Synthesis and Stereochemistry of Chiral Aza-boraspirobifluorenes with Tetrahedral Boronstereogenic Centers

Yusuke Yoshigoe ${ }^{1 *}$, Keiichiro Hashizume ${ }^{1}$, Shinichi Saito ${ }^{*}$<br>${ }^{\dagger}$ Department of Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan

Table of Contents

1. General
2. Detailed Procedure of Synthesis
3. Isolation of the enantiomers of $\mathbf{1 a - 1 f}$ by high-performance liquid chromatography (HPLC)
4. X-ray crystallographic structure of 1a-i
5. First-order Kinetic Plots of Racemization of 1a-i
6. Optical Absorption (UV-vis), Emission (Fluorescence), and Circular Dichroism (CD) Spectra Measurements.
7. Theoretical calculations
References and Notes
NMR chart

## 1. General

All reactions were carried out under an argon atmosphere unless otherwise noted. All reagents were purchased from commercial sources (TCI, Wako, and Aldrich) and used without further purification unless otherwise noted. Unless otherwise noted, flamedried flasks or flame-dried Schlenk tubes were used for the reactions. NMR spectra were recorded on JEOL ECZ 400S, and Bruker-Biospin AVANCE NEO $400\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ NMR, 100 MHz for ${ }^{13} \mathrm{C}$ NMR, 368 MHz for ${ }^{19} \mathrm{~F}$ NMR, and 128 MHz for ${ }^{11} \mathrm{~B}$ NMR) spectrometers. Proton and carbon chemical shifts are reported relative to the residual solvent $\left(\mathrm{CHCl}_{3}\left(\delta 7.24\right.\right.$ for ${ }^{1} \mathrm{H}$ NMR, and $\delta 77.16$ for $\left.{ }^{13} \mathrm{C} \mathrm{NMR}\right)$ ) used as an internal reference. Fluorine chemical shifts are reported relative to hexafluorobenzene ( $\delta-164.9$ ) as an external reference. Borane chemical shifts are reported relative to the trifluoroborane diethyl ether complex ( $\delta 0.0$ ) as an external reference. Multiplicity is indicated by s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), or m (multiplet). Coupling constants, $J$, are reported in Hz. IR spectra were recorded on a JASCO FT/IR4600 spectrometer equipped with a diamond ATR module. GPC separation was performed on JAI NEXT equipped with a YMC-GPC T-30000 ( 21.2 mm ID $\times 600 \mathrm{~mm}$ L ) column using $\mathrm{CHCl}_{3}$ as the eluent. Thin layer chromatography (TLC) was performed on Merck silica gel 60F-254 plates. Column chromatography was performed using Kanto Chemical silica gel 60N (spherical, neutral 50-60 $\mu \mathrm{m}$ ). High-resolution mass spectra (HR-MS) were obtained by using Sciex ESI-MS X500R (for ESI-MS) with a quadrupole time-of-flight (QTOF) mass analyzer, or JEOL JMS-700 (for EI-MS).

## 2. Detailed Procedure of Synthesis

 Synthesis of pyridine-borane complex (2) ${ }^{1}$

To a solution of 2-phenylpyridine ( $310 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv) and ${ }^{i} \operatorname{Pr}{ }_{2} \mathrm{NEt}$ ( 259 $\mathrm{mg}, 2.00 \mathrm{mmol}, 2.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}), \mathrm{BBr}_{3}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.0 \mathrm{~mL}, 6.0$ mmol, 3.0 equiv) was added at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for $24 \mathrm{~h}, \mathrm{a}$ saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with water and brine and dried over $\mathrm{MgSO}_{4}$. After removal of the solvent, the resulting solid was washed with hexane to give $\mathbf{2}$ as a white solid ( 462 mg , $1.42 \mathrm{mmol}, 71 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ( 400 MHz, CDCl $_{3}$ ): $\delta 8.94(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$. These values are consistent with those reported in the literature. ${ }^{1}$

## Synthesis of 2,2-Dibromobiphenyl derivatives

## 2,2'-Dibromo-5-methyl-1,1'-biphenyl (4)



To a mixture of 2-bromophenylboronic acid ( $4.42 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.10$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ( $1.16 \mathrm{~g}, 1.00 \mathrm{mmol}, 5 \mathrm{~mol} \%$ ) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.24 \mathrm{~g}, 40 \mathrm{mmol}, 2$ equiv), 1-bromo-1-iodo-5-methylbenzene ( $5.94 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.00$ equiv), toluene ( 80 mL ), ethanol ( 40 mL ) and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added. After being stirred at $110^{\circ} \mathrm{C}$ overnight, the mixture was cooled to room temperature. The organic layer was separated and the aqueous layer was extracted with MTBE. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane) to give $\mathbf{4}$ as a white solid ( $6.00 \mathrm{~g}, 18.4 \mathrm{mmol}, 92 \%$ yield). $\mathrm{R}_{\mathrm{f}}=$ 0.46 (silica gel, hexane).
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ $(\mathrm{td}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 142.3,141.9,137.2,132.7,132.4,131.7,131.1,130.4,129.4,127.2$, 123.7, 120.2, 21.1; IR (ATR, $\boldsymbol{v} / \mathbf{c m}^{-1}$ ): 3059, 2930, 2329, 1457, 751; HRMS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Br}_{2}$, 323.9149; Found, 323.9151.

## 2-Bromo-3'-methoxybiphenyl (S1) ${ }^{2}$




S1
To a suspension of iodine-activated magnesium turnings ( $240 \mathrm{mg}, 10.0 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF ( 11 mL ), 1-bromo-3-methoxybenzene ( $1.87 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv) was added at $0^{\circ} \mathrm{C}$. After refluxing for 2 hours, the suspension was added to a suspension of 1,2-dibromobenzene ( $2.44 \mathrm{~g}, 10.3 \mathrm{mmol}, 1.03$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(169$ $\mathrm{mg}, 0.146 \mathrm{mmol}, 1.5 \mathrm{~mol} \%)$ in anhydrous THF $(11 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After being stirred at $40^{\circ} \mathrm{C}$ for 48 hours, a saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with MTBE. The combined organic layer was washed with brine and dried over $\mathrm{MgSO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane and EtOAc) to give $\mathbf{S 1}$ as a colorless oil ( $1.12 \mathrm{~g}, 4.25 \mathrm{mmol}, 43 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.40$ (silica gel, hexane : $\mathrm{EtOAc}=30: 1$ ).
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.69(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz} 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.25-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H})$. These values are consistent with those reported in the literature. ${ }^{2}$

## 2,2'-Dibromo-5-methoxy-1,1'-biphenyl (S2) ${ }^{3}$



To a solution of 2-bromo-3'-methoxybiphenyl ( $1.10 \mathrm{~g}, 4.18 \mathrm{mmol}, 1.00$ equiv) in acetic acid $(9.0 \mathrm{~mL})$, bromine ( $0.26 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1.2$ equiv) was added. After being stirred at room temperature overnight, a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution was added to the
reaction mixture. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine and dried over $\mathrm{MgSO}_{4}$. After the removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane and EtOAc) to give $\mathbf{S 2}$ as a colorless oil ( $1.30 \mathrm{~g}, 4.20 \mathrm{mmol}$, $89 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.38$ (silica gel, hexane : $\mathrm{EtOAc}=30: 1$ ).
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.8 \mathrm{~Hz} 1 \mathrm{H}), 7.38-$ $7.33(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$. These values are consistent with those reported in the literature. ${ }^{3}$

## 2,2'-Dibromo-5-(trifluoromethyl)-1,1'-biphenyl (S3)



To a mixture of 2-bromophenylboronic acid ( $843 \mathrm{mg}, 4.20 \mathrm{mmol}, 1.05$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(324 \mathrm{mg}, 0.280 \mathrm{mmol}, 7 \mathrm{~mol} \%)$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(848 \mathrm{mg}, 8.00 \mathrm{mmol}, 2.00$ equiv), 2-bromo-1-iodo-5-(trifluoromethyl)-benzene ( $1.40 \mathrm{~g}, 4.00 \mathrm{mmol}$, 1.00equiv), toluene ( 16 $\mathrm{mL})$, ethanol ( 8 mL ) and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ were added. After being stirred at $110{ }^{\circ} \mathrm{C}$ for 5 h , the mixture was cooled to room temperature. The organic layer was separated and the aqueous layer was extracted with MTBE. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane) to give $\mathbf{S 3}$ as a pink solid ( $1.38 \mathrm{~g}, 3.62$ $\mathrm{mmol}, 91 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.51$ (silica gel, hexane).
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.80-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-$ 7.47 (m, 2H), 7.39 (td, $J=7.5,1.3 \mathrm{~Hz} 1 \mathrm{H}), 7.28(\mathrm{td}, J=7.5,1.8 \mathrm{~Hz} 1 \mathrm{H}), 7.24-7.21$ (m, 1H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 142.9,140.9,133.4,132.9,130.9,130.1,129.9$ (q, $\left.J_{F}=32.7 \mathrm{~Hz}\right), 128.0\left(\mathrm{q}, J_{F}=3.6 \mathrm{~Hz}\right), 127.8,127.5,126.2\left(\mathrm{q}, J_{F}=3.6 \mathrm{~Hz}\right), 123.9\left(\mathrm{q}, J_{F}=\right.$ 272.5 Hz ), 123.4; ${ }^{\mathbf{1 9}}{ }^{\mathbf{F}}$ NMR ( $\mathbf{3 7 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$ ): $\delta$-61.0; IR (ATR, $\boldsymbol{v} \mathbf{c m}^{-1}$ ): 3058, 1608, 1562, 1405 1336, 1174, 1139; HRMS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{~F}_{3}$, 377.8867; Found, 377.8866 .

## 2,2'-Dibromo-4-methyl-1,1'-biphenyl (S4) ${ }^{4}$



To a mixture of 2-bromophenylboronic acid ( $2.21 \mathrm{~g}, 11.0 \mathrm{mmol}, 1.10$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ( $578 \mathrm{mg}, 0.500 \mathrm{mmol}, 5 \mathrm{~mol} \%$ ) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.12 \mathrm{~g}, 20.0 \mathrm{mmol}, 2.00$ equiv), 2-bromo-1-iodo-4-methylbenzene ( $2.97 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.00$ equiv), toluene ( 40 mL ), ethanol ( 20 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ were added. After being stirred at $110{ }^{\circ} \mathrm{C}$ overnight, the mixture was cooled to room temperature. The organic layer was separated and the aqueous layer was extracted with MTBE. The combined organic layer was washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane) to give $\mathbf{S} \mathbf{4}$ as a colorless oil ( $2.86 \mathrm{~g}, 8.78 \mathrm{mmol}, 88 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.49$ (silica gel, hexane).
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dt}, J=7.1$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ $(\mathrm{s}, 1 \mathrm{H})$. These values are consistent with those reported in the literature. ${ }^{4}$

## 2,2'-Dibromo-4-methoxy-1,1'-biphenyl (S5) ${ }^{4}$



To a mixture of 2-bromophenylboronic acid ( $884 \mathrm{mg}, 4.40 \mathrm{mmol}, 1.10$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(324 \mathrm{mg}, 0.28 \mathrm{mmol}, 7 \mathrm{~mol} \%)$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(848 \mathrm{mg}, 8.00 \mathrm{mmol}, 2.00$ equiv), 2-bromo-1-iodo-4-methoxybenzene ( $1.25 \mathrm{~g}, 4.00 \mathrm{mmol}, 1.00$ equiv), toluene ( 16 mL ), ethanol ( 8 mL ) and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ were added. After being stirred at $110^{\circ} \mathrm{C}$ overnight, the mixture was cooled to room temperature. The organic layer was separated and the aqueous layer was extracted with MTBE. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane) to give $\mathbf{S 5}$ as a white solid ( $1.02 \mathrm{~g}, 3.00$ $\mathrm{mmol}, 75 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.44$ (silica gel, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=10: 1$ ).
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.3 \mathrm{~Hz}), 7.25-$
7.19 (m, 3H), 7.13 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$. These values are consistent with those reported in the literature. ${ }^{4}$

2,2'-Dibromo-4-(trifluoromethyl)-1,1'-biphenyl (S6) ${ }^{5}$


S6
To a mixture of 2-bromophenylboronic acid ( $843 \mathrm{mg}, 4.20 \mathrm{mmol}, 1.05$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(324 \mathrm{mg}, 0.280 \mathrm{mmol}, 7 \mathrm{~mol} \%)$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(848 \mathrm{mg}, 8.00 \mathrm{mmol}, 2.00$ equiv), 2-bromo-1-iodo-4-(trifluoromethyl)benzene ( $1.40 \mathrm{~g}, 4.00 \mathrm{mmol}, 1.00$ equiv), toluene ( 16 $\mathrm{mL})$, ethanol ( 8 mL ) and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ were added. After being stirred at $110{ }^{\circ} \mathrm{C}$ for 5 h , the mixture was cooled to room temperature. The organic layer was separated and the aqueous layer was extracted with MTBE. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane) to give $\mathbf{S 6}$ as a colorless oil ( 1.10 g , $2.88 \mathrm{mmol}, 72 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.51$ (silica gel, hexane).
${ }^{1} \mathbf{H}$ NMR ( 400 MHz, CDCl $_{3}$ ): $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H})$. These values are consistent with those reported in the literature. ${ }^{5}$

Synthesis of aza-bora spirobifluorenes Aza-boraspirobifluorene 1a


To a suspension of iodine-activated magnesium turnings ( $107 \mathrm{mg}, 4.40 \mathrm{mmol}, 8.80$
equiv), $4\left(652 \mathrm{mg}, 2.00 \mathrm{mmol}, 4.00\right.$ equiv) in anhydrous THF ( 4 mL ) was added at $0^{\circ} \mathrm{C}$. The suspension was stirred at room temperature for 10 min . After the supernatant becomes cloudy, Grignard reagent 3a was prepared by refluxing the mixture for 2 h . A flask was charged with pyridine-borane complex 2 ( $162 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF ( 5 mL ) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The THF solution of $\mathbf{3 a}$ was transferred via a cannula at $0{ }^{\circ} \mathrm{C}$. After being stirred at room temperature overnight, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CHCl}_{3}$. The combined organic layer was washed with brine and dried over $\mathrm{MgSO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and GPC to give $\mathbf{1 a}$ as a white solid ( $56 \mathrm{mg}, 0.17 \mathrm{mmol}, 34 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.48$ (silica gel, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=3$ : 2).
${ }^{1} \mathbf{H}$ NMR ( $400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 8.03(\mathrm{dt}, J=8.0,1.0 \mathrm{~Hz} 1 \mathrm{H}), 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}$, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10$ (ddd, $J=7.2,5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{tt}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta 159.0$, $151.4,151.0,143.3,140.5,137.6,136.9,131.1,130.9,130.2,130.1,127.5,127.3,126.5$, $126.3,121.9,121.5,120.4,119.3,117.9,21.9$ (Note: Three ipso carbons bound to the quadrupolar boron nucleus were not observed.); ${ }^{11} \mathbf{B} \mathbf{N M R}\left(\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta 2.16$; IR (ATR, $\boldsymbol{v} / \mathbf{c m}^{-1}$ ): 3047, 3018, 2982, 2955, 2919, 2858, 1620, 1482; HRMS (EI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19}{ }^{10} \mathrm{BN}, 345.1798$; Found, 345.1801.

## Aza-boraspirobifluorene 1b



To a suspension of iodine-activated magnesium turnings ( $107 \mathrm{mg}, 4.40 \mathrm{mmol}, 8.80$ equiv) in anhydrous THF ( 4 mL ), S2 ( $684 \mathrm{mg}, 2.00 \mathrm{mmol}, 4.00$ equiv) was added at $0^{\circ} \mathrm{C}$. The suspension was stirred at room temperature for 10 min . After the supernatant
becomes cloudy, refluxing for 2 h , then Grignard reagent $\mathbf{3 b}$ was prepared. A flask was charged with pyridine-borane complex $2(162 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF ( 5 mL ) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The THF solution of $\mathbf{3 b}$ was transferred via a cannula at $0{ }^{\circ} \mathrm{C}$. After being stirred at room temperature overnight, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CHCl}_{3}$. The combined organic layer was washed with brine, and dried over $\mathrm{MgSO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and GPC to give $\mathbf{1 b}$ as a white solid ( $69 \mathrm{mg}, 0.20 \mathrm{mmol}, 40 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.30$ (silica gel, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1$ : 1).
${ }^{1} \mathbf{H}$ NMR ( $400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 8.04(\mathrm{td}, J=8.0,1.0 \mathrm{~Hz} 1 \mathrm{H}), 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{td}$, $J=1.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.12$ (ddd, $J=7.2,6.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=6.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=7.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$ ): $\delta 160.0,158.9,152.7,150.6,143.2,140,5137.6,131.1,130.9,130.8,130.1$, $127.3,126.8,126.3,121.9,121.5,119.4,117.9,112.1,105.6,55.3$ (Note: Three ipso carbons bound to the quadrupolar boron nucleus were not observed.); ${ }^{11} \mathbf{B}$ NMR (128 $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ): $\delta 2.18$; IR (ATR, $\boldsymbol{v} / \mathbf{c m}^{-1}$ ): 3048, 2953, 2928, 2830, 1619, 1481; HRMS (EI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19}{ }^{10} \mathrm{BNO}, 347.1591$; Found, 347.1587.

## Aza-boraspirobifluorene 1c



A solution of LiCl in THF was prepared by adding anhydrous THF ( 10 mL ) to LiCl ( $212 \mathrm{mg}, 5.00 \mathrm{mmol}$, heated to $140{ }^{\circ} \mathrm{C}$ under vacuum for 5 h ). To a mixture of magnesium turnings ( $244 \mathrm{mg}, 10.0 \mathrm{mmol}, 20.0$ equiv) and $\mathrm{LiCl}(10 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF, 5.00 mmol , 10.0 equiv), DIBAL-H ( 1 M in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$ ) was added. After being stirred for $5 \mathrm{~min}, \mathbf{S 3}\left(760 \mathrm{mg}, 2.00 \mathrm{mmol}, 4.00\right.$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. After being stirred at
$0^{\circ} \mathrm{C}$ for 30 min , the Grignard reagent $\mathbf{3 c}$ was prepared. A flask was charged with pyridineborane complex 2 ( $162 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF ( 4 mL ), and toluene ( 1 mL ). The THF solution of $\mathbf{3 c}$ was transferred via a cannula at $0^{\circ} \mathrm{C}$. After being stirred at room temperature overnight, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CHCl}_{3}$. The combined organic layer was washed with brine and dried over $\mathrm{MgSO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and GPC to give $\mathbf{1 c}$ as a white solid ( $39 \mathrm{mg}, 0.10$ $\mathrm{mmol}, 20 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.49$ (silica gel, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=3: 2$ ).
${ }^{1} \mathbf{H}$ NMR ( $400 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ): $\delta 8.08(\mathrm{dt}, J=8.0,1.3 \mathrm{~Hz} 1 \mathrm{H}), 8.02(\mathrm{td}, J=7.2,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15 (ddd, $J=7.3,5.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (td, $J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 159.2,151.5,149.6,143.2$, $141.0,137.7,131.4,130.8,130.5,130.2,129.6\left(q, J_{F}=31.2 \mathrm{~Hz}\right), 127.7,127.5,126.7$, $125.2\left(\mathrm{q}, J_{F}=271.7 \mathrm{~Hz}\right), 123.2\left(\mathrm{q}, J_{F}=3.6 \mathrm{~Hz}\right), 122.1,121.7,119.9,118.2,115.8\left(\mathrm{q}, J_{F}\right.$ $=3.6 \mathrm{~Hz}$ ) (Note: Three ipso carbons bound to the quadrupolar boron nucleus were not observed.); ${ }^{\mathbf{1 1}} \mathbf{B}$ NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 1.80 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ( $\mathbf{3 7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta-60.5$; IR (ATR, $\boldsymbol{v} \mathbf{c m}^{-1}$ ): 3055, 3028, 2957, 2926, 2857, 1621, 1484, 1339; HRMS (EI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{16}{ }^{10} \mathrm{BF}_{3} \mathrm{~N}$, 385.1359; Found, 385.1364.

## Aza-boraspirobifluorene 1d



To a suspension of iodine-activated magnesium turnings ( $107 \mathrm{mg}, 4.40 \mathrm{mmol}, 8.80$ equiv) in anhydrous THF ( 4 mL ), S4 ( $652 \mathrm{mg}, 2.00 \mathrm{mmol}, 4.00$ equiv) was added at $0^{\circ} \mathrm{C}$. The suspension was stirred at room temperature for 10 min . After the supernatant becomes cloudy, refluxing for 2 h , then Grignard reagent 3d was prepared. A flask was charged with pyridine-borane complex 2 ( $162 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF ( 5 mL ) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The THF solution of $\mathbf{3 d}$ was transferred via a cannula
at $0{ }^{\circ} \mathrm{C}$. After being stirred at room temperature overnight, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CHCl}_{3}$. The combined organic layer was washed with brine and dried over $\mathrm{MgSO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and GPC to give $\mathbf{1 d}$ as a white solid ( $29 \mathrm{mg}, 0.088 \mathrm{mmol}, 18 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.44$ (silica gel, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=3: 2$ ).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$ ): $\delta 8.04(\mathrm{~d}, J=8.2 \mathrm{~Hz} 1 \mathrm{H}), 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.27$ $(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 159.8,158.9,154.2$, $151.1,148.4,143.2,140.5,137.7,135.9,131.1,130.8,130.2,128.1,127.3,126.3,126.2$, $121.9,121.5,119.2,119.1,117.9,21.5$ (Note: Three ipso carbons bound to the quadrupolar boron nucleus were not observed.); ${ }^{\mathbf{1 1}} \mathbf{B} \mathbf{N M R}\left(\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta 2.35$; IR (ATR, $\nu / \mathbf{c m}^{-1}$ ): 3042, 2982, 2913, 2858, 1621, 1482; HRMS (EI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19}{ }^{10} \mathrm{BN}, 331.1641$; Found, 331.1640.

## Aza-boraspirobifluorene 1e



To a suspension of iodine-activated magnesium turnings ( $107 \mathrm{mg}, 4.40 \mathrm{mmol}, 8.80$ equiv) in anhydrous THF ( 4 mL ), S5 ( $684 \mathrm{mg}, 2.00 \mathrm{mmol}, 4.00$ equiv) was added at $0^{\circ} \mathrm{C}$. The suspension was stirred at room temperature for 10 min . After the supernatant becomes cloudy, refluxing for 2 h , then Grignard reagent $\mathbf{3 e}$ was prepared. A flask was charged with pyridine-borane complex 2 ( $162 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF ( 5 mL ) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The THF solution of $\mathbf{3} \mathbf{e}$ was transferred via a cannula at $0{ }^{\circ} \mathrm{C}$. After being stirred at room temperature overnight, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CHCl}_{3}$. The combined organic layer was washed with brine and dried over $\mathrm{MgSO}_{4}$. After removal of the solvent, the crude reaction mixture was
purified by column chromatography (hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and GPC to give $\mathbf{1 e}$ as a white solid ( $70 \mathrm{mg}, 0.20 \mathrm{mmol}, 40 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.27$ (silica gel, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=3: 2$ ).
${ }^{1} \mathbf{H}$ NMR ( $400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 8.04(\mathrm{dt}, J=8.0,1.0 \mathrm{~Hz} 1 \mathrm{H}), 8.01-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{dt}$, $J=5.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~d}, 3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.12$ (ddd, $J=7.2,5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.38$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 159.0,159.0,151.0$, 144.0, 143.3, 140.6, 137.7, 131.2, 131.0, 130.1, 127.4, 126.4, 125.6, 121.9, 121.5, 121.1, $118.7,118.0,115.9,112.4,55.3$ (Note: Three ipso carbons bound to the quadrupolar boron nucleus were not observed.); ${ }^{11} \mathbf{B}$ NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ): $\delta 2.17$; IR (ATR, $v^{\prime} / \mathbf{c m}^{-1}$ ): 304, 3005, 2988, 2936, 2903, 2829, 1621, 1485; HRMS (EI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19}{ }^{10} \mathrm{BNO}, 347.1591$; Found, 347.1591.

## Aza-boraspirobifluorene 1f



A solution of LiCl in THF was prepared by adding anhydrous THF ( 10 mL ) to LiCl ( $212 \mathrm{mg}, 5.0 \mathrm{mmol}$, heated to $140^{\circ} \mathrm{C}$ under vacuum for 5 h ). To a mixture of magnesium turnings ( $244 \mathrm{mg}, 10.0 \mathrm{mmol}, 20.0$ equiv) and $\mathrm{LiCl}(10 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF, $5.0 \mathrm{mmol}, 10$ equiv), DIBAL-H ( $40 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in THF, 0.04 mmol ) was added. After being stirred for $5 \mathrm{~min}, \mathbf{S 6}\left(760 \mathrm{mg}, 2.00 \mathrm{mmol}, 4.00\right.$ equiv) was added at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 30 min , the Grignard reagent $\mathbf{3 f}$ was prepared. A flask was charged with pyridineborane complex 2 ( $162 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF ( 4 mL ), and toluene ( 1 mL ). The THF solution of $\mathbf{3 f}$ was transferred via a cannula at $0^{\circ} \mathrm{C}$. After being stirred at room temperature overnight, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CHCl}_{3}$. The combined organic layer was washed with brine and dried over $\mathrm{MgSO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and GPC to give $\mathbf{1 f}$ as a white solid ( $28 \mathrm{mg}, 0.073$ $\mathrm{mmol}, 15 \%$ yield). $\mathrm{Rf}_{\mathrm{f}}=0.35$ (silica gel, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=3: 1$ ).
${ }^{1} \mathbf{H}$ NMR ( $400 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ): $\delta 8.08(\mathrm{dt}, J=8.3,1.0 \mathrm{~Hz} 1 \mathrm{H}), 8.02(\mathrm{td}, J=7.3,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}$, 2 H ), $7.32-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.16$ (ddd, $J=7.2,5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=6.8,1.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ): $\delta 159.2,154.5,149.4,143.2$, $141.0,137.7,131.4,130.9,130.5,128.1\left(\mathrm{q}, J_{F}=31.2 \mathrm{~Hz}\right), 127.7,127.6,126.7(\mathrm{~m}), 126.7$, $125.3\left(\mathrm{q}, J_{F}=272.5 \mathrm{~Hz}\right), 124.8\left(\mathrm{q}, J_{F}=3.6 \mathrm{~Hz}\right), 122.1,121.7,120.2,119.1,118.2$ (Note: Three ipso carbons bound to the quadrupolar boron nucleus were not observed.); ${ }^{11} \mathbf{B}$ NMR ( $128 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ): $\delta 2.01 ;{ }^{19} \mathbf{F}$ NMR ( $\mathbf{3 7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta-59.9$; IR (ATR, $v / \mathbf{c m}^{-1}$ ): 3053, 2986, 2925, 1623, 1484, 1320, 1110; HRMS (EI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{16}{ }^{10} \mathrm{BF}_{3} \mathrm{~N}, 385.1359$; Found, 385.1362 .

## Synthesis of aryl pyridine derivatives

## 2-(2-Bromophenyl)-4-methylpyridine (S7) ${ }^{6}$



To a mixture of 2-bromophenylboronic acid ( $552 \mathrm{mg}, 2.60 \mathrm{mmol}, 1.30$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(69 \mathrm{mg}, 60 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%)$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.59 \mathrm{~g}, 15.0 \mathrm{mmol}, 7.50$ equiv), 2-bromo-4-methylpyridine ( $344 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv), toluene ( 7 mL ), ethanol ( 1.5 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$ were added. After being stirred at $110^{\circ} \mathrm{C}$ for 18 h , the mixture was cooled to room temperature. Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with MTBE. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane and EtOAc) to give $\mathbf{S 7}$ as a yellow solid ( $372 \mathrm{mg}, 1.50 \mathrm{mmol}$, $75 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.34$ (silica gel, hexane : $\mathrm{EtOAc}=5: 1$ ).
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 8.54(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.48 (dd, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34$ (m, 2H), 7.25-7.20 (m, 1H), 7.11-7.08 (m, 1H), $2.40(\mathrm{~s}, 3 \mathrm{H})$. The data are consistent with those reported in the literature. ${ }^{6}$

## 2-(2-Bromophenyl)-4-methoxylpyridine (S8)



S8
To a mixture of 2-bromophenylboronic acid ( $552 \mathrm{mg}, 2.60 \mathrm{mmol}, 1.30$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(69 \mathrm{mg}, 60 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%)$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.59 \mathrm{~g}, 15.0 \mathrm{mmol}, 7.50$ equiv), 2-bromo-4-methoxypyridine ( $376 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv), toluene ( 7 mL ), ethanol ( 1.5 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$ were added. After being stirred at $110^{\circ} \mathrm{C}$ for 18 h , the mixture was cooled to room temperature. Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with MTBE. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane and EtOAc) to give $\mathbf{S 8}$ as a yellow solid ( $301 \mathrm{mg}, 1.14 \mathrm{mmol}$, $57 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.25$ (silica gel, hexane : $\mathrm{EtOAc}=5: 1$ ).
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 8.50(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (dd, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.3 \mathrm{~Hz} 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{dd}, J=5.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}) 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 165.6$, $160.0,150.7,141.4,133.4,131.4,129.8,127.6,121.9,111.0,108.9,55.4 ;$ IR (ATR, $\nu / \mathbf{c m}^{-1}$ ): 3069, 3059, 3018, 2979, 2946, 2935, 2840, 1601, 1567, 1471; HRMS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{11}{ }^{79} \mathrm{BrNO}, 264.0019$; Found, 264.0018 .

## 2-(2-Bromophenyl)-4-(trifluoromethyl)pyridine (S9)



S9
To a mixture of 2-bromophenylboronic acid ( $552 \mathrm{mg}, 2.60 \mathrm{mmol}, 1.30$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(69 \mathrm{mg}, 60 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%\right.$ ) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.59 \mathrm{~g}, 15.0 \mathrm{mmol}, 7.50$ equiv), 2-bromo-4-(trifluoromethyl)pyridine ( $452 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv), toluene ( 7 mL ), ethanol $(1.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$ were added. After being stirred at $110{ }^{\circ} \mathrm{C}$ for 18 h , the mixture was cooled to room temperature. Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was
extracted with MTBE. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane and EtOAc) to give $\mathbf{S 9}$ as a brown oil ( $463 \mathrm{mg}, 1.53 \mathrm{mmol}, 77 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.51$ (silica gel, hexane : $\mathrm{EtOAc}=5: 1$ ).
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.88(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=0.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (dd, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{td}, J=$ $7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 159.7,150.5,140.1$, $138.4\left(\mathrm{q}, J_{F}=33.7 \mathrm{~Hz}\right), 133.7,131.5,130.6,127.9,122.9\left(\mathrm{q}, J_{F}=273.6 \mathrm{~Hz}\right), 121.7,120.7$ (q, $J_{F}=3.9 \mathrm{~Hz}$ ), $118.2\left(\mathrm{q}, J_{F}=2.9 \mathrm{~Hz}\right) ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta$-63.2; IR (ATR, $v / \mathbf{c m}^{-1}$ ): 3064, 1610, 1402, 1338, 1175; HRMS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{8}{ }^{79} \mathrm{BrF}_{3} \mathrm{~N}, 301.9787$; Found, 301.9783.

## General procedure for preparation of a solution of $5{ }^{7}$



To a solution of 4 ( $326 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) in anhydrous hexane ( 15.6 mL ), ${ }^{n} \mathrm{BuLi}\left(1.59 \mathrm{M}\right.$ in hexane, $1.26 \mathrm{~mL}, 2.00 \mathrm{mmol}, 2.00$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at room temperature for 3 days. After removal of the solvent in vacuo, the remaining white solid was washed with anhydrous hexane ( $3 \times 5 \mathrm{~mL}$ ). Then a white slurry was made in anhydrous hexane ( 15.6 mL ) by vigorous stirring, and $\mathrm{BCl}_{3}(1.0 \mathrm{M}$ in hexane, $1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0$ equiv) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature overnight. After removal of the solvent in vacuo, a yellow solid was given. The solid was dissolved into 8 mL of anhydrous $\mathrm{Et}_{2} \mathrm{O}$ to yield a solution of 5. Since compound 5 was unstable, it was used in the next step without further purification.

## Synthesis of aza-boraspirobifluorenes with substituents on the pyridine ring Aza-boraspirobifluorene 1g



To a solution of $\mathbf{S 7}$ ( $191 \mathrm{mg}, 0.771 \mathrm{mmol}, 1.00$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(7.1 \mathrm{~mL})$, ${ }^{n} \operatorname{BuLi}\left(1.59 \mathrm{M}\right.$ in hexane, $0.512 \mathrm{~mL}, 0.814 \mathrm{mmol}, 1.06$ equiv) was added at $-78^{\circ} \mathrm{C}$. After the solution was stirred at this temperature for 1 h , the disappearance of $\mathbf{S} 7$ was confirmed by TLC. Afterward a prepared solution of 5 ( $c a .1 .0 \mathrm{mmol}, 1.3$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ $(8 \mathrm{~mL})$ was transferred via a cannula at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred at this temperature for 10 min and then at room temperature overnight. Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine and dried over $\mathrm{MgSO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (Hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and GPC to give $\mathbf{1 g}$ as a white solid ( $63 \mathrm{mg}, 0.18 \mathrm{mmol}, 24 \%$ yield). $\mathrm{Rf}_{\mathrm{f}}=0.42$ (silica gel, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=3$ : 2).
${ }^{1} \mathbf{H}$ NMR ( 400 MHz, CDCl $_{3}$ ): $\delta 7.93-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=0.8 \mathrm{~Hz} 1 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H})$, $6.97(\mathrm{td}, J=7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=5.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 158.6$, 153.0, 151.3, 151.0, 142.5, 137.7, 136.7, 130.9, 130.8, 130.14, 130.10, 127.5, 127.2, $126.5,126.2,123.1,121.3,120.3,119.3,118.3,22.0,21.9$ (Note: Three ipso carbons bound to the quadrupolar boron nucleus were not observed.); ${ }^{11} \mathbf{B} \mathbf{N M R}(\mathbf{1 2 8} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$ ): $\delta 1.74$; IR (ATR, $\mathbf{v} / \mathbf{c m}^{-1}$ ): 3044, 2985, 2914, 2861, 1630; HRMS (EI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{21}{ }^{10} \mathrm{BN}, 345.1798$; Found, 345.1801.

## Aza-boraspirobifluorene 1h



To a solution of $\mathbf{S 8}$ ( $204 \mathrm{mg}, 0.771 \mathrm{mmol}, 1.00$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ ( 7.1 mL ), ${ }^{n} \mathrm{BuLi}\left(1.59 \mathrm{M}\right.$ in hexane, $0.512 \mathrm{~mL}, 0.814 \mathrm{mmol}, 1.06$ equiv) was added at $-78^{\circ} \mathrm{C}$. After the solution was stirred at this temperature for 1 h , the disappearance of $\mathbf{S 8}$ was confirmed by TLC. Afterward a prepared solution of 5 ( $c a .1 .0 \mathrm{mmol}, 1.3$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ $(8 \mathrm{~mL})$ was transferred via a cannula at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred at this temperature for 10 min and then at room temperature overnight. Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine and dried over $\mathrm{MgSO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (Hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and GPC to give $\mathbf{1 h}$ as a white solid ( $119 \mathrm{mg}, 0.329 \mathrm{mmol}, 43 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.37$ (silica gel, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=3$ : 2).
${ }^{1} \mathbf{H}$ NMR ( 400 MHz, CDCl $_{3}$ ): $\delta 7.93-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.60$ $(\mathrm{m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz} 2 \mathrm{H}), 6.82(\mathrm{dd}, J=7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}) 6.62(\mathrm{dd}, J=6.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H})$, 2.44 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 159.1,160.8,151.2,150.8,144.1,137.7$, 136.6, 131.0, 130.8, 130.2, 130.1, 127.4, 127.1, 126.4, 126.1, 121.2, 120.2, 119.2, 109.3, 102.1, 56.3, 21.8 (Note: Three ipso carbons bound to the quadrupolar boron nucleus were not observed.); ${ }^{\mathbf{1 1}} \mathbf{B}$ NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ): $\delta 1.77$; IR (ATR, $\boldsymbol{v} / \mathbf{c m}^{\mathbf{- 1}}$ ): 3041, 3013, 2941, 2914, 2862, 1626, 1490; HRMS (EI): calcd. for $\mathrm{C}_{2} \mathrm{H}_{21}{ }^{10} \mathrm{BNO}, 361.1747$; Found, 361.1749 .

## Aza-boraspirobifluorene 1i



To a solution of $\mathbf{S 9}$ ( $233 \mathrm{mg}, 0.771 \mathrm{mmol}, 1.00$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ ( 7.1 mL ), ${ }^{n} \mathrm{BuLi}\left(1.59 \mathrm{M}\right.$ in hexane, $0.512 \mathrm{~mL}, 0.814 \mathrm{mmol}, 1.06$ equiv) was added at $-78{ }^{\circ} \mathrm{C}$. After the solution was stirred at this temperature for 1 h , the disappearance of $\mathbf{S 9}$ was confirmed by TLC. Afterward, a solution of $\mathbf{5}$ (ca. $1.0 \mathrm{mmol}, 1.3$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ was transferred via a cannula at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred at this temperature for 10 min and then at room temperature overnight. Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine and dried over $\mathrm{MgSO}_{4}$. After removal of the solvent, the crude reaction mixture was purified by column chromatography (hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and GPC to give $\mathbf{1 i}$ as a yellow solid (102 $\mathrm{mg}, 0.255 \mathrm{mmol}, 33 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.57$ (silica gel, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=3: 2$ ).
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) : $\delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.04-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.3 \mathrm{~Hz} 1 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}) 6.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 160.3,151.5,151.2,144.6,142.3\left(\mathrm{q}, J_{F}=34.7 \mathrm{~Hz}\right), 137.3,136.6$, 132.2, 131.1, 130.13, 130.09, 127.7, 126.8, $122.2\left(\mathrm{q}, J_{F}=274.5 \mathrm{~Hz}\right), 122.1,120.6,119.5$, $117.7\left(\mathrm{q}, J_{F}=2.9 \mathrm{~Hz}\right), 114.5\left(\mathrm{q}, J_{F}=3.8 \mathrm{~Hz}\right), 21.8$ (Note: Three ipso carbons bound to the quadrupolar boron nucleus were not observed. Two carbon signals are missing.); ${ }^{11} \mathbf{B}$ NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 2.70 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ( $\mathbf{3 7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta-63.4$; IR (ATR, $v^{\left(\mathbf{c m}^{-1}\right)}$ : 3048, 3019, 2982, 2926, 2868, 1470, 1423, 1342; HRMS (EI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{18}{ }^{10} \mathrm{BF}_{3} \mathrm{~N}, 399.1515$; Found, 399.1514.

Attempts for improvement of yield of 1d.

Table S1. Summary of our attempts for synthesis of $\mathbf{1 d}$ by use of several organometallic reagents.


## 3. Isolation of the enantiomers of 1a-f by high performance liquid chromatography (HPLC)

The isolation of the enantiomers was performed on a JASCO LC-2080 assemble coupled with a YMC CHIRAL Amylose-SA (for analytical: $\mathrm{L} \times \mathrm{D}: 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$, particle size: $5 \mu \mathrm{~m}$; for semi-preparative: $\mathrm{L} \times \mathrm{D}: 250 \mathrm{~mm} \times 20 \mathrm{~mm}$, particle size: $5 \mu \mathrm{~m}$ ). HPLC charts were recorded with a Photo diode array (PDA) detector. Elution rates were controlled and stabilized at $0.8 \mathrm{~mL} / \mathrm{min}$ (for analytical) or $8.0 \mathrm{~mL} / \mathrm{min}$ (for semipreparative). For all HPLC experiments, the solvents ( $n$-hexane, $\mathrm{CHCl}_{3}$, and $i-\mathrm{PrOH}$ ) with HPLC grade were passed through the degasser included in the assemble.

Table S2. Summary of isolation of the enantiomers by HPLC and the analysis by CD spectroscopy for $\mathbf{1 a - 1 i}$.

|  |  | Fraction 1 |  |  | Fraction 2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Eluents: <br> $n$-hexane <br> / $\mathrm{CHCl}_{3}$ <br> / $\boldsymbol{i}-\mathrm{PrOH}$ | Retention time, $t_{1}$ $/ \mathrm{min}$. (capacity factor, $k_{1}$ ) | $\% e e^{a}$ | $[\mathrm{CD}(+/-)]^{b}$ | Retention time, $t_{2}$ /min. (capacity factor, $k_{2}$ ) | \%ee ${ }^{a}$ | $[\mathrm{CD}(+/-)]^{b}$ | Sepatation factor, $a^{\mathrm{c}}$ |
| 1 a | 93/2//5 | 13.7 (2.48) | >99 | (-) | 18.7 (3.75) | >99 | (+) | 1.51 |
| 1b | $86 / 5 / 9$ | 15.0 (2.94) | >99 | (-) | 17.6 (3.62) | >99 | (+) | 1.23 |
| 1c | 93/2/5 | 10.6 (1.35) | >99 | $(-)^{c}$ | 12.0 (1.66) | >99 | $(+)$ | 1.23 |
| 1d | 93/2/5 | 13.1 (2.23) | $>99$ | (-) | 20.9 (4.16) | $>99$ | $(+)$ | 1.86 |
| 1e | $86 / 5 / 9$ | 13.9 (2.82) | >99 | (-) | 16.0 (3.40) | >99 | $(+)$ | 1.20 |
| 1 f | 93/2/5 | 11.3 (1.57) | $>99$ | (-) | 14.6 (2.32) | $>99$ | (+) | 1.48 |
| 1 g | 93/2/5 | 11.6 (2.71) | $>99$ | (-) | 13.2 (3.22) | $>99$ | (+) | 1.19 |
| 1h | 93/2/5 | 19.2 (3.76) | >99 | $(-)^{d}$ | 24.2 (5.00) | >99 | $(+)^{d}$ | 1.33 |
| 1i | 93/2/5 | 7.55 (1.82) | >99 | (-) | 8.46 (2.16) | >99 | (+) | 1.89 |

[^0]
## 4. X-ray crystallographic structure of 1a-i

Single crystals of 1a-i suitable for X-ray crystallographic measurement were obtained by vapor diffusion or by liquid/liquid diffusion of a combination of solvents stated below. X-ray diffraction data for $\mathbf{1 a - i}$ were collected on a Bruker D8 QUEST diffractometer coupled to a Photon III area detector with $\mathrm{Mo} \mathrm{K} \alpha$ radiation ( $\lambda=0.7107 \AA$ ), from a I $\mu$ S X-ray source. The diffraction images were processed and scaled using the APEX III software, and finalized using the OLEX2 ${ }^{8}$ software. A numerical absorption correction ( $\mu$ ) was applied. The structure was solved through intrinsic phasing using SHELXT $^{9}$ and refined against $\mathrm{F}^{2}$ on all data by full-matrix least squares with SHELXL ${ }^{9}$ following established refinement strategies. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms bound to carbon were included in the model at geometrically calculated positions and refined using a riding model. ORTEP drawings of 1a-i are shown in Figures S1-S3 and details of the data quality and a summary of the residual values of the refinements are listed in Tables S3-S5.

Single-crystal X-ray structures that contain the supplementary crystallographic data for this paper can be obtained free of charge from the Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk/data_request/cif.


Figure S1. ORTEP drawing of 1a-1c. Hydrogen atoms were omitted for clarity.

Table S3. Crystal data and structure refinement for 1a-1c

| Compound | 1a | 1b | 1c |
| :---: | :---: | :---: | :---: |
| CCDC No. | 2203027 | 2203028 | 2203029 |
| Solvent system | Toluene / Hexane | Toluene / Hexane | Toluene / Hexane |
| Color | Colorless | Colorless | Colorless |
| Formula | $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BN}$ | $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BNO}$ | $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BF}_{3} \mathrm{~N}$ |
| $F_{\text {w }}$ | 331.23 | 347.20 | 385.20 |
| Crystal size /mm | $0.02 \times 0.02 \times 0.02$ | $0.02 \times 0.02 \times 0.02$ | $0.02 \times 0.02 \times 0.0 .2$ |
| Crystal system | monoclinic | monoclinic | monoclinic |
| Space group | $P 2_{1} / \mathrm{c}$ (No. 14) | $P 2_{1} / \mathrm{c}$ (No. 14) | $P 2_{1} / \mathrm{c}$ (No. 14) |
| $a / \AA$ | 12.2016(13) | 12.929(2) | 13.3393(5) |
| $b / \AA$ | 9.8758(12) | $9.6055(19)$ | 9.3980(3) |
| $c / \AA$ | 14.9890(18) | 15.347(3) | 15.5279(5) |
| $\alpha /{ }^{\circ}$ | 90 | 90 | 90 |
| $\beta{ }^{\circ}$ | 103.647(4) | 108.252(4) | 110.4660(10) |
| $\gamma /{ }^{\circ}$ | 90 | 90 | 90 |
| $V / \AA^{3}$ | 1755.2(4) | 1810.0(5) | 1823.7(5) |
| $Z$ | 4 | 4 | 4 |
| $D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$ | 1.253 | 1.274 | 1.403 |
| No. of reflections measured | 21468 | 16138 | 23835 |
| No. of unique reflections | 20780 | 15581 | 23000 |
| $\begin{aligned} & \text { No. } \quad \text { observations } \\ & (I>2 \sigma(I)) \end{aligned}$ | 3258 | 2723 | 3967 |
| $R$ | 0.0607 | 0.0665 | 0.0742 |
| $R_{\text {w }}$ | 0.1586 | 0.1929 | 0.1756 |
| GOF on $\mathrm{F}^{2}$ | 1.080 | 1.087 | 1.181 |



1d


1e

$1 f$

Figure S2. ORTEP drawing of 1d-1f. Hydrogen atoms were omitted for clarity.

Table S4. Crystal data and structure refinement for 1d-1f

| Compound | 1d | 1e | 1f |
| :---: | :---: | :---: | :---: |
| CCDC No. | 2215757 | 2203030 | 2203032 |
| Solvent system | Toluene / Hexane | Toluene / Hexane | Toluene / Hexane |
| Color | Colorless | Colorless | Colorless |
| Formula | $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BN}$ | $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BNO}$ | $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BF}_{3} \mathrm{~N}$ |
| $F_{\text {w }}$ | 331.23 | 347.20 | 385.20 |
| Crystal size /mm | $0.02 \times 0.02 \times 0.02$ | $0.58 \times 0.35 \times 0.26$ | $0.45 \times 0.28 \times 0.25$ |
| Crystal system | Orthorhombic | Triclinic | Orthorhombic |
| Space group | $P 2{ }_{12} 2_{1}$ (No. 19) | $P-1$ (No. 1) | $P 2{ }_{1} 2_{1} 2_{1}$ (No. 19) |
| $a / \AA$ A | 11.1612(9) | 11.9380(5) | 9.1093(2) |
| $b / \AA$ | 17.6966(14) | 12.7143(5) | 11.4141(3) |
| $c / \AA$ | 9.0820(7) | 14.2807(6) | 17.6390(4) |
| $\alpha /{ }^{\circ}$ | 90 | 109.1900(10) | 90 |
| $\beta /{ }^{\circ}$ | 90 | 103.259(2) | 90 |
| $\gamma /{ }^{\circ}$ | 90 | 108.8850(10) | 90 |
| $V / \AA^{3}$ | 1793.83 | 1793.52 | 1834.01 |
| Z | 4 | 2 | 4 |
| $D_{\text {c }} / \mathrm{g} \mathrm{cm}^{-3}$ | 1.226 | 1.286 | 1.395 |
| No. of reflections measured | 20719 | 41845 | 36680 |
| No. of unique reflections | 20668 | 41838 | 36578 |
| $\begin{aligned} & \text { No. observations }(I> \\ & 2 \sigma(I)) \end{aligned}$ | 3501 | 6084 | 4630 |
| $R$ | 0.0902 | 0.0488 | 0.0742 |
| $R_{\text {w }}$ | 0.2448 | 0.1426 | 0.1756 |
| GOF on $\mathrm{F}^{2}$ | 1.083 | 1.019 | 1.181 |



1g


1h

$1 i$

Figure S3. ORTEP drawing of $\mathbf{1 g} \mathbf{- 1 i}$. Hydrogen atoms were omitted for clarity.

Table S5. Crystal data and structure refinement for $\mathbf{1 g}-\mathbf{1 i}$

| Compound | 1g | 1h | 1i |
| :---: | :---: | :---: | :---: |
| CCDC No. | 2203031 | 2203033 | 2176259 |
| Solvent system | Toluene / Hexane | Toluene / Hexane | Toluene / Hexane |
| Color | Colorless | Colorless | Colorless |
| Formula | $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BN}$ | $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BNO}$ | $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BF}_{3} \mathrm{~N}$ |
| $F_{\text {w }}$ | 345.05 | 347.22 | 385.18 |
| Crystal size /mm | $0.05 \times 0.05 \times 0.05$ | $0.03 \times 0.02 \times 0.02$ | $0.02 \times 0.02 \times 0.0 .2$ |
| Crystal system | monoclinic | monoclinic | monoclinic |
| Space group | $P 2 / \mathrm{c}$ (No. 14) | $P 2 / \mathrm{c}$ (No. 14) | $P 2 / \mathrm{c}$ ( $\mathrm{No}$.14 ) |
| $a / \AA$ | 18.386(4) | 12.1041(15) | 9.1093(2) |
| $b / \AA$ | 8.564(2) | 8.6562(9) | 9.3980(3) |
| $c / \AA$ | 12.291(3) | 36.508(4) | $1.5279(5)$ |
| $\alpha{ }^{\circ}$ | 90 | 90 | 90 |
| $\beta /{ }^{\circ}$ | 107.445(7) | 92.703(4) | 110.466(1) |
| $\gamma /{ }^{\circ}$ | 90 | 90 | 90 |
| $V / \AA^{3}$ | 1846.3(7) | 3820.8(8) | 1823.75(11) |
| $Z$ | 4 | 4 | 4 |
| $D_{\text {c }} / \mathrm{g} \mathrm{cm}^{-3}$ | 1.241 | 1.253 | 1.403 |
| No. of reflections measured | 15534 | 41857 | 23835 |
| No. of unique reflections | 14991 | 40071 | 23000 |
| No. observations ( $I>$ $2 \sigma(I))$ | 2647 | 5249 | 3967 |
| $R$ | 0.0623 | 0.0723 | 0.0742 |
| $R_{\text {w }}$ | 0.1563 | 0.1943 | 0.0950 |
| GOF on $\mathrm{F}^{2}$ | 1.0590 | 1.0710 | 1.1810 |

## 4. First-order kinetic plots of racemization of 1a-i

A solution of $\left[\mathrm{CD}(+) 320_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}\right] \mathbf{- 1 a - i}(3 \mathrm{mg})$ in DMSO $(3 \mathrm{~mL})$ was heated at the specific temperatures $\left(25,135,140\right.$ and $\left.145^{\circ} \mathrm{C}\right)$. At different intervals, an aliquot of the sample solution was transferred via syringe to another glassware to remove the solvent in vacuo, then the residue was dissolved into a solvent mixture of $n$-hexane, $\mathrm{CHCl}_{3}$, and $i$ PrOH to be subjected to HPLC analysis. The $\%$ ee values were determined by the ratio of integration value calculated on an HPLC chart. The initial $(t=0 \mathrm{~s})$ and certain $(t / \mathrm{s}) \% e e$ were as in $e e_{0}$ and $e e_{t}$, respectively. The slope of first-order plots $\left(\ln \left(e e o / e e_{t}\right)\right.$ vs. $\left.\left.t / \mathrm{s}\right)\right)^{10,11}$ gave the rate constant of racemization ( $k_{\mathrm{rac}}$ ). The activation parameters of the racemization reaction was determined by Eyring-Polanyi plots. ${ }^{12}$

Table S6. Summary and comparison of the kinetic parameter of 1a-i.

|  | $k_{\text {rac }}\left(145^{\circ} \mathrm{C}\right)$ <br> $10^{-5} / \mathrm{s}^{-1}$ | $\Delta G^{\ddagger}\left(145{ }^{\circ} \mathrm{C}\right)$ <br> $/ \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ | $\Delta H^{\ddagger}$ <br> $/ \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ | $\Delta S^{\ddagger}$ <br> $/ \mathrm{cal} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 a}$ | 5.76 | 33.4 | 28.4 | -12.0 |
| $\mathbf{1 b}$ | 11.3 | 32.9 | 29.6 | -7.80 |
| 1c | 0.984 | 34.9 | 33.9 | -2.40 |
| 1d | 4.00 | 33.7 | 26.8 | -16.6 |
| $\mathbf{1 e}$ | 4.04 | 33.7 | 31.6 | -5.00 |
| 1f | 1.84 | 34.4 | 27.1 | -17.4 |
| $\mathbf{1 g}$ | 2.70 | 33.4 | 28.4 | -12.0 |
| $\mathbf{1 h}$ | 1.77 | 34.4 | 30.7 | -8.90 |
| $\mathbf{1 i}$ | 114 | 31.0 | 23.5 | -17.8 |

Table S7. Kinetic profile of racemization of 1a by HPLC charts at $135^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{\operatorname { l n }}\left(\boldsymbol{e e _ { \mathbf { 0 } }} / \boldsymbol{e e _ { \mathbf { t } }}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 90.7 | 0.09778925 |
| $\mathbf{7 2 0 0}$ | 84.1 | 0.173449034 |
| $\mathbf{1 0 8 0 0}$ | 76.7 | 0.265633603 |
| $\mathbf{1 4 4 0 0}$ | 70.3 | 0.35234149 |
| $\mathbf{1 8 0 0 0}$ | 64.3 | 0.441237374 |



Figure S4. The plot of $\ln \left(e_{0} / e_{\mathrm{t}}\right)$ vs time of $\mathbf{1 a}$ at $135^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(135^{\circ} \mathrm{C}\right)=2.43 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(135^{\circ} \mathrm{C}\right)=1.22 \times 10^{-5}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(135^{\circ} \mathrm{C}\right)=33.3 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$

Table S8. Kinetic profile of racemization of 1a by HPLC charts at $140^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\ln \left(\boldsymbol{e e}_{0} / \boldsymbol{e} \boldsymbol{e}_{\mathbf{t}}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 87.5 | 0.133165745 |
| $\mathbf{7 2 0 0}$ | 75.8 | 0.277652537 |
| $\mathbf{1 0 8 0 0}$ | 65.8 | 0.418155289 |
| $\mathbf{1 4 4 0 0}$ | 57.1 | 0.560015868 |
| $\mathbf{1 8 0 0 0}$ | 50.2 | 0.688637365 |



Figure S5. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of 1a at $140^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(140^{\circ} \mathrm{C}\right)=3.86 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=1.93 \times 10^{-5}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=33.4 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$

Table S9. Kinetic profile of racemization of 1a by HPLC charts at $145^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{\operatorname { l n }}\left(\boldsymbol{e e _ { 0 }} / \boldsymbol{e} e_{\mathbf{t}}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 80.3 | 0.219699489 |
| $\mathbf{7 2 0 0}$ | 65.8 | 0.417973007 |
| $\mathbf{1 0 8 0 0}$ | 53.3 | 0.629233855 |
| $\mathbf{1 4 4 0 0}$ | 43.5 | 0.831949583 |
| $\mathbf{1 8 0 0 0}$ | 35.3 | 1.0408907 |



Figure S6. The plot of $\ln \left(e_{0} / e e_{\mathrm{t}}\right)$ vs time of $\mathbf{1 a}$ at $145^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(145^{\circ} \mathrm{C}\right)=5.76 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=2.88 \times 10^{-5}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(145{ }^{\circ} \mathrm{C}\right)=33.4 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$


Figure S7. Eyring-Polanyi plots of 1a.
$\Delta H^{\neq}$enantiomerization $=28.4 \pm 0.1 \mathrm{kcal} / \mathrm{mol}$
$\Delta S^{\neq}$enantiomerization $=-12.0 \pm 0.3 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

Table S10. Kinetic profile of racemization of $\mathbf{1 b}$ by HPLC charts at $135^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{\operatorname { l n } ( \boldsymbol { e e } _ { \mathbf { o } } / \boldsymbol { e } \boldsymbol { e } _ { \mathbf { t } } )}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 85.3 | 0.158667532 |
| $\mathbf{7 2 0 0}$ | 72.1 | 0.327116142 |
| $\mathbf{1 0 8 0 0}$ | 61.0 | 0.49423075 |
| $\mathbf{1 4 4 0 0}$ | 51.3 | 0.667284521 |
| $\mathbf{1 8 0 0 0}$ | 43.9 | 0.822663786 |



Figure S9. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of $\mathbf{1 b}$ at $135^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(135^{\circ} \mathrm{C}\right)=4.61 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(135^{\circ} \mathrm{C}\right)=2.30 \times 10^{-5}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(135^{\circ} \mathrm{C}\right)=32.81 \pm 0.06 \mathrm{kcal} / \mathrm{mol}$

Table S11. Kinetic profile of racemization of $\mathbf{1 b}$ by HPLC charts at $140^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\ln \left(\boldsymbol{e e}_{0} / \boldsymbol{e e _ { \mathbf { t } }}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 76.3 | 0.270471036 |
| $\mathbf{7 2 0 0}$ | 58.4 | 0.538162563 |
| $\mathbf{1 0 8 0 0}$ | 45.6 | 0.78478013 |
| $\mathbf{1 4 4 0 0}$ | 35.3 | 1.042250859 |
| $\mathbf{1 8 0 0 0}$ | 27.2 | 1.300190062 |



Figure S10. The plot of $\ln \left(e e o / e e_{t}\right)$ vs time of $\mathbf{1 b}$ at $140^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(140^{\circ} \mathrm{C}\right)=7.19 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=3.60 \times 10^{-5}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=32.85 \pm 0.06 \mathrm{kcal} / \mathrm{mol}$

Table S12. Kinetic profile of racemization of $\mathbf{1 b}$ by HPLC charts at $145^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\mathbf{\%})$ | $\boldsymbol{\operatorname { l n } ( \boldsymbol { e e } _ { \mathbf { 0 } } / \boldsymbol { e } \boldsymbol { e } _ { \mathbf { t } } )}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 65.5 | 0.423792025 |
| $\mathbf{7 2 0 0}$ | 43.5 | 0.832455226 |
| $\mathbf{1 0 8 0 0}$ | 29.4 | 1.225809499 |
| $\mathbf{1 4 4 0 0}$ | 19.5 | 1.634345548 |



Figure S7. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of $\mathbf{1 b}$ at $145^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(145^{\circ} \mathrm{C}\right)=1.13 \times 10^{-4}$
$k_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=5.65 \times 10^{-5}$
$\Delta G^{\neq}$enantiomerization $\left(145{ }^{\circ} \mathrm{C}\right)=32.9 \pm 0.06 \mathrm{kcal} / \mathrm{mol}$


Figure S8. Eyring-Polanyi plots of $\mathbf{1 b}$.
$\Delta H^{\neq}$enantiomerization $=29.62 \pm 0.04 \mathrm{kcal} / \mathrm{mol}$
$\Delta S^{\neq}$enantiomerization $=-7.8 \pm 0.1 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

Table S13. Kinetic profile of racemization of $\mathbf{1 c}$ by HPLC charts at $135^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{\operatorname { l n } ( \boldsymbol { e e } _ { 0 } / \boldsymbol { e } \boldsymbol { e } _ { \mathbf { t } } )}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 98.5 | 0.015397942 |
| $\mathbf{7 2 0 0}$ | 97.0 | 0.030459207 |
| $\mathbf{1 0 8 0 0}$ | 95.9 | 0.041843349 |
| $\mathbf{1 4 4 0 0}$ | 94.8 | 0.053358584 |
| $\mathbf{1 8 0 0 0}$ | 93.8 | 0.06400533 |



Figure S9. The plot of $\ln \left(\right.$ eeo $\left._{0} / e_{\mathrm{t}}\right)$ vs time of $\mathbf{1 c}$ at $135^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(135^{\circ} \mathrm{C}\right)=3.53 \times 10^{-6}$
$k_{\text {enantiomerization }}\left(135^{\circ} \mathrm{C}\right)=1.77 \times 10^{-6}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(135{ }^{\circ} \mathrm{C}\right)=34.9 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$

Table S14. Kinetic profile of racemization of $\mathbf{1 c}$ by HPLC charts at $140^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e} \boldsymbol{e}(\%)$ | $\boldsymbol{\operatorname { l n }}\left(\boldsymbol{e e _ { \mathbf { 0 } } / e e _ { \mathbf { t } } )}\right.$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{7 2 0 0}$ | 95.7 | 0.044223607 |
| $\mathbf{1 0 8 0 0}$ | 93.7 | 0.065605757 |
| $\mathbf{1 4 4 0 0}$ | 91.4 | 0.089574659 |
| $\mathbf{1 8 0 0 0}$ | 89.7 | 0.108610235 |



Figure S10. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of $1 \mathbf{c}$ at $140^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(140^{\circ} \mathrm{C}\right)=6.08 \times 10^{-6}$
$k_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=3.04 \times 10^{-6}$
$\Delta G^{\neq}$enantiomerization $\left(140^{\circ} \mathrm{C}\right)=34.9 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$

Table S15. Kinetic profile of racemization of $\mathbf{1 c}$ by HPLC charts at $145^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\ln \left(\boldsymbol{e e}_{0} / \boldsymbol{e e _ { \mathbf { t } }}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 95.7 | 0.043513112 |
| $\mathbf{7 2 0 0}$ | 91.6 | 0.08771708 |
| $\mathbf{1 0 8 0 0}$ | 89.2 | 0.11449096 |
| $\mathbf{1 4 4 0 0}$ | 86.4 | 0.14588163 |
| $\mathbf{1 8 0 0 0}$ | 83.4 | 0.181114286 |



Figure S11. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of 1 c at $145^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(145^{\circ} \mathrm{C}\right)=9.84 \times 10^{-6}$
$k_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=4.92 \times 10^{-6}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(145{ }^{\circ} \mathrm{C}\right)=34.9 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$


Figure S12. Eyring-Polanyi plots of 1c.
$\Delta H^{\neq}$enantiomerization $=33.9 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$
$\Delta S^{\neq}$enantiomerization $=-2.4 \pm 0.3 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

Table S16. Kinetic profile of racemization of 1d by HPLC charts at $135^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\ln \left(\boldsymbol{e e}_{0} / \boldsymbol{e e _ { \mathbf { t } }}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 93.2 | 0.070916148 |
| $\mathbf{7 2 0 0}$ | 86.4 | 0.145789069 |
| $\mathbf{1 0 8 0 0}$ | 81.8 | 0.20035519 |
| $\mathbf{1 4 4 0 0}$ | 77.1 | 0.259937212 |
| $\mathbf{1 8 0 0 0}$ | 72.4 | 0.322881017 |



Figure S13. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of $\mathbf{1 d}$ at $135^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(135^{\circ} \mathrm{C}\right)=1.77 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(135^{\circ} \mathrm{C}\right)=8.87 \times 10^{-6}$
$\Delta G^{\neq}{ }^{\text {enantiomerization }}\left(135{ }^{\circ} \mathrm{C}\right)=33.60 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$

Table S17. Kinetic profile of racemization of 1d by HPLC charts at $140^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\ln \left(\boldsymbol{e e}_{0} / \boldsymbol{e e _ { \mathbf { t } }}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 90.6 | 0.098715973 |
| $\mathbf{7 2 0 0}$ | 82.2 | 0.195990553 |
| $\mathbf{1 0 8 0 0}$ | 74.9 | 0.288615842 |
| $\mathbf{1 4 4 0 0}$ | 68.0 | 0.384956847 |
| $\mathbf{1 8 0 0 0}$ | 62.8 | 0.464451073 |



Figure S14. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of $\mathbf{1 d}$ at $140^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(140^{\circ} \mathrm{C}\right)=2.60 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=1.30 \times 10^{-5}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=33.7 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$

Table S18. Kinetic profile of racemization of 1d by HPLC charts at $145^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\ln \left(\boldsymbol{e e}_{0} / \boldsymbol{e e}_{\mathbf{t}}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 83.6 | 0.178552668 |
| $\mathbf{7 2 0 0}$ | 74.5 | 0.294639553 |
| $\mathbf{1 0 8 0 0}$ | 63.9 | 0.447944726 |
| $\mathbf{1 4 4 0 0}$ | 55.6 | 0.587526699 |
| $\mathbf{1 8 0 0 0}$ | 48.0 | 0.733802522 |



Figure S15. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of $1 d$ at $145^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(145^{\circ} \mathrm{C}\right)=4.00 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=2.00 \times 10^{-5}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=33.8 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$


Figure S16. Eyring-Polanyi plots of 1d.
$\Delta H^{\neq}{ }_{\text {enantiomerization }}=26.8 \pm 0.1 \mathrm{kcal} / \mathrm{mol}$
$\Delta S^{\neq}{ }_{\text {enantiomerization }}=-16.6 \pm 0.4 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

Table S19. Kinetic profile of racemization of $\mathbf{1 e}$ by HPLC charts at $135^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{\operatorname { l n } ( \boldsymbol { e e } _ { 0 } / \boldsymbol { e e _ { \mathbf { t } } } )}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 98.0 | 0 |
| $\mathbf{3 6 0 0}$ | 93.3 | 0.048773834 |
| $\mathbf{1 0 8 0 0}$ | 83.1 | 0.165159313 |
| $\mathbf{1 4 4 0 0}$ | 78.0 | 0.227629183 |
| $\mathbf{1 8 0 0 0}$ | 74.6 | 0.273145205 |



Figure S17. The plot of $\ln \left(e e_{0} / e_{t}\right)$ vs time of $\mathbf{1 e}$ at $135^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(135{ }^{\circ} \mathrm{C}\right)=1.55 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(135^{\circ} \mathrm{C}\right)=7.77 \times 10^{-6}$
$\Delta G^{\neq}$enantiomerization $\left(135^{\circ} \mathrm{C}\right)=33.7 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$

Table S20. Kinetic profile of racemization of $\mathbf{1 e}$ by HPLC charts at $140^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\mathbf{\%})$ | $\boldsymbol{\operatorname { l n } ( \boldsymbol { e e } _ { 0 } / \boldsymbol { e e _ { \mathbf { t } } } )}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 97.976 | 0 |
| $\mathbf{3 6 0 0}$ | 89.73 | 0.087917389 |
| $\mathbf{7 2 0 0}$ | 82.334 | 0.173938406 |
| $\mathbf{1 4 4 0 0}$ | 66.598 | 0.386048004 |
| $\mathbf{1 8 0 0 0}$ | 61.89 | 0.459363935 |



Figure S18. The plot of $\ln \left(e e_{0} / e_{t}\right)$ vs time of $1 \mathbf{e}$ at $140^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(140^{\circ} \mathrm{C}\right)=2.62 \times 10^{-5}$
kenantiomerization $\left(140{ }^{\circ} \mathrm{C}\right)=1.31 \times 10^{-5}$
$\Delta G^{\neq}$enantiomerization $\left(140^{\circ} \mathrm{C}\right)=33.7 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$

Table S21. Kinetic profile of racemization of $\mathbf{1 e}$ by HPLC charts at $145^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{\operatorname { l n } ( \boldsymbol { e e } _ { 0 } / \boldsymbol { e e _ { \mathbf { t } } } )}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 97.98 | 0 |
| $\mathbf{3 6 0 0}$ | 86.28 | 0.12707837 |
| $\mathbf{1 0 8 0 0}$ | 63.60 | 0.432171975 |
| $\mathbf{1 4 4 0 0}$ | 55.92 | 0.560800453 |
| $\mathbf{1 8 0 0 0}$ | 47.26 | 0.728973644 |



Figure S19. The plot of $\ln \left(e e o / e e_{t}\right)$ vs time of 1 e at $145^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(145^{\circ} \mathrm{C}\right)=4.04 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=2.02 \times 10^{-5}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=33.7 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$


Figure S20. Eyring-Polanyi plots of $\mathbf{1 e}$.
$\Delta H^{\neq}$enantiomerization $=31.6 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$
$\Delta S^{\neq}$enantiomerization $=-5.0 \pm 0.4 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

Table S22. Kinetic profile of racemization of $\mathbf{1 f}$ by HPLC charts at $135^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{l n}\left(\boldsymbol{e e}_{\boldsymbol{o}} / \boldsymbol{e} e_{\mathbf{t}}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | $\mathbf{0}$ |
| $\mathbf{3 6 0 0}$ | 97.2 | $\mathbf{0 . 0 2 8 3 9 9 4 7 5}$ |
| $\mathbf{7 2 0 0}$ | 95.352 | $\mathbf{0 . 0 4 7 5 9 4 8 7 9}$ |
| $\mathbf{1 0 8 0 0}$ | 91.448 | $\mathbf{0 . 0 8 9 3 9 9 6 8 1}$ |
| $\mathbf{1 4 4 0 0}$ | 88.986 | $\mathbf{0 . 1 1 6 6 9 1 1 3 2}$ |
| $\mathbf{1 8 0 0 0}$ | 86.756 | $\mathbf{0 . 1 4 2 0 7 0 6 0 5}$ |



Figure S21. The plot of $\ln \left(e e_{0} / e e_{\mathrm{t}}\right)$ vs time of $\mathbf{1 f}$ at $135^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(135{ }^{\circ} \mathrm{C}\right)=8.07 \times 10^{-6}$
$k_{\text {enantiomerization }}\left(135^{\circ} \mathrm{C}\right)=4.04 \times 10^{-6}$
$\Delta G^{\neq}$enantiomerization $\left(135^{\circ} \mathrm{C}\right)=34.21 \pm 0.09 \mathrm{kcal} / \mathrm{mol}$

Table S23. Kinetic profile of racemization of $\mathbf{1 f}$ by HPLC charts at $140^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\ln \left(\boldsymbol{e e}_{0} / \boldsymbol{e e _ { \mathbf { t } }}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 95.7 | 0.044349041 |
| $\mathbf{7 2 0 0}$ | 91.3 | 0.09121657 |
| $\mathbf{1 0 8 0 0}$ | 87.1 | 0.137631214 |
| $\mathbf{1 4 4 0 0}$ | 83.8 | 0.176689447 |
| $\mathbf{1 8 0 0 0}$ | 79.9 | 0.224043957 |



Figure S22. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of $\mathbf{1 f}$ at $140^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(140^{\circ} \mathrm{C}\right)=1.24 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=6.20 \times 10^{-6}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=34.30 \pm 0.09 \mathrm{kcal} / \mathrm{mol}$

Table S24. Kinetic profile of racemization of $\mathbf{1 f}$ by HPLC charts at $145{ }^{\circ} \mathrm{C} .$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{\operatorname { l n } ( \boldsymbol { e } \boldsymbol { e } _ { 0 } / \boldsymbol { e } \boldsymbol { e } _ { \mathbf { t } } )}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 92.2 | 0.081709095 |
| $\mathbf{7 2 0 0}$ | 86.9 | 0.139905953 |
| $\mathbf{1 0 8 0 0}$ | 81.9 | 0.200013134 |
| $\mathbf{1 4 4 0 0}$ | 76.4 | 0.269449304 |
| $\mathbf{1 8 0 0 0}$ | 71.3 | 0.338975367 |



Figure S23. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of $\mathbf{1 f}$ at $145^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(145^{\circ} \mathrm{C}\right)=1.84 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=9.20 \times 10^{-6}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(145{ }^{\circ} \mathrm{C}\right)=34.39 \pm 0.09 \mathrm{kcal} / \mathrm{mol}$


Figure S24. Eyring-Polanyi plots of 1f.
$\Delta H^{\neq}$enantiomerization $=27.12 \pm 0.6 \mathrm{kcal} / \mathrm{mol}$
$\Delta S^{\neq}$enantiomerization $=-17.4 \pm 0.2 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

Table S25. Kinetic profile of racemization of $\mathbf{1 g}$ by HPLC charts at $135^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\ln \left(\boldsymbol{e e}_{0} / \boldsymbol{e e _ { \mathbf { t } }}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 96.4 | 0.036892226 |
| $\mathbf{7 2 0 0}$ | 91.7 | 0.087105927 |
| $\mathbf{1 0 8 0 0}$ | 88.4 | 0.123660273 |
| $\mathbf{1 4 4 0 0}$ | 84.6 | 0.16685774 |
| $\mathbf{1 8 0 0 0}$ | 81.8 | 0.200819595 |



Figure S25. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of 1 g at $135^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(135{ }^{\circ} \mathrm{C}\right)=1.14 \times 10^{-6}$
$k_{\text {enantiomerization }}\left(135^{\circ} \mathrm{C}\right)=6.68 \times 10^{-6}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(135{ }^{\circ} \mathrm{C}\right)=34.1 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$

Table S26. Kinetic profile of racemization of $\mathbf{1 g}$ by HPLC charts at $140^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\ln \left(\boldsymbol{e e}_{0} / \boldsymbol{e e _ { \mathbf { t } }}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 94.1 | 0.060599622 |
| $\mathbf{7 2 0 0}$ | 88.6 | 0.121241509 |
| $\mathbf{1 0 8 0 0}$ | 83.2 | 0.183370106 |
| $\mathbf{1 4 4 0 0}$ | 78.6 | 0.240671268 |
| $\mathbf{1 8 0 0 0}$ | 73.4 | 0.30911002 |



Figure S26. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of 1 g at $140^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(140^{\circ} \mathrm{C}\right)=1.70 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=8.52 \times 10^{-6}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=34.0 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$

Table S27. Kinetic profile of racemization of $\mathbf{1 g}$ by HPLC charts at $145^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\ln \left(\boldsymbol{e e}_{0} / \boldsymbol{e e _ { \mathbf { t } }}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 90.3 | 0.102564428 |
| $\mathbf{7 2 0 0}$ | 81.7 | 0.202287557 |
| $\mathbf{1 0 8 0 0}$ | 74.6 | 0.293244179 |
| $\mathbf{1 4 4 0 0}$ | 67.6 | 0.392213302 |
| $\mathbf{1 8 0 0 0}$ | 61.4 | 0.488542416 |



Figure S27. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of 1 g at $145^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(145^{\circ} \mathrm{C}\right)=2.70 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=1.35 \times 10^{-6}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=34.1 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$


Figure S28. Eyring-Polanyi plots of $\mathbf{1 g}$.
$\Delta H^{\neq}$enantiomerization $=28.4 \pm 0.1 \mathrm{kcal} / \mathrm{mol}$
$\Delta S^{\neq}{ }_{\text {enantiomerization }}=-12.0 \pm 0.3 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

Table S28. Kinetic profile of racemization of $\mathbf{1 h}$ by HPLC charts at $135^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{\operatorname { l n } ( \boldsymbol { e e } _ { 0 } / \boldsymbol { e e _ { \mathbf { t } } } )}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 97.6 | 0.02388294 |
| $\mathbf{1 0 8 0 0}$ | 94.8 | 0.05337968 |
| $\mathbf{1 4 4 0 0}$ | 90.4 | 0.101058671 |
| $\mathbf{1 8 0 0 0}$ | 88.2 | 0.125563223 |



Figure S29. The plot of $\ln \left(e e o / e e_{t}\right)$ vs time of 1 g at $135^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(135{ }^{\circ} \mathrm{C}\right)=7.00 \times 10^{-6}$
$k_{\text {enantiomerization }}\left(135^{\circ} \mathrm{C}\right)=3.50 \times 10^{-6}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(135^{\circ} \mathrm{C}\right)=34.3 \pm 0.5 \mathrm{kcal} / \mathrm{mol}$

Table S29. Kinetic profile of racemization of $\mathbf{1 h}$ by HPLC charts at $140^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{\operatorname { l n }}\left(\boldsymbol{e} \boldsymbol{e}_{\mathbf{0}} / \boldsymbol{e} \boldsymbol{e}_{\mathbf{t}}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 97.6 | 0.048182349 |
| $\mathbf{7 2 0 0}$ | 96.0 | 0.084316829 |
| $\mathbf{1 0 8 0 0}$ | 94.4 | 0.118963732 |
| $\mathbf{1 4 4 0 0}$ | 92.6 | 0.160192227 |
| $\mathbf{1 8 0 0 0}$ | 91.4 | 0.188645511 |



Figure S30. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of $\mathbf{1 h}$ at $140^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(140^{\circ} \mathrm{C}\right)=1.04 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=5.21 \times 10^{-6}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=34.4 \pm 0.5 \mathrm{kcal} / \mathrm{mol}$

Table S30. Kinetic profile of racemization of $\mathbf{1 h}$ by HPLC charts at $145^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{\operatorname { l n } ( \boldsymbol { e e _ { 0 } } / \boldsymbol { e } \boldsymbol { e } _ { \mathbf { t } } )}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 100 | 0 |
| $\mathbf{3 6 0 0}$ | 93.0 | 0.072420167 |
| $\mathbf{7 2 0 0}$ | 86.9 | 0.140458185 |
| $\mathbf{1 0 8 0 0}$ | 81.6 | 0.203316415 |
| $\mathbf{1 4 4 0 0}$ | 77.0 | 0.260897341 |
| $\mathbf{1 8 0 0 0}$ | 72.5 | 0.321583624 |



Figure S31. The plot of $\ln \left(e e_{0} / e e_{t}\right)$ vs time of 1 h at $145^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(145^{\circ} \mathrm{C}\right)=1.77 \times 10^{-5}$
$k_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=8.87 \times 10^{-6}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=34.4 \pm 0.5 \mathrm{kcal} / \mathrm{mol}$


Figure S32. Eyring-Polanyi plots of $\mathbf{1 h}$.
$\Delta H^{\neq}$enantiomerization $=30.7 \pm 0.3 \mathrm{kcal} / \mathrm{mol}$
$\Delta S^{\neq}$enantiomerization $=-8.9 \pm 0.8 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

Table S31. Kinetic profile of racemization of $\mathbf{1 i}$ by HPLC charts at $135^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{\operatorname { l n }}\left(\boldsymbol{e e _ { \mathbf { 0 } }} / \boldsymbol{e e _ { \mathbf { t } }}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 98.2 | 0 |
| $\mathbf{6 0 0}$ | 77.2 | 0.24069737 |
| $\mathbf{1 2 0 0}$ | 57.1 | 0.542900506 |
| $\mathbf{1 8 0 0}$ | 38.5 | 0.936413212 |
| $\mathbf{2 4 0 0}$ | 27.1 | 1.287625158 |
| $\mathbf{3 0 0 0}$ | 19.1 | 1.636965902 |
| $\mathbf{3 6 0 0}$ | 13.8 | 1.961760359 |



Figure S33. The plot of $\ln \left(e e_{0} / e e_{\mathrm{t}}\right)$ vs time of $\mathbf{1 i}$ at $135^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(135^{\circ} \mathrm{C}\right)=5.58 \times 10^{-4}$
$k_{\text {enantiomerization }}\left(135^{\circ} \mathrm{C}\right)=2.79 \times 10^{-4}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(135{ }^{\circ} \mathrm{C}\right)=30.8 \pm 0.1 \mathrm{kcal} / \mathrm{mol}$

Table S32. Kinetic profile of racemization of $\mathbf{1 i}$ by HPLC charts at $140^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\mathbf{l n}\left(\boldsymbol{e e}_{\mathbf{0}} / \boldsymbol{e} \boldsymbol{e}_{\mathbf{t}}\right)$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 98.9 | 0 |
| $\mathbf{6 0 0}$ | 68.3 | 0.370978418 |
| $\mathbf{1 2 0 0}$ | 41.4 | 0.870857562 |
| $\mathbf{1 8 0 0}$ | 25.4 | 1.360291399 |
| $\mathbf{2 4 0 0}$ | 16.0 | 1.824622079 |
| $\mathbf{3 0 0 0}$ | 9.4 | 2.348952042 |
| $\mathbf{3 6 0 0}$ | 5.9 | 2.818701574 |



Figure S34. The plot of $\ln \left(e e_{0} / e e_{\mathrm{t}}\right)$ vs time of 1 i at $140^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(140^{\circ} \mathrm{C}\right)=7.90 \times 10^{-4}$
$k_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=3.95 \times 10^{-4}$
$\Delta G^{\neq}{ }_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=30.9 \pm 0.1 \mathrm{kcal} / \mathrm{mol}$

Table S33. Kinetic profile of racemization of $\mathbf{1 i}$ by HPLC charts at $145^{\circ} \mathrm{C}$.

| $\boldsymbol{t}(\mathbf{s})$ | $\boldsymbol{e e}(\%)$ | $\boldsymbol{\operatorname { l n } ( \boldsymbol { e e } _ { 0 } / \boldsymbol { e } \boldsymbol { e } _ { \mathbf { t } } )}$ |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 98.7 | 0 |
| $\mathbf{6 0 0}$ | 56.2 | 0.563784375 |
| $\mathbf{1 2 0 0}$ | 26.9 | 1.299384327 |
| $\mathbf{1 8 0 0}$ | 12.7 | 2.048078001 |
| $\mathbf{2 4 0 0}$ | 6.1 | 2.77673187 |
| $\mathbf{3 0 0 0}$ | 3.1 | 3.461771336 |
| $\mathbf{3 6 0 0}$ | 1.8 | 3.98211672 |



Figure S35. The plot of $\ln \left(e e_{0} / e e_{\mathrm{t}}\right)$ vs time of 1 i at $145^{\circ} \mathrm{C}$.
$k_{\text {racemization }}\left(145{ }^{\circ} \mathrm{C}\right)=1.14 \times 10^{-3}$
$k_{\text {enantiomerization }}\left(145^{\circ} \mathrm{C}\right)=5.72 \times 10^{-4}$
$\Delta G^{\neq}$enantiomerization $\left(145{ }^{\circ} \mathrm{C}\right)=31.0 \pm 0.1 \mathrm{kcal} / \mathrm{mol}$


Figure S36. Eyring-Polanyi plots of 1i.
$\Delta H^{*}$ enantiomerization $=23.51 \pm 0.07 \mathrm{kcal} / \mathrm{mol}$
$\Delta S^{\neq}{ }_{\text {enantiomerization }}=-17.8 \pm 0.2 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$
5. Optical absorption, emission, and circular dichroism spectra measurements

The solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ with the spectroscopic grade were used for all spectroscopic experiments. UV/vis absorption and photoluminescence (PL) spectra were measured with a SHIMADZU UV-3150PC spectrophotometer, and a SHIMADZU RF6000 spectrofluorometer, respectively. The circular dichroism (CD) spectra were recorded on a JASCO J-820.


Figure S37. UV / vis absorption and normalized photoluminescence spectra of 1a.


Figure S38. CD spectra of 1a.


Figure S39. UV / vis absorption and normalized photoluminescence spectra of $\mathbf{1 b}$.


Figure S40. CD spectra of $\mathbf{1 b}$.


Figure S41. UV / vis absorption and normalized photoluminescence spectra of $\mathbf{1 c}$.


Figure S42. CD spectra of $\mathbf{1 c}$.


Figure S43. UV / vis absorption and normalized photoluminescence spectra of 1d.


Figure S44. CD spectra of $\mathbf{1 d}$.


Figure S45. UV / vis absorption and normalized photoluminescence spectra of $\mathbf{1 e}$.


Figure S46. CD spectra of $\mathbf{1 e}$.


Figure S47. UV / vis absorption and normalized photoluminescence spectra of $\mathbf{1 f}$.


Figure $\mathbf{S 4 8}$. CD spectra of $\mathbf{1 f}$.


Figure S49. UV / vis absorption and normalized photoluminescence spectra of $\mathbf{1 g}$.


Figure S50. CD spectra of $\mathbf{1 g}$.


Figure S51. UV / vis absorption and normalized photoluminescence spectra of $\mathbf{1 h}$.


Figure S52. CD spectra of $\mathbf{1 h}$.


Figure S53. UV / vis absorption and normalized photoluminescence spectra of $\mathbf{1 i}$.


Figure $\mathbf{S 5 4}$. CD spectra of $\mathbf{1 i}$.

## 6. Theoretical calculations

All calculations were carried out with Gaussian 16 Rev. B. Program package. ${ }^{13}$ Geometry optimizations and energy calculations for the ground-state structures and the transition states were carried out with the DFT methods using Becker's three-parameter hybrid functional B3LYP ${ }^{14}$ and the standard $6-31 \mathrm{G}(\mathrm{d})^{15}$ basis sets. Theoretical ECD spectra were simulated at the time-dependent DFT (TD-DFT) ${ }^{16}$ method in Minnesota functional M06-2 $\mathrm{X}^{17}$ with a $6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})^{15}$ basis set. Frequency calculations at the optimized structures were performed by using the same functional and $6-311+G(d, p)^{15}$ basis sets as in the geometry optimization to estimate the zero-point energy corrections and to identify whether the obtained structures are the stable structures (without imaginary frequency) or the transition states (with sole imaginary frequency). The connection of the transition state with the reactant and product was examined by the intrinsic reaction coordinate (IRC) ${ }^{18}$ technique.

## Optimized geometry of (S)-1d (GS-(S))

(This geometry was used to simulate ECD spectra)
C $0.6215300 .196940-2.466690$
H -0.428940 $0.423310-2.599350$
С $1.4967700 .046800-3.527690$
C $2.837360-0.245210-3.254190$
C $3.261850-0.377730-1.940920$
C $2.334910-0.215750-0.906370$
N $1.0370000 .067680-1.199390$
B 0.1266100 .2153400 .142860
C $1.299810-0.0646201 .202630$
C $2.521730-0.3013800 .538350$
С $3.710380-0.5733701 .225510$
C $3.678900-0.6098602 .613990$
С $2.476220-0.3773203 .294540$
С $1.298740-0.1075902 .598380$
Н $1.1382000 .156050-4.542430$
Н $3.543550-0.367590-4.067420$
Н $4.294310-0.603100-1.707850$
H 0.3793800 .0698203 .146660
H $4.641090-0.7528800 .697170$
H $2.465700-0.4082704 .379050$

H 4.584660 -0.817920 3.172010
C - $1.239150-2.1735500 .058520$
C -2.482400 -2.828160 0.040480
C -3.644070-2.049460 0.068360
C -3.583450-0.655260 0.117620
C - $2.341110-0.0236600 .134300$
C -2.039460 1.422950 0.180980
C -0.641970 1.6444200 .181560
C -2.934030 2.4936900 .224250
C - 0.1685202 .9533000 .227620
C -2.437890 3.7980700 .264620
C -1.061970 4.0301700 .265970
H -0.333030 -2.776030 0.042950
H 0.9002203 .1504700 .241430
C -2.558550-4.336930 0.022420
H -0.686610 5.0475400 .302660
H -4.503410 -0.079420 0.140770
H -4.006110 2.3237400 .228610
H -4.612620-2.540260 0.053150
H -3.126580 4.6356800 .298710
H -1.825480 -4.766010 -0.666770
H -2.352820-4.755640 1.014080
Н -3.549280-4.683570-0.280780
C -1.150460-0.786390 0.103280

## Calculated geometry of TS-1

C -4.442250 0.3854601 .220650
H -4.956100 0.5083902 .172500
C -4.850560 1.110840 0.101520
N -3.430690-0.493620 1.212970
C -4.165030 0.911830-1.096980
H -5.684940 1.801660 0.168780
C -2.760680-0.666020 0.061300
C -3.101670 $0.014940-1.118120$
H -4.452070 1.447000-1.997430
C - $1.715370-1.7369500 .014970$

H -2.538880 -0.167360-2.027240
C - $0.312570-1.523470-0.132580$
C -2.242070-3.035980 0.021370
В $0.505170-0.1897600 .070390$
С $0.449700-2.684640-0.418630$
C - $1.439490-4.151800-0.201710$
H -3.308930-3.161520 0.178530
С 0.1056201 .3470300 .109280
C $2.099780-0.1337200 .095460$
C - $0.084470-3.968160-0.463760$
Н $1.502060-2.568820-0.633430$
H -1.876820 -5.146230-0.201010
C $1.288180-2.090010-0.174310$
C - 1.0643702 .0733300 .351950
С $3.120710-1.0556000 .338270$
C $2.475960-1.208420-0.178570$
H 0.555000 -4.815730 -0.692700
C $1.2714103 .473500-0.312740$
С -1.0819203 .4711500 .248780
H -1.971030 1.5728000 .657070
C $4.481750-0.7036600 .242750$
Н $2.885130-2.0712200 .643820$
C $3.809520-1.573920-0.304550$
C $0.0713004 .165240-0.109070$
H $2.1798504 .020610-0.549390$
H -2.001680 4.0125800 .450330
C $4.8057100 .609400-0.104360$
C $5.556190-1.7324700 .506740$
H $4.0911702 .599180-0.528890$
Н 0.048590 5.247420 -0.205140
H $5.8512300 .894830-0.192640$
H $5.393400-2.2432001 .462420$
H $5.571330-2.506060-0.270780$
Н $6.549310-1.2758100 .536410$

## Calculated geometry of Int-1

C $3.5582902 .630680-1.249130$
H $4.2817503 .044890-1.946590$
С $2.8460703 .469580-0.393410$
C 1.9454802 .8856600 .491440
C 1.7872201 .5049300 .473950
C $2.5245500 .739790-0.442240$
N $3.4120801 .305750-1.279530$
B -0.243800 -0.668490 -0.261080
С $1.142040-1.379690-0.294460$
C $2.389680-0.740250-0.497750$
C $3.544290-1.505270-0.703400$
C $3.492770-2.894850-0.688760$
C $2.280090-3.541120-0.455730$
C $1.127290-2.788330-0.252150$
H $3.0041004 .541100-0.417280$
H 1.3818103 .4922501 .191390
H 1.1237801 .0216201 .180930
H $0.184950-3.301580-0.090680$
Н $4.483550-0.991980-0.868580$
H $2.232240-4.624340-0.432980$
H $4.397960-3.470920-0.846230$
C -1.473640-1.600560 1.970570
C -2.645540-1.595980 2.750820
C -3.730370-0.839570 2.304800
C - $3.677810-0.0966801 .115560$
C -2.517090 -0.116390 0.359570
C -2.210400 $0.579630-0.917280$
C $-0.8776700 .302810-1.320880$
C - $3.0361501 .386020-1.688600$
С $-0.4050200 .836760-2.517470$
C -2.536310 $1.922800-2.882950$
C - $1.2347201 .650630-3.298610$
H -0.616680-2.177940 2.308280
Н $0.6073000 .628090-2.848050$
С -2.719070-2.393660 4.030710
H -0.866680 2.069310 -4.228610

H -4.542650 0.4820100 .808080
H - $4.0560101 .599850-1.386300$
H -4.640480 -0.822540 2.896550
H -3.174180 2.553340 -3.493190
H -2.642160 -3.467870 3.833070
H -1.901700 -2.131700 4.709540
H -3.660120-2.219100 4.556270
C -1.398010-0.879630 0.784040

## Calculated geometry of TS-2

C 3.462140-1.744400-1.031560
H $3.746080-2.720190-0.641490$
C 3.642350-1.447630-2.381960
N $2.947850-0.887360-0.141510$
C $3.258930-0.185810-2.832510$
H $4.067950-2.184970-3.054960$
C $2.5759300 .328030-0.577410$
C $2.7187000 .715520-1.918550$
H $3.3757900 .091500-3.876260$
C 2.0353501 .2991100 .429530
H 2.403850 1.706560 -2.228580
С 0.7138401 .2136900 .929510
C 2.8690702 .3544400 .821040
В -0.3527100 .1253900 .569510
С 0.2903602 .2244701 .818310
С 2.4353803 .3173401 .731740
H 3.8744702 .4110700 .412870
С -0.387310-1.421660 0.825630
C - $1.7730400 .436620-0.029530$
C 1.1380003 .2494202 .235920
H -0.729080 2.1993002 .194920
H 3.1042204 .1172302 .036210
C - 1.671860 -1.897490 0.438030
С $0.525010-2.3140901 .390040$
C -2.366060 $1.609900-0.484220$
C - $2.497370-0.783670-0.097770$

H 0.7810903 .9981802 .937420
C -2.019880-3.232500 0.599310
С 0.175510 -3.662270 1.556740
H 1.512540 -1.965160 1.673550
С -3.676380 1.608080-1.005620
H -1.814140 $2.547230-0.437530$
С -3.786180-0.807560-0.608890
C -1.083290-4.113820 1.161800
H -2.999940 -3.598400 0.304690
H 0.885670 -4.358280 1.994140
C -4.363300 $0.392330-1.057790$
С -4.311860 $2.889270-1.491910$
H -4.354800-1.731960-0.668140
H -1.346780 -5.159950 1.293860
H -5.373870 $0.374500-1.459290$
H -4.393320 3.626670 -0.684630
H -3.718020 $3.352910-2.288220$
H -5.317210 2.714360-1.884830

Calculated geometry of GS-(R)
C -10.84677 0.196940-2.466690
H -9.796300 $0.423310-2.599350$
С -11.72201 0.046800-3.527690
C -13.06260 -0.245210-3.254190
C -13.48709-0.377730-1.940920
С -12.56015-0.215750 -0.906370
$\mathrm{N}-11.262240 .067680-1.199390$
В -10.35185 0.2153400 .142860
C -11.52505-0.064620 1.202630
C -12.74697-0.301380 0.538350
C -13.93562-0.573370 1.225510
C -13.90414-0.609860 2.613990
C - 12.70146-0.377320 3.294540
C -11.52398-0.107590 2.598380
H -11.36344 0.156050 -4.542430
H -13.76879 -0.367590 -4.067420

H -14.51955 -0.603100 -1.707850
H -10.60462 0.0698203 .146660
H -14.86633 -0.752880 0.697170
H -12.69094-0.408270 4.379050
H -14.80990 -0.817920 3.172010
C -8.986090-2.173550 0.058520
C -7.742840-2.828160 0.040480
C -6.581170-2.049460 0.068360
C - $6.641790-0.6552600 .117620$
C - $7.884130-0.0236600 .134300$
C -8.185780 1.4229500 .180980
C -9.583270 1.6444200 .181560
C - 7.2912102 .4936900 .224250
C - 10.056722 .9533000 .227620
C - 7.7873503 .7980700 .264620
С -9.163270 4.0301700 .265970
H -9.892210-2.776030 0.042950
H - 11.125463 .1504700 .241430
C -7.666690-4.336930 0.022420
H -9.538630 5.0475400 .302660
H -5.721830 - 0.0794200 .140770
H -6.219130 2.3237400 .228610
H -5.612620-2.540260 0.053150
H -7.0986604 .6356800 .298710
H -8.399760 -4.766010 -0.666770
H -7.872420-4.755640 1.014080
H -6.675960-4.683570-0.280780
C -9.074780-0.786390 0.103280

## References and Notes

(1) N. Ishida, T. Moriya, T. Goya and M. Murakami, J. Org. Chem., 2010, 75, 87098712.
(2) X. Cheng, G.-H. Hou, J.-H. Xie and Q.-L. Zhou, Org. Lett., 2004, 6, 2381-2383.
(3) M. Shimizu, I. Nagao, Y. Tomioka, T. Kadowaki and T. Hiyama, Tetrahedron, 2011, 67, 8014-8026..
(4) R. Wada, S. Kaga, Y. Kawai, K. Futamura, T. Murai and F. Shibahara, Tetrahedron, 2021, 83, 131978.
(5) S. Xu, X. Shangguan, H. Li, Y. Zhang and J. Wang, J. Org. Chem., 2015, 80, 77797784.
(6) X. Mu, H. Zhang, P. Chen and G. Liu, Chem. Sci., 2014, 5, 275-280.
(7) (a) Y. Shoji, N. Tanaka, S. Muranaka, N. Shigeno, H. Sugiyama, K. Takenouchi, F. Hajjaj and T. Fukushima, Nat. Commun., 2016, 7, 12704; (b) Y. Shimizu, Y. Shoji, D. Hashizume, Y. Nagata, and T. Fukushima Chem. Commun., 2018, 54, 1231412317; (c) Y. Shoji, N. Shigeno, K. Takenouchi, M. Sugimoto and T. Fukushima, Chem. Eur. J., 2018, 24, 13223-13230.
(8) Olex2: (a) O. V. Dolomanov, A. J. Blake, N. R. Champness and M. J. Schröder, M. J. Appl. Cryst., 2003, 36, 1283-1284; (b) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, H. J. Appl. Cryst., 2009, 42, 339-341.
(9) SHELX: G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
(10) First-order kinetic analysis: C. H. Bamford, and C. F. H. Tipper, Comprehensive Chemical Kinetics, vol. 1, The practice of kinetics, Elsevier B.V., Amsterdam, 1969.
(11) First-order kinetic analysis for racemization: (a) T. Turányi, A. S. Tomlin, M. F. Boehm and J. L. Bada, Proc. Natl. Acad. Sci. USA, 1984, 81, 5263; (b) L. Canoira, M.-J. García-Martínez, J. F. Llamas, J. E. Ortíz and T. D. Torres, Int. J. Chem. Kinet., 2003, 35, 576-591.
(12) Eyring-Planyi plot: (a) H. Eyring and M. Polanyi Über Einfache Gasreaktionen. Z. Phys. Chem. B, 1931, 12, 279-311; (b) H. Eyring, J. Chem. Phys., 1935, 3, 107-115.
(13) Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb; J. R. Cheeseman; G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A.

Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
(14) B3LYP: (a) K. Kim and K. D. Jordan, J. Phys. Chem., 1994, 98, 10089-10094; (b) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch J. Phys. Chem., 1994, 98, 11623-11627.
(15) 6-31G, 6-311G: (a) R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724-728; (b) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2260.
(16) TD-DFT: C. Adamo and D. Jacquemin Chem. Soc. Rev., 2013, 42, 845-856.
(17) M06-2X: (a) Y. Zhao and D. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241; (b)
B. Chan, A. T. B. Gilbert, P. M. W. Gill and L. Radom, J. Chem. Theory Comput., 2014, 10, 3777-3783.
(18) IRC: K. Fukui, Acc. Chem. Res., 1981, 14, 363-368.

## NMR Spectra

${ }^{1} \mathrm{H}$ NMR Spectrum of $\left.\mathbf{4 ( 4 0 0 ~ M H z}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$


${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathrm{S} 3\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$

${ }^{19}$ F NMR Spectrum of $\mathbf{S 3} \mathbf{( 3 7 5} \mathbf{~ M H z}$, CDCl $_{3}$, rt)


## ${ }^{1}$ H NMR Spectrum of $1 \mathrm{a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$


${ }^{13} \mathrm{C}$ NMR Spectrum of $1 \mathrm{a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt$)$

${ }^{11}$ B NMR Spectrum of $\mathbf{1 a}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$



## ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$


${ }^{11}$ B NMR Spectrum of $\mathbf{1 b}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$


## ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 c}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$

(
${ }^{13} \mathrm{C}$ NMR Spectrum of $1 \mathrm{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$

${ }^{11}$ B NMR Spectrum of $\mathbf{1 c}\left(\mathbf{1 2 8} \mathbf{M H z}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$

${ }^{19}$ F NMR Spectrum of $1 \mathrm{c}\left(\mathbf{3 7 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}, ~ \mathrm{rt}\right)$


## ${ }^{1} \mathrm{H}$ NMR Spectrum of $1 \mathrm{~d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$


${ }^{13} \mathrm{C}$ NMR Spectrum of $1 \mathrm{~d}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, ~ r t\right)$

${ }^{11}$ B NMR Spectrum of $1 \mathrm{~d}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $1 \mathrm{e}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt)

${ }^{11}$ B NMR Spectrum of $1 \mathrm{e}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$


## ${ }^{1} \mathrm{H}$ NMR Spectrum of $1 \mathrm{f}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$


${ }^{13} \mathrm{C}$ NMR Spectrum of $1 \mathrm{f}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$

${ }^{11}$ B NMR Spectrum of $1 \mathrm{f}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$

${ }^{19}$ F NMR Spectrum of $1 \mathrm{f}\left(\mathbf{3 7 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$


${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathrm{S} 8\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathrm{S8}\left(\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathrm{S} 9\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathrm{S} 9\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$

${ }^{19}$ F NMR Spectrum of $\mathbf{S 9}\left(\mathbf{3 7 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$


## ${ }^{1} H$ NMR Spectrum of $1 \mathrm{~g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.\mathbf{r t}\right)$


${ }^{13} \mathrm{C}$ NMR Spectrum of $1 \mathrm{~g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$


${ }^{11}$ B NMR Spectrum of $\mathbf{1 g}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$


## ${ }^{1} H$ NMR Spectrum of $\mathbf{1 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$


${ }^{13} \mathrm{C}$ NMR Spectrum of $1 \mathrm{~h}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$

${ }^{11}$ B NMR Spectrum of $\mathbf{1 h}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$


## ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 i}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$, rt)


${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 i}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$

${ }^{11}$ B NMR Spectrum of $\mathbf{1 i}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{r t}\right)$


${ }^{19}$ F NMR Spectrum of $\mathbf{1 i}\left(\mathbf{3 7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{r t}\right)$



[^0]:    ${ }^{a}$ To determine \%ee values, an independent HPLC analysis for each fractions was performed; A chromatogram gave two integration values $\left(I\left(t_{n}\right)\right)$ around two retention $\operatorname{times}\left(t_{\mathrm{n}}\right)$; The values were applied into the equation: For fraction $1: \% e e=\left[I\left(t_{1}\right)-I\left(t_{2}\right)\right] /\left[I\left(t_{1}\right)+I\left(t_{2}\right)\right]$; For fraction $2: \% e e=\left[I\left(t_{2}\right)-I\left(t_{1}\right)\right] /\left[I\left(t_{1}\right)+I\left(t_{2}\right)\right] ;{ }^{b}$ To determine $[\mathrm{CD}(+/-)]$, a sign of [ $\theta$ ] $\left(/ \mathrm{deg} \cdot \mathrm{cm}^{2} \cdot \mathrm{dmol}^{-1}\right)$ value at 320 nm of the CD spectra in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the each sample was used. Spectra were shown in below. ${ }^{c} \alpha=k_{2} / k_{1} .{ }^{d}$ at $305 \mathrm{~nm} .{ }^{e}$ at 335 nm

