A Cu(II) MOF with laccase-like activity for colorimetric detection of 2,4-

dichlorophenol and p-nitrophenol

Baoru Wang, Peng Liu*, Yixiao Hu, Haili Zhao, Liyan Zheng* and Qiue Cao*

School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China.

* Corresponding author, Email address: pliu@ynu.edu.cn; zhengliyan@ynu.edu.cn; qecao@ynu.edu.cn.

Fig. S1 Synthesis of 5-sulfomethyl isophthalic acid (5-SMIPA).

Compound \mathbf{A} (5-methyl isophthalate): $\mathrm{H}_{2} \mathrm{SO}_{4}(4 \mathrm{~mL})$ was slowly added to solution of 5methylisophthalic acid ($1.08 \mathrm{~g}, 6 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$ and resulting mixture stirred at $75{ }^{\circ} \mathrm{C}$ for 12 h . When the reaction was end and cooled to room temperature, 10 M NaOH (aq) was added to neutralize the solution. Compound A was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed by rotary evaporation to obtain compound $\mathrm{A}(1.17 \mathrm{~g}, 94.1 \%)$. NMR spectrum was shown in Fig. S2 and Fig. S3.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.48$ (s, 1H), 8.04 (s, 2H), 3.94 (s, 6H), 2.45 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (400 MHz , Chloroform-d) δ 166.40, 138.67, 134.39, 130.47, 127.94, 52.27, 21.10.

Compound B (5-bromomethyl isophthalate): Compound A (0.832 g, 4 mmol) and NBS ($0.783 \mathrm{~g}, 4$ mmol) were dissolved in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$, then added the $\mathrm{CH}_{3} \mathrm{CN}$ solution of BPO (0.09 $\mathrm{g}, 0.4 \mathrm{mmol}$). The mixture heated under reflux under N_{2} and stirred for 6 h . After 6 h quenched BPO with water, and removed solvent. The residue was purified by flash chromatography (EtOAc : petroleum ether, 1:20) to obtain compound $\mathrm{B}(0.75 \mathrm{~g}, 65.7 \%)$. NMR spectrum was shown in Fig. S4 and Fig. S5.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.60$ (s, 1H), 8.26 (s, 2H), 4.55 (s, 2H), 3.96 (s, 6H).
${ }^{13} \mathrm{C}$ NMR (400 MHz , Chloroform-d) $8165.55,138.83,134.18,131.29,130.51,52.52,31.50$.
$1.2 \mathrm{mmol})$, TBAB $(0.008 \mathrm{~g}, 0.025 \mathrm{mmol})$ to a mixture of $\mathrm{H}_{2} \mathrm{O}$ and ethanol and stirred for 12 h . The solvent was evaporated to obtain a mixed solid.

Compound D (5-sulfomethyl isophthalic acid, 5-SMIPA): Added mixed solid, NaOH ($0.64 \mathrm{~g}, 16$ mmol) to water and stirred at $85^{\circ} \mathrm{C}$ for 3 days. Then added HCl to adjust pH to neutral conditions, the white solid precipitated was compound D (0.16 g). NMR spectrum was shown in Fig. S6 and Fig. S7.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{MeOD}$), δ (TMS, ppm) $8.50(1 \mathrm{H}, \mathrm{s}), 8.07(2 \mathrm{H}, \mathrm{s}), 4,13(2 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR ($600 \mathrm{MHz}, \mathrm{MeOD}$), δ (TMS, ppm) $\delta 173.82,137.56,132.76,132.17,128.92,56.94$.

Fig. S2. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) spectrum of 5-methyl isophthalate.

Fig. S3. ${ }^{13} \mathrm{C}$ NMR (400 MHz , Chloroform-d) spectrum of 5-methyl isophthalate.

Fig. S4. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) spectrum of 5-bromomethyl isophthalate.

Fig. S5. ${ }^{13} \mathrm{C}$ NMR (400 MHz , Chloroform-d) spectrum of 5-bromomethyl isophthalate.

Fig. S6. ${ }^{1} \mathrm{H}$ NMR (600 MHz , MeOD) spectrum of 5 -sulfomethyl isophthalic acid (5-SMIPA).

Fig. S7. ${ }^{13} \mathrm{C}$ NMR (600 MHz , MeOD) spectrum of 5-sulfomethyl isophthalic acid (5-SMIPA).

Fig. S8. (A) Crystal packing pattern along the b axis. (B) Crystal packing pattern along the a axis. (C) Specific coordination environment of Cu .

Fig. S9. (A) FTIR spectra of Cu-SM MOF and 5-SMIPA. (B) FTIR spectra of HKUST-1 and 1,3,5benzenetricarboxylic acid. (C) N_{2} adsorption isotherm of the Cu-SM MOF after drying to measure the specific surface area. (D) N_{2} adsorption isotherm of the HKUST-1 after drying to measure the specific surface area.

Fig. S10. (A) XPS spectra of Cu-SM MOF. High-resolution (B) Cu 2p, (C) O 1s, (D) N 1s, (E) S 2p, (F) C 1s.

Fig. S11. (A) XPS spectra of HKUST-1. High-resolution (B) Cu 2p, (C) O 1s, (D) C 1 s .

Fig. S12. TGA curves of Cu-SM MOF (red curve) and HKUST-1 (black curve).

Fig. S13. SEM images of (A) Cu-SM MOF and (B) HKUST-1 after grinding.

Fig. S14. PXRD patterns of (A) Cu-SM MOF and (B) HKUST-1 after grinding.

Fig. S15. Catalytic efficiency of (A) Cu-SM MOF and (B) HKUST-1 during the recycling experiment up to the 5th cycle. PXRD patterns of (C) Cu-SM MOF and (D) HKUST-1 during the recycling experiment up to the 5th cycle.

Fig. S16. Plot of absorbance at 510 nm obtained from the time-dependent kinetic data at various concentrations of 2,4-DP, (A) Cu-SM MOF, (B) HKUST-1. Lineweaver-Burk plot of (C) Cu-SM MOF, (D) HKUST-1.
A

B

Fig. S17. (A) Structure of a variety of phenolic compounds. (B) Structure of three nitrophenols. (C) Oxidation of three nitrophenols catalyzed by Cu-SM MOF.

Fig. S18. (A) XPS spectra of Cu-SM MOF incubated with 2,4-DP. High-resolution (B) Cu 2 p , (C) O 1s, (D) N 1 s, (E) $\mathrm{S} 2 \mathrm{p},(\mathrm{F}) \mathrm{Cl} 2 \mathrm{p},(\mathrm{G}) \mathrm{C} 1 \mathrm{~s}$.

Fig. S19. (A) XPS spectra of HKUST-1 incubated with 2,4-DP. High-resolution (B) Cu 2p, (C) 0 1s, (D) C 1s, (E) Cl 2p.

Fig. S20. (A) XPS spectra of Cu-SM MOF incubated with p-nitrophenol. High-resolution (B) Cu 2 p , (C) $O 1 \mathrm{~s},(\mathrm{D}) \mathrm{N} 1 \mathrm{~s},(\mathrm{E}) \mathrm{S} 2 \mathrm{p}$, (F) C 1s.

Fig. S21. FTIR spectrum of MOFs and that incubated with 2,4-DP. (A) Cu-SM MOF, (B) HKUST-1. PXRD patterns of MOFs and that incubated with 2,4-DP. (C) Cu-SM MOF, (D) HKUST-1.

Fig. S22. (A) FTIR spectrum and (B) PXRD patterns of Cu-SM MOF incubated with p-nitrophenol.

Table S1. Experimental details regarding the LOD calculation for detection of 2,4-DP and pnitrophenol.

	$\boldsymbol{\sigma}$	\boldsymbol{k}	LOD=3б/k
2,4-DP	0.002109	0.01203	$0.53 \mu \mathrm{M}$
p-nitrophenol	0.004289	0.00796	$1.62 \mu \mathrm{M}$

σ : standard deviation of blank, k : calibration curve slope from the linear relationships (Fig. 6).

Table S2. Detection of 2,4-DP.

Sample	Addition $(\mu \mathrm{M})$	Found $(\mu \mathrm{M})$	Recovery (\%)	RSD (\%)
River water	20	20.75	103.75	1.0
	50	50.62	101.24	0.8
Lake water	20	81.82	102.27	4.4
	50	21.05	105.25	0.4
	80	50.28	100.56	0.4
Tap water	20	80.33	100.41	2.0
	50	20.78	103.90	0.8
	80	81.21	102.42	1.3
			102.05	0.3

Table S3. Detection of p-nitrophenol.

Sample	Addition $(\mu \mathrm{M})$	Found $(\mu \mathrm{M})$	Recovery (\%)	RSD (\%)
River water	50	48.93	97.86	0.8
	100	99.58	99.58	1.4
Lake water	50	195.57	97.78	2.9
	200	51.29	102.58	0.8
	100	100.59	100.59	0.8
Tap water	50	202.28	101.14	0.7
	100	48.98	97.96	0.9
	200	100.88	100.88	0.1

Table S4. Crystal data and structure refinements for Cu-SM MOF.

Compound	Cu-SM MOF		
Formula	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{CuNO}_{7} \mathrm{~S}$		
M	366.82		
Temperature (K)	293 (2)		
Crystal system	trigonal		
Space group	R-3m		
a, b, c (Å)	18.733 (7)	18.733 (7)	28.218 (8)
$\alpha, 6, \gamma\left({ }^{\circ}\right)$	9090	120	
$V\left(\AA^{3}\right)$	8576 (7)		
z	18		
Dc ($\mathrm{g} / \mathrm{cm}^{3}$)	1.279		
$\mu\left(m m^{-1}\right)$	1.279		
$F(000)$	3366.0		
Reflns collected	24754		
Independent refins	2428		
R (int)	0.1366		
Data / restraints / parameters	2428/517/220		
GOF on F^{2}	1.052		
${ }^{b} R_{1}[1>2 \sigma(l)], w R_{2}$	0.0789, 0.2173		
$R_{1}\left[\right.$ all data], $w R_{2}$	0.1009, 0.2384		

Table S5. Bond Lengths for Cu-SM MOF.

Atom	Atom	Length/A
Cu1	Cu1 ${ }^{1}$	2.6250(17)
Cu1	O1 ${ }^{2}$	1.955(4)
Cu1	01	1.956(4)
Cu1	O2 ${ }^{3}$	$1.943(4)$
Cu1	O2 ${ }^{1}$	1.943(4)
Cu1	O54	2.161(6)
S1	05	1.441(6)
S1	03	1.620(13)
S1	C6	1.758(9)
S1	04	1.354(10)
01	C1	1.255(6)
02	C1	1.265(6)
C2	C3	1.383(6)
C2	C1	1.485(7)
C2	C4	1.385(7)
C5	C4	1.386(6)
C5	C4 ${ }^{5}$	1.386(6)
C5	C6	1.488(11)
C10	N2	1.458(10)
C9	N2	1.459(10)
N5	C15	1.444(10)
N5	C16	1.454(10)
C13	N4	1.447(10)
N4	C14	1.445(10)
C7	N1	1.447(10)
N1	C8	1.448(10)
C12	N3	$1.4848(4)$
C11	N3	1.455(7)

Table S6. Bond Angles for Cu-SM MOF.

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
O1 ${ }^{1}$	Cu1	Cu1 ${ }^{2}$	82.15(11)	C1	01	Cu1	125.2(3)
01	Cu1	Cu1 ${ }^{2}$	82.15(11)	C1	02	Cu1 ${ }^{2}$	120.6(3)
01^{1}	Cu1	01	89.8(2)	S1	05	Cu1 ${ }^{5}$	137.2(4)
O1 ${ }^{1}$	Cu1	05^{3}	95.17(15)	C3	C2	C1	120.2(5)
01	Cu1	05^{3}	95.17(15)	C3	C2	C4	119.2(5)
$\mathrm{O} 2^{4}$	Cu1	Cu1 ${ }^{2}$	86.49(12)	C4	C2	C1	120.4(5)
$\mathrm{O} 2^{2}$	Cu1	Cu1 ${ }^{2}$	86.49(12)	C2	C3	$C 2{ }^{6}$	120.9(7)
$\mathrm{O} 2^{4}$	Cu1	O1 ${ }^{1}$	168.58(16)	C4 ${ }^{6}$	C5	C4	119.1(7)
$\mathrm{O} 2^{4}$	Cu1	01	89.80(16)	C4	C5	C6	120.4(4)
O^{2}	Cu1	01	168.58(16)	C4 ${ }^{6}$	C5	C6	120.4(4)
$\mathrm{O} 2^{2}$	Cu1	O1 ${ }^{1}$	89.80(16)	01	C1	02	125.4(5)
02^{4}	Cu1	$\mathrm{O} 2{ }^{2}$	88.3(2)	01	C1	C2	117.0(4)
$\mathrm{O} 2^{2}$	Cu1	05^{3}	96.23(16)	02	C1	C2	117.5(4)
$\mathrm{O} 2^{4}$	Cu1	05^{3}	96.23(16)	C2	C4	C5	120.8(5)
05^{3}	Cu1	$\mathrm{Cu1}{ }^{2}$	176.19(16)	C5	C6	S1	115.3(6)
05	S1	O3	104.5(5)	C10	N2	C9	117.9(12)
05	S1	C6	106.7(4)	C15	N5	C16	119.7(12)
03	S1	C6	97.6(5)	C14	N4	C13	120.3(13)
04	S1	05	118.7(5)	C7	N1	C8	119.7(13)
04	S1	03	115.0(8)	C11	N3	C12	116.4(9)
04	S1	C6	111.9(5)				

