1	01	103.9(3)
01	N2	Cs1 ⁴	141.0(2)
C4	N2	$Cs1^4$	114.2(2)
C4	N2	01	104.7(3)
Cs1 ⁵	N3	Cs1 ⁹	77.46(7)
C1	N3	Cs1 ⁹	117.5(2)
C1	N3	Cs1 ⁵	93.1(2)
C2	N3	Cs1 ⁹	100.3(2)
C2	N3	Cs1 ⁵	152.3(2)
C2	N3	C1	111.7(3)
C2	N4	Cs1 ⁷	114.2(2)
C3	N4	Cs1 ⁷	101.4(2)
C3	N4	C2	118.7(3)
N7	N6	$Cs1^4$	107.5(2)
N7	N6	C3	119.5(3)
C3	N6	$Cs1^4$	133.1(2)

Atom	Atom	Atom	Angle/°
Cs1 ⁷	N7	Cs1 ⁴	122.34(9)
02	N7	$Cs1^4$	171.1(2)
02	N7	Cs17	48.88(18)
02	N7	N6	124.2(3)
03	N7	Cs17	132.0(2)
03	N7	$Cs1^4$	61.75(19)
03	N7	02	121.6(3)
03	N7	N6	114.2(3)
N6	N7	Cs17	92.5(2)
N6	N7	$Cs1^4$	53.02(18)
N1	C1	Cs1 ⁵	61.5(2)
N1	C1	N3	126.2(3)
N1	C1	C4	109.2(3)
N3	C1	$Cs1^5$	65.4(2)
N3	C1	C4	124.6(3)
C4	C1	Cs1 ⁵	166.8(3)
N3	C2	N4	129.2(4)
N5	C2	N3	118.2(3)
N5	C2	N4	112.6(3)
N4	C3	Cs1 ⁷	59.07(19)
N4	C3	N6	131.2(3)
N4	C3	C4	117.7(3)
N6	C3	Cs1 ⁷	90.5(2)
N6	C3	C4	111.1(3)
C4	C3	Cs1 ⁷	130.6(2)
N2	C4	C1	110.2(3)
N2	C4	C3	132.0(4)
C1	C4	C3	117.8(3)

----¹-1+x,+y,-1+z; ²1-x,1-y,1-z; ³-1+x,-1+y,-1+z; ⁴-x,1-y,1-z; ⁵-x,-y,-z; ⁶-1+x,+y,+z; ⁷1+x,+y,1+z; ⁸1+x,1+y,1+z; ⁹1+x,+y,+z

Table S21: Torsion Angles in ° for 5.

Atom	Atom	Atom	Atom	Angle/°
Cs1	01	N1	$Cs1^1$	-44.6(6)
Cs1	01	N1	C1	162.3(2)
Cs1	01	N2	$Cs1^2$	17.2(5)
Cs1	01	N2	C4	-158.2(2)
$Cs1^3$	02	N7	$Cs1^4$	141.9(3)
$Cs1^4$	02	N7	03	120.4(3)
$Cs1^3$	02	N7	03	-97.7(3)
$Cs1^3$	02	N7	N6	83.5(4)
$Cs1^4$	02	N7	N6	-58.4(4)
$Cs1^2$	03	N7	$Cs1^4$	-109.5(2)
Cs1 ⁵	03	N7	$Cs1^4$	168.05(13)
Cs1 ⁵	03	N7	$Cs1^2$	-82.47(17)
$Cs1^2$	03	N7	02	-170.5(3)
Cs1 ⁵	03	N7	02	107.0(3)
Cs1 ⁵	03	N7	N6	-74.0(3)
$Cs1^2$	03	N7	N6	8.4(3)
$Cs1^1$	N1	C1	N3	10.5(4)
$Cs1^1$	N1	C1	C4	-169.8(2)
$Cs1^2$	N2	C4	C1	-176.1(2)

Atom	Atom	Atom	Atom	Angle/°
Cs1 ²	N2	C4	С3	2.2(5)
Cs1 ⁶	N3	C1	$Cs1^1$	77.46(15)
Cs1 ⁶	N3	C1	N1	67.3(4)
$Cs1^1$	N3	C1	N1	-10.2(4)
Cs1 ⁶	N3	C1	C4	-112.4(3)
$Cs1^1$	N3	C1	C4	170.2(3)
$Cs1^1$	N3	C2	N4	-156.3(4)
Cs1 ⁶	N3	C2	N4	121.1(4)
$Cs1^1$	N3	C2	N5	24.3(7)
Cs1 ⁶	N3	C2	N5	-58.2(3)
$Cs1^4$	N4	C2	N3	120.8(4)
$Cs1^4$	N4	C2	N5	-59.8(3)
$Cs1^4$	N4	C3	N6	59.2(4)
$Cs1^4$	N4	C3	C4	-122.8(3)
Cs1 ²	N6	N7	$Cs1^4$	129.61(10)
Cs1 ²	N6	N7	02	169.6(3)
$Cs1^2$	N6	N7	03	-9.3(3)
$Cs1^2$	N6	C3	$Cs1^4$	-130.2(2)
$Cs1^2$	N6	C3	N4	-177.7(3)
$Cs1^2$	N6	C3	C4	4.2(4)
$Cs1^1$	C1	C4	N2	-43.2(12)
$Cs1^1$	C1	C4	C3	138.2(9)
$Cs1^4$	C3	C4	N2	105.9(4)
$Cs1^4$	C3	C4	C1	-75.9(4)
01	N1	C1	Cs1 ¹	169.2(3)
01	N1	C1	N3	179.7(3)
01	N1	C1	C4	-0.6(4)
01	N2	C4	C1	0.7(4)
01	N2	C4	C3	178.9(4)
N1	01	N2	$Cs1^2$	174.3(2)
N1	01	N2	C4	-1.1(4)
N1	C1	C4	N2	0.0(4)
N1	C1	C4	C3	-178.6(3)
N2	01	N1	Cs1 ¹	154.1(4)
N2	01	N1	C1	1.0(4)
N3	C1	C4	N2	179.7(3)
N3	C1	C4	C3	1.1(5)
N4	C3	C4	N2	177.6(4)
N4	C3	C4	C1	-4.2(5)
N6	C3	C4	N2	-4.0(5)
N6	C3	C4	C1	174.2(3)
N7	N6	C3	Cs1 ⁴	49.1(3)
N7	N6	C3	N4	1.6(6)
N7	N6	C3	C4	-176.4(3)
C1	N3	C2	N4	-4.2(5)
C1	N3	C2	N5	176.5(3)
C2	N3	C1	$Cs1^1$	-167.4(3)
C2	N3	C1	N1	-177.6(3)
C2	N3	C1	C4	2.8(5)
C2	N4	C3	$Cs1^4$	125.9(3)
C2	N4	C3	N6	-174.8(3)
C2	N4	C3	C4	3.2(5)
C3	N4	C2	N3	1.3(6)

Atom	Atom	Atom	Atom	Angle/°
C3	N4	C2	N5	-179.4(3)
C3	N6	N7	$Cs1^2$	-179.5(4)
C3	N6	N7	$Cs1^4$	-49.9(3)
C3	N6	N7	02	-9.9(5)
C3	N6	N7	03	171.2(3)

----¹-x,-y,-z; ²-x,1-y,1-z; ³1-x,1-y,1-z; ⁴1+x,+y,1+z; ⁵1+x,1+y,1+z; ⁶1+x,+y,+z

Table S22: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **5**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
H5A	8130(80)	780(80)	4560(80)	19(13)
H5B	9320(80)	2240(80)	6420(80)	20(12)

 Table S23: Hydrogen Bond information for 5.

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/deg
N5	H5A	03 ¹	0.74(6)	2.25(6)	2.951(4)	159(6)
N5	H5B	O2 ²	0.91(6)	2.15(6)	3.032(4)	163(5)
¹ +y -1+y -1+7 ^{,2} 2-y 1-y 2-7						

-2.51

-x,-1+y,-1+z; ²2-x,1-y,2-z

3. NMR Spectra for compounds 2, 3, and 5

-7.58

Figure S7. ¹H NMR of Compound 2

Figure S8. ¹H NMR of Compound 3

Figure S9. ¹H NMR of Compound 5

Figure S11. ¹³C NMR of Compound 3

Figure S13. ¹⁵N NMR of Compound 2 (up; in red) and 3 (bottom; in black)

4. DSC Thermogram

Figure S14. DSC thermogram of 2 with heating rate at 5 °C per min.

Figure S15. DSC thermogram of 2 with heating rate at 10 °C per min.

Figure S16. TGA thermogram of 2 with heating rate at 5 °C per min.

Figure S17. DSC thermogram of 3 with heating rate at 5 °C per min.

Figure S18. DSC thermogram of 3 with heating rate at 10 °C per min.

Figure S19. TGA thermogram of 3 with heating rate at 5 °C per min.

Figure S20. DSC thermogram of 5 with heating rate at 5 °C per min.

Figure S21. DSC thermogram of 5 with heating rate at 10 °C per min.

Figure S22. TGA thermogram of 5 with heating rate at 5 °C per min.

Comp	$ ho^{[a]}$	$vD^{[b]}$	$P^{[c]}$	$\Delta H_{f}^{[d]}$	$T_{dec}^{[e]}$	ISf	\mathbf{FS}^{g}
Comp	$(g \cdot cm^{-3})$	$(m \ s^{-1})$	(GPa)	$(kJ mol^{-1}/kJ g^{-1})$	(°C)	[J]	[N]
2	1.88	8549	29.62	395.9/1.98	196	>40	>360
3	1.77	8392	29.37	37.9/0.16	179	>40	>360
4 ^[h]	1.82	8563	30.10	346.3/1.61	247	>40	>360
5	2.58	7284	26.44	228.7/0.69	250	>40	>360
TNT ^[i]	1.65	7303	21.30	-59.0/-0.26	295	15	353
[a] Density	measured b	y a gas py	cnometer a	t 25 °C; [b] Calcu	lated de	tonation ve	elocity; [c]
Calculated	detonation p	ressure; [d]	Calculated	l molar enthalpy of	f format	ion in solie	d state; [e]
Temperatur	re of decomp	osition (ons	et); [f] Imp	act sensitivity; [g]	Friction	sensitivity	; [h] Ref 8;
[i] Ref 9.							

Table S24. Energetic properties and detonation parameters

5. References

(1) G.M. Sheldrick, Crystal structure refinement with ShelXL, Acta Cryst. 2015, C71, 3-8.

(2) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement, and analysis program, *J. Appl. Cryst.* 2009, **42**, 339-341.

(3) G.M. Sheldrick, ShelXT-Integrated space-group and crystal-structure determination, *Acta Cryst.* 2015, A71, 3-8.

(4) L. M. Werbel, E. F. Elslager and J. L. Johnson, Synthesis of selected 3-substituted-pyrimido[5,4-e]1,2,4-triazine-5,7-diamines as potential folate antagonists, *J. Heterocyclic Chem.* 1985, **22**, 1369–1379.

(5) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03 (Revision E.01), Gaussian, Inc., Wallingford CT, **2004**.

(6) M. S. Westwell, M. S. Searle, D. J. Wales and D. H. Williams, Empirical Correlations Between Thermodynamic Properties and Intermolecular Forces, *J. Am. Chem. Soc.* 1995, 117, 5013–5015.
(7) H. Gao, C. Ye, C. M. Piekarski and J. M. Shreeve, Computational Characterization of Energetic

Salts, J. Phys. Chem. C 2007, **111**, 10718–10731.

(8) Y. Tang, K. Li, A. K. Chinnam, R. J. Staples and J. M. Shreeve, Mono-N-oxidation of heterocycle-fused pyrimidines, *Dalton Trans.*, 2021, **50**, 2143–2148.

(9) H. Gao, Q. Zhang and J. M. Shreeve, Fused heterocycle-based energetic materials (2012–2019), J. Mater. Chem. A, 2020, 8, 4193–4216