Supporting Information

Control of Spin Coupling Through Redox-active Bridge in Dinickel(II) Porphyrin Dimer: Step-wise Oxidations Enable Isolations of the Chlorinporphyrin Heterodimer and Dication Diradical with Singlet Ground State

Younis Ahmad Pandit, Mohammad Usman, Anindya Sarkar, Syed Jehanger Shah, and Sankar Prasad Rath*

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, INDIA. Email: sprath@iitk.ac.in

Fig. S1. An ORTEP diagram (at 100 K) of **1**•Ni showing thermal ellipsoids at the 50% probability level for non-hydrogen atoms.

Fig. S2. Diagram depicting the molecular packing of **1**•Ni.2CHCl₃ in the unit cell (H-atoms have been omitted for clarity).

Figure S3. UV-vis-NIR (in CH_2Cl_2 at 295 K) spectral changes recorded at different time intervals upon standing of **1**•Ni•DDQ in air.

Fig. S4. ORTEP diagrams (at 100 K) of (A) $1 \cdot Cu$ and (B) $2 \cdot Cu \cdot I_3$ showing thermal ellipsoids at the 50% probability level for non-hydrogen atoms.

Figure S5. UV-vis-NIR (in CH_2Cl_2 at 295 K) spectral change of 2.0 x 10⁻⁵ M solution of **1**•Ni upon addition of (A) 0 to 1.0 eq. and (B) 1.0 to 2.0 eq. of AgSbF₆. (C) Comparison of UV-vis-NIR spectra (in CH_2Cl_2 at 295 K) of **1**•Ni (red line), **3**•Ni•SbF₆ (blue line) and **4**•Ni•(SbF₆)₂ (green line).

Figure S6. Comparative UV-vis-NIR spectra (in CH_2Cl_2 at 295 K) of $4 \cdot Ni \cdot (FeCl_4)_2$ (blue line) and $4 \cdot Ni \cdot (SbF_6)_2$ (red line).

Figure S7. Isotopic distribution of the (A) experimental and (B) simulated ESI mass spectrum (positive-ion mode) of [**2**•Ni•DDQ +H]⁺.

Figure S8. Isotopic distribution of the (A) experimental and (B) simulated ESI mass spectrum (positive-ion mode) of [4•Ni]²⁺.

Figure S9. FT-IR spectra (at 295 K) (selected portions only) of solid polycrystalline samples of **1**•Ni (blue line) and **4**•Ni•(FeCl₄)₂ (red line). The π -cation radical marker bands in **4**•Ni•(FeCl₄)₂ have been labelled.

Fig. S10. An ORTEP diagram (at 100 K) of $4 \cdot \text{Ni} \cdot (\text{FeCl}_4)_2$ showing thermal ellipsoids at the 50% probability level for non-hydrogen atoms.

Fig. S11. Diagram depicting the molecular packing of $4 \cdot \text{Ni} \cdot (\text{FeCl}_4)_2 \cdot 2\text{CH}_2\text{Cl}_2$ in the unit cell (H-atoms have been omitted for clarity).

Fig. S12. ¹H NMR spectra (in CDCl₃ at 295 K) of **2**•Ni•DDQ.