## A Cu(II) MOF with laccase-like activity for colorimetric detection of 2,4-

## dichlorophenol and p-nitrophenol

Baoru Wang, Peng Liu\*, Yixiao Hu, Haili Zhao, Liyan Zheng\* and Qiue Cao\*

School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China.

\* Corresponding author, Email address: <u>pliu@ynu.edu.cn; zhengliyan@ynu.edu.cn;</u> qecao@ynu.edu.cn.



Fig. S1 Synthesis of 5-sulfomethyl isophthalic acid (5-SMIPA).

Compound **A** (5-methyl isophthalate):  $H_2SO_4$  (4 mL) was slowly added to solution of 5methylisophthalic acid (1.08 g, 6 mmol) in CH<sub>3</sub>OH (20 mL) and resulting mixture stirred at 75 °C for 12 h. When the reaction was end and cooled to room temperature, 10 M NaOH (aq) was added to neutralize the solution. Compound A was extracted by CH<sub>2</sub>Cl<sub>2</sub> (150 mL) and the CH<sub>2</sub>Cl<sub>2</sub> was removed by rotary evaporation to obtain compound A (1.17 g, 94.1%). NMR spectrum was shown in Fig. S2 and Fig. S3.

<sup>1</sup>H NMR (400 MHz, Chloroform-d) δ 8.48 (s, 1H), 8.04 (s, 2H), 3.94 (s, 6H), 2.45 (s, 3H). <sup>13</sup>C NMR (400 MHz, Chloroform-d) δ 166.40, 138.67, 134.39, 130.47, 127.94, 52.27, 21.10.

Compound **B** (5-bromomethyl isophthalate): Compound A (0.832 g, 4 mmol) and NBS (0.783 g, 4 mmol) were dissolved in anhydrous  $CH_3CN$  (20 mL), then added the  $CH_3CN$  solution of BPO (0.09 g, 0.4 mmol). The mixture heated under reflux under  $N_2$  and stirred for 6 h. After 6 h quenched BPO with water, and removed solvent. The residue was purified by flash chromatography (EtOAc : petroleum ether, 1:20) to obtain compound B(0.75 g, 65.7%). NMR spectrum was shown in Fig. S4 and Fig. S5.

<sup>1</sup>H NMR (400 MHz, Chloroform-d) δ 8.60 (s, 1H), 8.26 (s, 2H), 4.55 (s, 2H), 3.96 (s, 6H).

<sup>13</sup>C NMR (400 MHz, Chloroform-d) δ165.55, 138.83, 134.18, 131.29, 130.51, 52.52, 31.50.

Compound C (5-sulfomethyl isophthalate): Added compound B (0.28 g, 1 mmol), Na<sub>2</sub>SO<sub>3</sub> (0.15 g,

1.2 mmol), TBAB (0.008g, 0.025 mmol) to a mixture of  $H_2O$  and ethanol and stirred for 12 h. The solvent was evaporated to obtain a mixed solid.

Compound **D** (5-sulfomethyl isophthalic acid, 5-SMIPA): Added mixed solid, NaOH (0.64 g, 16 mmol) to water and stirred at 85 °C for 3 days. Then added HCl to adjust pH to neutral conditions, the white solid precipitated was compound D (0.16 g). NMR spectrum was shown in Fig. S6 and Fig. S7.

<sup>1</sup>H NMR (600 MHz, MeOD),  $\delta$  (TMS, ppm) 8.50 (1H, s), 8.07 (2H, s), 4,13 (2H, s).

<sup>13</sup>C NMR (600 MHz, MeOD), δ (TMS, ppm) δ 173.82, 137.56, 132.76, 132.17, 128.92, 56.94.



Fig. S2. <sup>1</sup>H NMR (400 MHz, Chloroform-d) spectrum of 5-methyl isophthalate.



Fig. S3. <sup>13</sup>C NMR (400 MHz, Chloroform-d) spectrum of 5-methyl isophthalate.



Fig. S4. <sup>1</sup>H NMR (400 MHz, Chloroform-d) spectrum of 5-bromomethyl isophthalate.



Fig. S5. <sup>13</sup>C NMR (400 MHz, Chloroform-d) spectrum of 5-bromomethyl isophthalate.



Fig. S6. <sup>1</sup>H NMR (600 MHz, MeOD) spectrum of 5-sulfomethyl isophthalic acid (5-SMIPA).



Fig. S7. <sup>13</sup>C NMR (600 MHz, MeOD) spectrum of 5-sulfomethyl isophthalic acid (5-SMIPA).



**Fig. S8.** (A) Crystal packing pattern along the b axis. (B) Crystal packing pattern along the a axis. (C) Specific coordination environment of Cu.



**Fig. S9.** (A) FTIR spectra of Cu-SM MOF and 5-SMIPA. (B) FTIR spectra of HKUST-1 and 1,3,5benzenetricarboxylic acid. (C)  $N_2$  adsorption isotherm of the Cu-SM MOF after drying to measure the specific surface area. (D)  $N_2$  adsorption isotherm of the HKUST-1 after drying to measure the specific surface area.



Fig. S10. (A) XPS spectra of Cu-SM MOF. High-resolution (B) Cu 2p, (C) O 1s, (D) N 1s, (E) S 2p, (F) C 1s.



Fig. S11. (A) XPS spectra of HKUST-1. High-resolution (B) Cu 2p, (C) O 1s, (D) C 1s.



Fig. S12. TGA curves of Cu-SM MOF (red curve) and HKUST-1 (black curve).



Fig. S13. SEM images of (A) Cu-SM MOF and (B) HKUST-1 after grinding.



Fig. S14. PXRD patterns of (A) Cu-SM MOF and (B) HKUST-1 after grinding.



**Fig. S15.** Catalytic efficiency of (A) Cu-SM MOF and (B) HKUST-1 during the recycling experiment up to the 5th cycle. PXRD patterns of (C) Cu-SM MOF and (D) HKUST-1 during the recycling experiment up to the 5th cycle.



**Fig. S16.** Plot of absorbance at 510 nm obtained from the time-dependent kinetic data at various concentrations of 2,4-DP, (A) Cu-SM MOF, (B) HKUST-1. Lineweaver-Burk plot of (C) Cu-SM MOF, (D) HKUST-1.



**Fig. S17.** (A) Structure of a variety of phenolic compounds. (B) Structure of three nitrophenols. (C) Oxidation of three nitrophenols catalyzed by Cu-SM MOF.



**Fig. S18.** (A) XPS spectra of Cu-SM MOF incubated with 2,4-DP. High-resolution (B) Cu 2p, (C) O 1s, (D) N 1s, (E) S 2p, (F) Cl 2p, (G) C 1s.



**Fig. S19.** (A) XPS spectra of HKUST-1 incubated with 2,4-DP. High-resolution (B) Cu 2p, (C) O 1s, (D) C 1s, (E) Cl 2p.



**Fig. S20.** (A) XPS spectra of Cu-SM MOF incubated with p-nitrophenol. High-resolution (B) Cu 2p, (C) O 1s, (D) N 1s, (E) S 2p, (F) C 1s.



**Fig. S21.** FTIR spectrum of MOFs and that incubated with 2,4-DP. (A) Cu-SM MOF, (B) HKUST-1. PXRD patterns of MOFs and that incubated with 2,4-DP. (C) Cu-SM MOF, (D) HKUST-1.



Fig. S22. (A) FTIR spectrum and (B) PXRD patterns of Cu-SM MOF incubated with p-nitrophenol.

**Table S1.** Experimental details regarding the LOD calculation for detection of 2,4-DP and pnitrophenol.

|               | σ        | k       | LOD=3ơ/k |
|---------------|----------|---------|----------|
| 2,4-DP        | 0.002109 | 0.01203 | 0.53 μΜ  |
| p-nitrophenol | 0.004289 | 0.00796 | 1.62 μM  |

 $\sigma$ : standard deviation of blank, k: calibration curve slope from the linear relationships (Fig. 6).

| Sample      | Addition (µM) | Found (µM) | Recovery (%) | RSD (%) |  |  |
|-------------|---------------|------------|--------------|---------|--|--|
| River water | 20            | 20.75      | 103.75       | 1.0     |  |  |
|             | 50            | 50.62      | 101.24       | 0.8     |  |  |
|             | 80            | 81.82      | 102.27       | 4.4     |  |  |
| Lake water  | 20            | 21.05      | 105.25       | 0.4     |  |  |
|             | 50            | 50.28      | 100.56       | 0.4     |  |  |
|             | 80            | 80.33      | 100.41       | 2.0     |  |  |
| Tap water   | 20            | 20.78      | 103.90       | 0.8     |  |  |
|             | 50            | 51.21      | 102.42       | 1.3     |  |  |
|             | 80            | 81.64      | 102.05       | 0.3     |  |  |

**Table S2.** Detection of 2,4-DP.

| Table S3. Detection of p-nitro | phenol. |
|--------------------------------|---------|
|--------------------------------|---------|

| Sample      | Addition (µM) | Found (µM) | Recovery (%) | RSD (%) |
|-------------|---------------|------------|--------------|---------|
| River water | 50            | 48.93      | 97.86        | 0.8     |
|             | 100           | 99.58      | 99.58        | 1.4     |
|             | 200           | 195.57     | 97.78        | 2.9     |
| Lake water  | 50            | 51.29      | 102.58       | 0.8     |
|             | 100           | 100.59     | 100.59       | 0.8     |
|             | 200           | 202.28     | 101.14       | 0.7     |
| Tap water   | 50            | 48.98      | 97.96        | 0.9     |
|             | 100           | 100.88     | 100.88       | 0.1     |
|             | 200           | 210.16     | 105.08       | 4.1     |

| Compound                                                 | Cu-SM MOF                                           |  |  |  |  |
|----------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| Formula                                                  | C <sub>11</sub> H <sub>13</sub> CuNO <sub>7</sub> S |  |  |  |  |
| Μ                                                        | 366.82                                              |  |  |  |  |
| Temperature (K)                                          | 293 (2)                                             |  |  |  |  |
| Crystal system                                           | trigonal                                            |  |  |  |  |
| Space group                                              | R-3 <i>m</i>                                        |  |  |  |  |
| a, b, c (Å)                                              | 18.733 (7) 18.733 (7) 28.218 (8)                    |  |  |  |  |
| α, β, γ (°)                                              | 90 90 120                                           |  |  |  |  |
| V (Å <sup>3</sup> )                                      | 8576 (7)                                            |  |  |  |  |
| Ζ                                                        | 18                                                  |  |  |  |  |
| Dc (g/cm³)                                               | 1.279                                               |  |  |  |  |
| μ (mm <sup>-1</sup> )                                    | 1.279                                               |  |  |  |  |
| F (000)                                                  | 3366.0                                              |  |  |  |  |
| Reflns collected                                         | 24754                                               |  |  |  |  |
| Independent refins                                       | 2428                                                |  |  |  |  |
| R (int)                                                  | 0.1366                                              |  |  |  |  |
| Data / restraints / parameters                           | 2428/517/220                                        |  |  |  |  |
| GOF on F <sup>2</sup>                                    | 1.052                                               |  |  |  |  |
| <sup>b</sup> R <sub>1</sub> [I>2σ (I )], wR <sub>2</sub> | 0.0789, 0.2173                                      |  |  |  |  |
| R1[all data], wR2                                        | 0.1009, 0.2384                                      |  |  |  |  |

**Table S4.** Crystal data and structure refinements for Cu-SM MOF.

| Atom | Atom             | Length/Å   |
|------|------------------|------------|
| Cu1  | Cu1 <sup>1</sup> | 2.6250(17) |
| Cu1  | O1 <sup>2</sup>  | 1.955(4)   |
| Cu1  | 01               | 1.956(4)   |
| Cu1  | O2 <sup>3</sup>  | 1.943(4)   |
| Cu1  | O2 <sup>1</sup>  | 1.943(4)   |
| Cu1  | O5 <sup>4</sup>  | 2.161(6)   |
| S1   | 05               | 1.441(6)   |
| S1   | 03               | 1.620(13)  |
| S1   | C6               | 1.758(9)   |
| S1   | 04               | 1.354(10)  |
| 01   | C1               | 1.255(6)   |
| 02   | C1               | 1.265(6)   |
| C2   | C3               | 1.383(6)   |
| C2   | C1               | 1.485(7)   |
| C2   | C4               | 1.385(7)   |
| C5   | C4               | 1.386(6)   |
| C5   | C4 <sup>5</sup>  | 1.386(6)   |
| C5   | C6               | 1.488(11)  |
| C10  | N2               | 1.458(10)  |
| С9   | N2               | 1.459(10)  |
| N5   | C15              | 1.444(10)  |
| N5   | C16              | 1.454(10)  |
| C13  | N4               | 1.447(10)  |
| N4   | C14              | 1.445(10)  |
| C7   | N1               | 1.447(10)  |
| N1   | C8               | 1.448(10)  |
| C12  | N3               | 1.4848(4)  |
| C11  | N3               | 1.455(7)   |

**Table S5.** Bond Lengths for Cu-SM MOF. <sup>1</sup>1-X.-Y.-Z: <sup>2</sup>1+Y-X.+Y.+Z: <sup>3</sup>-Y+X.-Y.-Z: <sup>4</sup>-1/3-Y+X.-2/3+X.1/3-Z: <sup>5</sup>+X.-1+X-Y.+Z

 Table S6.
 Bond Angles for Cu-SM MOF.

| <sup>1</sup> 1+Y-X +Y +7 <sup>,2</sup> 1-X -Y -7 <sup>,3</sup> -1/3-Y+X -2/3+X 1/3-7 <sup>,4</sup> -Y+X -Y -7 <sup>,5</sup> 2/3+Y 1/3-) | (+Y 1/3-7 <sup>.6</sup> +X -1+X-Y +7                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                                                                                                                                         | (1,1,1,3,2,1,3,2,1,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 |

| Atom            | Atom | Atom             | Angle/°    | Atom            | Atom | Atom             | Angle/°   |
|-----------------|------|------------------|------------|-----------------|------|------------------|-----------|
| 011             | Cu1  | Cu1 <sup>2</sup> | 82.15(11)  | C1              | 01   | Cu1              | 125.2(3)  |
| 01              | Cu1  | Cu1 <sup>2</sup> | 82.15(11)  | C1              | 02   | Cu1 <sup>2</sup> | 120.6(3)  |
| 01 <sup>1</sup> | Cu1  | 01               | 89.8(2)    | S1              | 05   | Cu1 <sup>5</sup> | 137.2(4)  |
| 01 <sup>1</sup> | Cu1  | 05 <sup>3</sup>  | 95.17(15)  | C3              | C2   | C1               | 120.2(5)  |
| 01              | Cu1  | 05 <sup>3</sup>  | 95.17(15)  | C3              | C2   | C4               | 119.2(5)  |
| O2 <sup>4</sup> | Cu1  | Cu1 <sup>2</sup> | 86.49(12)  | C4              | C2   | C1               | 120.4(5)  |
| O2 <sup>2</sup> | Cu1  | Cu1 <sup>2</sup> | 86.49(12)  | C2              | C3   | C2 <sup>6</sup>  | 120.9(7)  |
| O2 <sup>4</sup> | Cu1  | 011              | 168.58(16) | C4 <sup>6</sup> | C5   | C4               | 119.1(7)  |
| O2 <sup>4</sup> | Cu1  | 01               | 89.80(16)  | C4              | C5   | C6               | 120.4(4)  |
| O2 <sup>2</sup> | Cu1  | 01               | 168.58(16) | C4 <sup>6</sup> | C5   | C6               | 120.4(4)  |
| O2 <sup>2</sup> | Cu1  | 011              | 89.80(16)  | 01              | C1   | 02               | 125.4(5)  |
| O2 <sup>4</sup> | Cu1  | O2 <sup>2</sup>  | 88.3(2)    | 01              | C1   | C2               | 117.0(4)  |
| O2 <sup>2</sup> | Cu1  | 05 <sup>3</sup>  | 96.23(16)  | 02              | C1   | C2               | 117.5(4)  |
| O2 <sup>4</sup> | Cu1  | 05 <sup>3</sup>  | 96.23(16)  | C2              | C4   | C5               | 120.8(5)  |
| O5 <sup>3</sup> | Cu1  | Cu1 <sup>2</sup> | 176.19(16) | C5              | C6   | S1               | 115.3(6)  |
| 05              | S1   | 03               | 104.5(5)   | C10             | N2   | C9               | 117.9(12) |
| 05              | S1   | C6               | 106.7(4)   | C15             | N5   | C16              | 119.7(12) |
| 03              | S1   | C6               | 97.6(5)    | C14             | N4   | C13              | 120.3(13) |
| 04              | S1   | 05               | 118.7(5)   | C7              | N1   | C8               | 119.7(13) |
| 04              | S1   | 03               | 115.0(8)   | C11             | N3   | C12              | 116.4(9)  |
| 04              | S1   | C6               | 111.9(5)   |                 |      |                  |           |