Supporting materials

Binuclear, tetranuclear and hexadecnuclear thio- oxomolybdenum(V/IV) glycolates with selective adsorptions of gases

Rong-Yan Lin,[‡] Lan Deng,[‡] Dong-Li An, Zhao-Hui Zhou*

State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China, Tel: + 86-592-2184531; Fax: + 86-592-2183047 zhzhou@xmu.edu.cn

[‡] These authors contributed equally to this work.

Figure and Table Options

Figure S1. Polyhedral representation of 1.

Figure S2. Forming a circular cavity of 3.8 Å approximately in **2** and its corresponding simplified topological nets, green sphere represents a complete tetramer.

Figure S3. View of the main structure of 3. Symmetric code: a (-x, -y, -z).

- Figure S4. (a) Polyhedral representation of 4. (b) The skeleton connection in 4-part 2.
 - (c) Highlighted pz/Hpz ligands in **4-part 2**. (d) Highlighted intramolecular hydrogen bonds in **4**.
- **Figure S5.** 3D holes exist in 1 viewed along (1, 1, 0) direction with a diameter of 3.0 Å approximately. Atomic color: molybdenum, violet; oxygen, red; nitrogen, blue; carbon, gray; hydrogen, white.
- Figure S6. Packing diagram of 1 in *c*-axis direction, forming an "8"-shaped cavity of $6.4 \times 2.8 \text{ Å}^2$ approximately.
- Figure S7. Packing diagram of 2 viewed from *a*-axis direction.

Figure S8. Packing diagram of 2 viewed from *b*-axis direction.

Figure S9. Packing diagram of 3 viewed from (0, 1, 1) direction.

Figure S10. Packing diagram of 3 viewed from (1, 1, 0) direction.

Figure S11. Packing diagram of 4 viewed from *b*-axis direction.

Figure S12. Solution EPR spectra of $1 \sim 3$ in DMSO solvents at 110 K respectively.

Figure S13. O₂, CO₂, N₂, CH₄ and H₂ adsorptions for **1** at different pressures at 298 K, respectively.

Figure S14. N₂ adsorption-desorption isotherms of Na₂[Mo₁₆O₁₂(μ_2 -O)₆(μ_2 -OH)₂(μ_3 -O)₁₂(glyc)₄(Hpz)₄(pz)₈]·28H₂O (**4**) at low pressure.

Figure S15. (a) CO₂ adsorption isotherms for **4** at different temperatures (298 and 308 K) under the low pressure; (b) Isosteric heat of adsorption (Q_{st}) plotted against CO₂ uptake for **4**.

Figure S16. O₂ and CO₂ adsorption isotherms for **4** at 298 K and pressures of up to 1 bar.

Figure S17. Calculated and simulated PXRD patterns of compound 1.

Figure S18. Calculated and simulated PXRD patterns of compound 2.

Figure S19. Calculated and simulated PXRD patterns of compound 3.

Figure S20. Calculated and simulated PXRD patterns of compound 4.

Figure S21. TG-DTG curves of compound 1.

Figure S22. TG-DTG curves of compound 2.

Figure S23. TG-DTG curves of compound 3.

Figure S24. TG-DTG curves of compound 4.

Figure S25. IR spectrum of compound 1.

Figure S26. IR spectrum of compound 2.

- Figure S27. IR spectrum of compound 3.
- Figure S28. IR spectrum of compound 4.
- Figure S29. IR spectrum of pyrazole ligands.
- Figure S30. Solid-state UV-vis reflective spectra for $1 \sim 4$.
- Figure S31. Solid-state ¹³C NMR spectrum for 3.

Figure S32. Positive ion electrospray ionization mass spectra (ESI-MS) of **1** in MeOH solution.

- **Table S1.** Crystallographic data and structural refinements for complexes $[Mo_2O_2(\mu_2 O)(\mu_2 S)(Hglyc)_2(Hpz)_2] \cdot H_2O$ (1), $(Hdpa)[Mo_2O_2(\mu_2 S)_2(Hglyc)(glyc)(H_2O)]$ (2), $(Hdpa)_4[Mo_4O_4(\mu_3 O)_2(\mu_2 S)_2(glyc)_2(S_2O_3)_2]$ (3) and $Na_2[Mo_16O_{12}(\mu_2 O)_6(\mu_2 OH)_2(\mu_3 O)_{12}(glyc)_4(Hpz)_4(pz)_8] \cdot 28H_2O$ (4) respectively.
- **Table S2.** Selected hydrogen bond distances (Å) and angles (°) in $[Mo_2O_2(\mu_2-O)(\mu_2-S)(Hglyc)_2(Hpz)_2] \cdot H_2O$ (1).
- **Table S3.** Selected hydrogen bond distances (Å) and angles (°) in (Hdpa)[Mo₂O₂(µ₂-S)₂(Hglyc)(glyc)(H₂O)] (**2**).
- **Table S4.** Selected hydrogen bond distances (Å) and angles (°) in $(Hdpa)_4[Mo_4O_4(\mu_3-O_2(\mu_2-S)_2(glyc)_2(S_2O_3)_2]$ (**3**).
- **Table S5.** Selected hydrogen bond distances (Å) and angles (°) in Na₂[Mo₁₆O₁₂(μ_2 -O)₆(μ_2 -OH)₂(μ_3 -O)₁₂(glyc)₄(Hpz)₄(pz)₈]·28H₂O (4).
- Table S6. Bond valence calculations for complexes $1 \sim 4$ respectively.
- **Table S7.** Selected bond distances (Å) and angles (°) in $[Mo_2O_2(\mu_2-O)(\mu_2-S)(Hglyc)_2(Hpz)_2] \cdot H_2O(1)$.
- **Table S8.** Selected bond distances (Å) and angles (°) in $(Hdpa)[Mo_2O_2(\mu_2-S)_2(Hglyc)(glyc)(H_2O)]$ (2).
- **Table S9.** Selected bond distances (Å) and angles (°) in $(Hdpa)_4[Mo_4O_4(\mu_3-O)_2(\mu_2-S)_2(glyc)_2(S_2O_3)_2]$ (3).

Table S10. Selected bond distances (Å) and angles (°) in Na₂[Mo₁₆O₁₂(μ_2 -O)₆(μ_2 -OH)₂(μ_3 -O)₁₂(glyc)₄(Hpz)₄(pz)₈]·28H₂O (**4**).

Table S11. Detail calibrated adsorption data of O_2 , N_2 and CO_2 for $Na_2[Mo_{16}O_{12}(\mu_2 - O_{16}O_{12}(\mu_3 - O_{12}(\mu_3 - O_{12}(\mu_3$

Table S12. Comparisons of O_2 adsorption data for 4 with some other adsorbents at different conditions.

Table S13. Comparisons of CO_2 adsorption data for **4** with the other typical MOFs at 298 K.

Table S14. Solid ¹³C NMR spectral data (ppm) of $1 \sim 4$.

Figure S1. Polyhedral representation of 1.

Figure S2. Forming a circular cavity of 3.8 Å approximately in **2** and its corresponding simplified topological nets, green sphere represents a complete tetramer.

Figure S3. View of the main structure of 3. Symmetric code: a(-x, -y, -z).

Figure S4. (a) Polyhedral representation of 4. (b) The skeleton connection in 4-part 2.
(c) Highlighted pz/Hpz ligands in 4-part 2. (d) Highlighted intramolecular hydrogen bonds in 4.

Figure S5. 3D holes exist in **1** viewed along (1,1,0) direction with a diameter of 3.0 Å approximately. Atomic color: molybdenum, violet; oxygen, red; nitrogen, blue; carbon, gray; hydrogen, white.

Figure S6. Packing diagram of **1** in *c*-axis direction, forming an "8"-shaped cavity of 6.4×2.8 Å² approximately.

Figure S7. Packing diagram of 2 viewed from *a*-axis direction.

Figure S8. Packing diagram of 2 viewed from *b*-axis direction.

Figure S9. Packing diagram of **3** viewed from (0, 1, 1) direction.

Figure S10. Packing diagram of **3** viewed from (1, 1, 0) direction.

Figure S11. Packing diagram of 4 viewed from *b*-axis direction.

Figure S12. Solution EPR spectra of $1 \sim 3$ in DMSO solvents at 110 K respectively.

Figure S13. O₂, CO₂, N₂, CH₄ and H₂ adsorptions for **1** at different pressures at 298 K, respectively.

Figure S14. N₂ adsorption-desorption isotherms of Na₂[Mo₁₆O₁₂(μ ₂-O)₆(μ ₂-OH)₂(μ ₃-O)₁₂(glyc)₄(Hpz)₄(pz)₈]·28H₂O (4) at low pressure.

Figure S15. (a) CO_2 adsorption isotherms for **4** at different temperatures (298 and 308 K) under the low pressure; (b) Isosteric heat of adsorption (Q_{st}) plotted against CO_2 uptake for **4**.

Qst Analyses

To extract the coverage-dependent isosteric heat of adsorption, the adsorption data were modeled with a virial-type expression¹ composed of parameters a_i and b_i , which are independent from temperature:

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i$$
(1)
(2)

Where *P* is pressure, *N* is the amount adsorbed (or uptake), *T* is temperature, m and n determine the number of terms that required describing the isotherm adequately, and *R* is the universal gas constant. The Q_{st} was calculated by fitting the adsorption data at different temperature in the pressure range of $0 \sim 1$ bar.

Figure S16. O_2 and CO_2 adsorption isotherms for **4** at 298 K and pressures of up to 1 bar.

Figure S17. Calculated and simulated PXRD patterns of compound 1.

Figure S18. Calculated and simulated PXRD patterns of compound 2.

Figure S19. Calculated and simulated PXRD patterns of compound 3.

Figure S20. Calculated and simulated PXRD patterns of compound 4.

Figure S21. TG-DTG curves of compound 1.

Figure S22. TG-DTG curves of compound 2.

Figure S23. TG-DTG curves of compound 3.

Figure S24. TG-DTG curves of compound 4.

Figure S25. IR spectrum of compound 1.

Figure S27. IR spectrum of compound 3.

Figure S28. IR spectrum of compound 4.

Figure S30. Solid-state UV-vis reflective spectra for $1 \sim 4$.

Figure S31. Solid-state ¹³C NMR spectrum for 3.

solution.

Table S1. Crystallographic data and structural refinements for complexes $[Mo_2O_2(\mu_2-O)(\mu_2-S)(Hglyc)_2(Hpz)_2] \cdot H_2O$ (1), $(Hdpa)[Mo_2O_2(\mu_2-S)_2(Hglyc)(glyc)(glyc)(HzO)]$ (2), $(Hdpa)_4[Mo_4O_4(\mu_3-O)_2(\mu_2-S)_2(glyc)_2(S_2O_3)_2]$ (3) and $Na_2[Mo_16O_{12}(\mu_2-O)_6(\mu_2-OH)_2(\mu_3-O)_{12}(glyc)_4(Hpz)_4(pz)_8] \cdot 28H_2O$ (4) respectively.

Identification codes	1	2	3	4
Empirical formula	$C_{10}H_{16}Mo_2N_4O_{10}S$	$C_{14}H_{17}Mo_2N_3O_9S_2\\$	$C_{44}H_{44}Mo_4N_{12}O_{18}S_6$	$C_{44}H_{50}Mo_{16}N_{24}Na_2O_{46}\\$
Formula weight	576.2	627.3	1605.03	3232.1
Temperature/K	100.00(1)	230.00(1)	100.00(2)	100.00(1)
Crystal system	orthorhombic	triclinic	triclinic	monoclinic
Space group	Pnma	<i>P</i> ī	Ρī	C 2/c
$a/ m \AA$	13.1969(3)	6.8529(3)	11.1684(2)	43.6195(7)
$b/\text{\AA}$	23.5561(7)	10.7593(4)	11.2139(2)	13.7952(1)
$c/{ m \AA}$	5.9279(2)	14.1435(6)	11.8751(2)	20.6277(3)
lpha/ °	90	74.526(3)	104.928(1)	90
eta / $^{\circ}$	90	85.918(3)	103.841(1)	121.411(2)
γ/\circ	90	89.947(3)	98.2450(4)	90
Volume/Å ³	1842.79(9)	1002.31(7)	1361.60(4)	10593.5(3)
Z	4	2	1	4
$\rho_{calc}g/cm^3$	2.077	2.079	1.957	2.027
μ/mm^{-1}	12.766	12.704	10.264	15.783
<i>F</i> (000)	1136.0	620.0	800.0	6176.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.05	$0.35 \times 0.1 \times 0.02$	0.3 imes 0.2 imes 0.05	$0.1 \times 0.05 \times 0.03$
Radiation (Å)	Cu K α (λ = 1.54184)	Cu Ka (λ = 1.54184)	Cu K α (λ = 1.54184)	Cu K α (λ = 1.54184)
2θ range for data collection/°	7.506 to 154.864	6.502 to 143.176	8.048 to 149.66	4.748 to 146.146

Index ranges	$-11 \le h \le 16,$ $-29 \le k \le 27,$ $-7 \le l \le 7$	$-8 \le h \le 7,$ $-12 \le k \le 13,$ $-17 \le l \le 17$	$-11 \le h \le 13,$ $-14 \le k \le 13,$ $-14 \le l \le 11$	$-53 \le h \le 53,$ $-13 \le k \le 17,$ $-25 \le l \le 25$
Reflections collected	6129	7558	13703	30981
Independent reflections	$1873 (R_{\rm int} = 0.0219, R_{\sigma}) = 0.0220)$	$3887 (R_{\rm int} = 0.0807, R_{\sigma}) = 0.0754)$	5299 ($R_{int} = 0.0338$, $R_{\sigma} = 0.0392$)	10101 ($R_{int} = 0.0431$, $R_{\sigma} = 0.0424$)
Data/restraints/parameters	1873/0/131	3887/4/277	5299/0/387	10101/1/598
Goodness–of–fit on F^2	1.178	1.141	1.045	1.044
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0348,$ $wR_2 = 0.0957$	$R_1 = 0.0598,$ $wR_2 = 0.1808$	$R_1 = 0.0461,$ $wR_2 = 0.1098$	$R_1 = 0.0469,$ $wR_2 = 0.1243$
Final <i>R</i> indexes [all data]	$R_1 = 0.0376,$ $wR_2 = 0.0973$	$R_1 = 0.0806,$ $wR_2 = 0.2167$	$R_1 = 0.0469,$ $wR_2 = 0.1103$	$R_1 = 0.0584,$ $wR_2 = 0.1322$
Largest diff. peak/hole/e Å ⁻³	0.46/-0.91	2.02/-1.95	3.25/-1.20	1.59/-0.92

	D–H ···A	D–H(Å)	$H \cdot \cdot A(A)$	$D \cdot \cdot A(A)$	D–H ···A(°)
	O1w−H1wA…O1 ^a	0.87	1.74	2.597(6)	170
Intra	N2-H2…O2	0.88	2.52	2.896(5)	106
	$N2-H2\cdots O5^{b}$	0.88	1.98	2.761(5)	147
	O1w−H1wB…O2 ^c	0.87	2.36	3.191(4)	160
Intra	O3−H3…O1w	0.84	1.81	2.645(4)	172
	C3−H3A····O5 ^d	0.95	2.28	3.162(5)	153
	C5–H5····O4 ^a	0.95	2.24	3.146(5)	159
Symmetr	y codes: (a) x, y, $-1 + z$;	(b) $-\frac{1}{2} + x$,	v, 3/2 - z; (c) $\frac{1}{2} + x$, $\frac{3}{2} - \frac{1}{2}$	$v, \frac{1}{2} - z; (d) \frac{1}{2} - z$
x, 1 - y, -	$\frac{1}{2} + z$.			, , , .	

Table S2. Selected hydrogen bond distances (Å) and angles () in $[Mo_2O_2(\mu_2-O)(\mu_2$ S)(Hglyc)₂(Hpz)₂] \cdot H₂O (1). .

Table S3. Selected hydrogen bond distances (Å) and angles (\degree) in (Hdpa)[Mo₂O₂(μ_2 - $S_2(Hglyc)(glyc)(H_2O)]$ (2).

	D−H ···A	D–H(Å)	$H \cdot \cdot A(A)$	$\mathbf{D} \cdot \cdot \mathbf{A}(\mathbf{\mathring{A}})$	D−H ···A(°)
Intra	N1-H1…O5	0.87	2.09	2.900(1)	154
Intra	N2-H2…N3	0.87	1.94	2.618(1)	134
	N2–H2···O8 ^a	0.87	2.35	3.041(1)	137
	O4−H4···S1 ^b	0.86(3)	2.85(7)	3.477(7)	132(8)
	O4−H4…O1 ^b	0.86(3)	1.78(5)	2.574(9)	154(9)
	O1w-	0.85	1.75	2.588(1)	167
	H1wA…O3 ^c				
	O1w-	0.85	1.75	2.596(1)	172
	H1wB…O6 ^d				
	C1−H1A…O9 ^b	0.98	2.59	3.450(1)	146
	C12–H12…O2 ^c	0.94	2.54	3.074(2)	116

Symmetry codes: (a) 1 - x, -y, 1 - z; (b) 2 - x, 1 - y, -z; (c) x, -1 + y, z; (d) 1 + x, y, z.

$D-H \cdot \cdot A$	D–H(Å)	H ···A(Å)	$D \cdot \cdot A(A)$	D–H ···A(°)
N1-H1…O8	0.86	2.01	2.821(7)	156
N2-H2…N3	0.86	1.9	2.575(6)	135
N4–H4A…O9	0.86	2.21	3.009(7)	155
N5–H5…N6	0.86	1.96	2.627(6)	134
C1–H1A…O9	0.90(6)	2.57(6)	3.115(7)	120(4)
C7−H7···O5 ^a	0.93	2.23	3.106(7)	158
$C9-H9\cdots O2^{b}$	0.93	2.58	3.032(7)	110
C11–H11…O7	0.93	2.42	3.333(7)	167
C13-H13···O4 ^c	0.93	2.39	3.292(7)	164
$C14-H14\cdots O2^{d}$	0.93	2.55	3.158(7)	124
C19–H19…O6 ^e	0.93	2.49	3.242(7)	138
C20–H20···O3 ^f	0.93	2.58	3.315(7)	136
C23–H23…O3 ^d	0.93	2.36	3.183(7)	148
	$\begin{array}{c} D-H\cdots A\\ \\ \hline N1-H1\cdots O8\\ N2-H2\cdots N3\\ N4-H4A\cdots O9\\ N5-H5\cdots N6\\ C1-H1A\cdots O9\\ C7-H7\cdots O5^{a}\\ C9-H9\cdots O2^{b}\\ C11-H11\cdots O7\\ C13-H13\cdots O4^{c}\\ C14-H14\cdots O2^{d}\\ C19-H19\cdots O6^{e}\\ C20-H20\cdots O3^{f}\\ C23-H23\cdots O3^{d}\\ \end{array}$	$\begin{array}{cccc} D-H \cdots A & D-H(\text{\AA}) \\ \hline \\ N1-H1 \cdots O8 & 0.86 \\ N2-H2 \cdots N3 & 0.86 \\ N4-H4A \cdots O9 & 0.86 \\ N5-H5 \cdots N6 & 0.86 \\ C1-H1A \cdots O9 & 0.90(6) \\ C7-H7 \cdots O5^a & 0.93 \\ C9-H9 \cdots O2^b & 0.93 \\ C11-H11 \cdots O7 & 0.93 \\ C13-H13 \cdots O4^c & 0.93 \\ C13-H13 \cdots O4^c & 0.93 \\ C14-H14 \cdots O2^d & 0.93 \\ C19-H19 \cdots O6^e & 0.93 \\ C20-H20 \cdots O3^f & 0.93 \\ C23-H23 \cdots O3^d & 0.93 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table S4. Selected hydrogen bond distances (Å) and angles ($^{\circ}$ in (Hdpa)₄[Mo₄O₄(μ_3 -O)₂(μ_2 -S)₂(glyc)₂(S₂O₃)₂] (**3**).

Symmetry codes: (a) 1 - x, -y, 1 - z; (b) 1 - x, -y, -z; (c) x, 1 + y, 1 + z; (d) 1 - x, 1 - y, 1 - z; (e) -x, -y, -z; (f) -x, 1 - y, -z.

Table S5. Selected hydrogen bond distances (Å) and angles (\degree in Na₂[Mo₁₆O₁₂(μ_2 -
O)₆(μ_2 -OH)₂(μ_3 -O)₁₂(glyc)₄(Hpz)₄(pz)₈]·28H₂O (4).

	D–H ···A	D–H(Å)	$H \cdot \cdot A(A)$	$D \cdot \cdot A(A)$	D–H ···A(°)
Intra	N6–H6…O1 ^a	0.88	2.41	2.871(7)	113
Intra	N6–H6···O8 ^a	0.88	2.3	3.123(9)	156
Intra	N12-H12…O4	0.88	2.29	3.158(1)	168
Intra	O16-H16…O1	0.87(6)	1.96(6)	2.797(7)	161(7)
Intra	C1–H1A…N11	0.99	2.62	3.219(1)	119
Intra	C3-H3A…O11	0.99	2.35	2.878(8)	113
Intra	C7−H7···O6 ^a	0.95	2.48	3.223(1)	135
Intra	C14–H14…O20 ^a	0.95	2.58	3.506(1)	164
	C18–H18…O10 ^b	0.95	2.48	3.387(1)	159
	C22−H22····O1w ^c	0.95	2.55	3.381(2)	146
	C22–H22…O7 ^d	0.95	2.5	3.178(9)	129

Symmetric codes: (a) $\frac{1}{2} - x$, $\frac{1}{2} - y$, 1 - z; (b) 1 - x, y, $\frac{3}{2} - z$; (c) x, 1 - y, $\frac{1}{2} + z$; (d) x, -y, $\frac{1}{2} + z$.

Atoms	Ν	$\sum S_{ij}$	d
Мо	5+	5.317	0.317
M _o 1	5.	5 000	0.090
M-2	5+ 5 -	5.080	0.080
M02	5+	5.199	0.199
	5+	5.140 _{av}	0.140 _{av}
Mo1	5+	5.245	0.245
Mo2	5+	5.077	0.077
	5+	5.161av	0.161av
Mo1	4+	3,959	0.041
Mo2	4+	4.269	0.269
	4+	4.114 _{av}	0.114 _{av}
Mo3	5+	5.433	0.433
Mo4	5+	5.335	0.335
Mo5	5+	5.213	0.213
Mo6	5+	5.279	0.279
Mo7	5+	5.252	0.252
Mo8	5+	5.202	0.202
	5+	5.286av	0.286 _{av}
	Atoms Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo	Atoms N Mo $5+$ Mo1 $5+$ Mo2 $5+$ Mo1 $5+$ Mo1 $5+$ Mo1 $5+$ Mo1 $5+$ Mo1 $5+$ Mo2 $5+$ Mo1 $4+$ Mo2 $4+$ Mo2 $4+$ Mo3 $5+$ Mo4 $5+$ Mo5 $5+$ Mo6 $5+$ Mo7 $5+$ Mo8 $5+$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table S6. Bond valence calculations for complexes $1\sim4$ respectively.

Atom-Atom	Length/Å	Atom-Atom	Length/Å
$Mo(1)-Mo(1)^1$	2.6741(6)	Mo(1)-O(2)	1.684(3)
Mo(1)-S(1)	2.3312(11)	Mo(1)–O(4)	2.085(3)
Mo(1)–O(3)	2.260(3)	Mo(1)-N(1)	2.222(3)
Mo(1)–O(1)	1.936(3)		
Atom–Atom–Atom	Angle/°	Atom-Atom-Atom	Angle/°
$S(1)-Mo(1)-Mo(1)^{1}$	55.00(2)	$N(1)-Mo(1)-Mo(1)^{1}$	145.40(9)
$O(3)-Mo(1)-Mo(1)^{1}$	100.56(7)	N(1)-Mo(1)-S(1)	90.65(9)
O(3)-Mo(1)-S(1)	85.41(8)	N(1)–Mo(1)–O(3)	78.3(1)
$O(1)-Mo(1)-Mo(1)^{1}$	46.32(8)	$Mo(1)-S(1)-Mo(1)^{1}$	69.99(4)
O(1)-Mo(1)-S(1)	97.58(9)	$Mo(1)-S(1)-Mo(1)^{1}$	83.0(1)
O(1)–Mo(1)–O(3)	87.6(1)	$Mo(1)-O(1)-Mo(1)^1$	87.4(2)
O(1)–Mo(1)–O(4)	83.7(1)	O(2)–Mo(1)–O(4)	96.6(1)
O(1)-Mo(1)-N(1)	163.1(1)	O(2)-Mo(1)-N(1)	87.1(1)
$O(2)-Mo(1)-Mo(1)^{1}$	97.5(1)	$O(4)-Mo(1)-Mo(1)^{1}$	129.96(9)
O(2)-Mo(1)-S(1)	105.5(1)	O(4)-Mo(1)-S(1)	156.63(9)
O(2)-Mo(1)-O(3)	161.9(1)	O(4)-Mo(1)-O(3)	71.3(1)
O(2)-Mo(1)-O(1)	104.8(2)		

Table S7. Selected bond distances (Å) and angles (°) in $[Mo_2O_2(\mu_2-O)(\mu_2-S)(Hglyc)_2(Hpz)_2]$ ·H₂O (1).

Symmetric codes: ¹ x, 3/2 - y, z.

Atom-Atom	Length/Å	Atom-Atom	Length/Å
Mo(2)-Mo(1)	2.8050(9)	Mo(2)–O(8)	1.672(6)
Mo(2)-S(1)	2.305(2)	Mo(1)-S(1)	2.307(2)
Mo(2)-S(2)	2.301(3)	Mo(1)-S(2)	2.314(3)
Mo(2)–O(4)	2.265(6)	Mo(1)–O(2)	2.064(7)
Mo(2)-O(1w)	2.178(6)	Mo(1)–O(7)	1.676(7)
Mo(2)–O(5)	2.145(6)	Mo(1)–O(1)	2.027(6)
Atom–Atom–Atom	Angle/°	Atom-Atom-Atom	Angle/°
S(1)-Mo(2)-Mo(1)	52.57(6)	O(1)-Mo(1)-S(2)	141.0(2)
S(2)-Mo(2)-Mo(1)	52.77(6)	O(1)–Mo(1)–O(2)	75.7(3)
S(2)-Mo(2)-S(1)	102.74(8)	Mo(2)-S(1)-Mo(1)	74.93(8)
O(4)-Mo(2)-Mo(1)	99.36(7)	Mo(2)-S(2)-Mo(1)	74.86(9)
O(4)-Mo(2)-S(1)	87.26(7)	O(8) - Mo(2) - S(2)	101.9(3)
O(4)-Mo(2)-S(2)	87.3(2)	O(8)–Mo(2)–O(4)	162.0(3)
O(1w)-Mo(2)-Mo(1)	136.72(8)	O(8)-Mo(2)-O(1w)	90.9(4)
O(1w) - Mo(2) - S(1)	84.18(8)	O(8)–Mo(2)–O(5)	93.5(3)
O(1w)-Mo(2)-S(2)	163.0(2)	S(1)-Mo(1)-Mo(2)	52.51(6)
O(1w)-Mo(2)-O(4)	77.5(3)	S(1)-Mo(1)-S(2)	102.30(8)
O(5)-Mo(2)-Mo(1)	139.43(9)	S(2)-Mo(1)-Mo(2)	52.37(7)
O(5)-Mo(2)-S(1)	156.21(9)	O(2)-Mo(1)-Mo(2)	131.68(8)
O(5)-Mo(2)-S(2)	86.89(9)	O(2)-Mo(1)-S(1)	149.5(2)
O(5)–Mo(2)–O(4)	71.3(2)	O(2)-Mo(1)-S(2)	81.00(9)
O(5)-Mo(2)-O(1w)	81.2(2)	O(7)-Mo(1)-Mo(2)	102.7(2)
O(8) - Mo(2) - Mo(1)	98.5(2)	O(7)-Mo(1)-S(1)	105.4(3)
O(8)-Mo(2)-S(1)	105.4(3)	O(7)-Mo(1)-S(2)	106.9(3)
O(1)-Mo(1)-Mo(2)	131.88(8)	O(7)–Mo(1)–O(2)	102.4(3)
O(1)-Mo(1)-S(1)	83.85(9)	O(7)–Mo(1)–O(1)	108.4(3)

Table S8. Selected bond distances (Å) and angles (°) in $(Hdpa)[Mo_2O_2(\mu_2-S)_2(Hglyc)(glyc)(H_2O)]$ (2).

Atom-Atom	Length/Å	Atom-Atom	Length/Å
Mo(1)–Mo(2)	2.7167(5)	Mo(2)-S(1)	2.3254(2)
Mo(1)-S(1)	2.3250(2)	$Mo(2)-S(2)^{1}$	2.4883(4)
Mo(1)–O(5)	1.956(3)	Mo(2)–O(5)	1.984(3)
Mo(1)–O(1)	2.117(3)	$Mo(2)-O(5)^1$	2.299(3)
Mo(1)–O(2)	2.060(3)	$Mo(2)-O(1)^1$	2.113(3)
Mo(1)–O(7)	2.247(4)	Mo(2)–O(6)	1.678(4)
Mo(1)–O(4)	1.682(4)		
Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°
S(1)-Mo(1)-Mo(2)	54.26(3)	Mo(1)-S(1)-Mo(2)	71.49(4)
O(5)-Mo(1)-Mo(2)	46.82(1)	O(5)-Mo(2)-Mo(1)	45.99(9)
O(5)-Mo(1)-S(1)	99.53(1)	Mo(1)-O(5)-Mo(2)	87.18(3)
O(5)-Mo(1)-O(1)	74.40(3)	$Mo(1)-O(5)-Mo(2)^{1}$	108.27(4)
O(5)–Mo(1)–O(2)	148.53(3)	$Mo(2)-O(5)-Mo(2)^{1}$	107.17(5)
O(5)–Mo(1)–O(7)	87.69(3)	$Mo(2)^{1}-O(1)-Mo(1)$	109.50(5)
O(1)–Mo(1)–Mo(2)	90.75(9)	$O(5)^{1}$ -Mo(2)-S(1)	96.52(8)
O(1)-Mo(1)-S(1)	94.62(1)	O(5)-Mo(2)-S(1)	98.72(1)
O(1)–Mo(1)–O(7)	78.20(4)	$O(5)-Mo(2)-S(2)^{1}$	152.57(1)
O(2)–Mo(1)–Mo(2)	137.28(9)	$O(5)1-Mo(2)-S(2)^{1}$	80.29(9)
O(2)-Mo(1)-S(1)	86.66(1)	$O(5)-Mo(2)-O(5)^{1}$	72.83(5)
O(2)-Mo(1)-O(1)	74.36(3)	$O(5)-Mo(2)-O(1)^{1}$	85.23(3)
O(2)–Mo(1)–O(7)	82.36(3)	$O(1)^{1}$ -Mo(2)-Mo(1)	131.12(1)
O(7)-Mo(1)-Mo(2)	134.32(9)	$O(1)^{1}$ -Mo(2)-S(1)	162.10(1)
O(7)-Mo(1)-S(1)	168.16(1)	$O(1)^{1}$ -Mo(2)-S(2)^{1}	89.72(1)
O(4)–Mo(1)–Mo(2)	103.02(2)	$O(1)^{1}$ -Mo(2)-O(5)^{1}	67.82(2)
O(4)-Mo(1)-S(1)	103.53(3)	O(6)-Mo(2)-Mo(1)	102.33(3)
O(4)–Mo(1)–O(5)	105.96(6)	O(6)-Mo(2)-S(1)	105.15(3)
O(4)-Mo(1)-O(1)	161.41(6)	$O(6)-Mo(2)-S(2)^{1}$	103.24(4)
O(4)–Mo(1)–O(2)	102.41(5)	$O(6)-Mo(2)-O(5)^{1}$	158.33(5)
O(4)-Mo(1)-O(7)	83.23(6)	O(6)–Mo(2)–O(5)	103.76(6)
S(1)-Mo(2)-Mo(1)	54.25(3)	$O(6)-Mo(2)-O(1)^{1}$	90.69(5)
$S(1)-Mo(2)-S(2)^{1}$	78.72(4)	$O(5)^{1}-Mo(2)-Mo(1)$	90.58(8)
$S(2)^{1}-Mo(2)-Mo(1)$	130.79(4)		

Table S9. Selected bond distances (Å) and angles (°) in $(Hdpa)_4[Mo_4O_4(\mu_3-O)_2(\mu_2-S)_2(glyc)_2(S_2O_3)_2]$ (**3**).

Symmetric codes: 1 -*x*, -*y*, -*z*.

Atom-Atom	Length/Å	Atom–Atom	Length/Å
$Mo(1)-Mo(1)^{1}$	2 6340(9)	$M_{0}(4) - O(5)$	1 960(4)
$M_0(1) - M_0(2)$	2.5588(7)	$M_0(4) - O(17)$	2 182(5)
$Mo(1) - Mo(2)^1$	2.5620(7)	$M_{0}(4) - O(4)$	1.953(5)
$M_0(1) - O(3)^1$	2.0020(7) 2.035(4)	$M_0(4) = O(18)$	2 105(5)
$M_0(1) = O(2)$	2.033(4) 2.011(4)	$M_{0}(4) = O(7)$	1.674(5)
$Mo(1) - O(1)^1$	2.011(4) 2.065(4)	$M_{0}(4) - N(9)$	2 175(6)
$M_0(1) = O(1)$	2.003(1) 2.067(4)	$M_0(7) - O(13)$	1.989(5)
$M_0(1) - N(7)^1$	2.007(1) 2.195(5)	$M_0(7) = O(9)$	2,232(5)
$M_0(1) - N(1)$	2.199(5) 2.184(5)	$M_0(7) = O(12)$	1.944(5)
$M_0(2) - O(3)$	1.971(4)	$M_0(7) - O(14)$	1.697(5)
$M_0(2) = O(2)$	1.971(1) 1 940(4)	$M_0(7) = N(10)$	2 134(6)
$M_0(2) - O(1)^1$	2.061(4)	$M_0(5) - O(16)$	2.134(0) 2.084(4)
$M_0(2) = O(13)$	2.001(1) 2.114(5)	$M_0(5) = O(9)$	1 976(5)
$M_0(2) - N(3)$	2.111(5) 2.132(5)	$M_0(5) = O(8)$	1.976(5)
$M_0(2) - N(5)$	2.192(5) 2.196(5)	$M_0(5) = O(17)$	2 129(5)
$M_0(2) - M_0(4)$	2.190(3) 2.5944(7)	$M_0(5) = O(10)$	1,700(5)
$M_0(3) - O(3)$	2.052(4)	$M_0(5) - N(11)$	2 232(6)
$M_0(3) - O(5)$	1.032(1)	$M_0(8) - O(13)$	1.958(4)
$M_0(3) = O(16)$	2.190(4)	$M_0(8) - O(20)$	2 205(5)
$M_0(3) - O(6)$	1.670(5)	$M_0(8) - O(12)$	1 976(5)
$M_0(3) - O(4)$	1 955(4)	$M_0(8) - O(21)$	2,110(5)
$M_0(3) - N(8)$	2 135(6)	$M_0(8) - O(15)$	1 686(5)
$M_0(6) - M_0(5)$	2.5778(7)	$M_0(8) - N(4)$	2 163(6)
$M_0(6) - O(2)$	2.100(4)	$M_0(6) - O(11)$	1.682(5)
$M_0(6) - O(20)$	2 195(4)	$M_0(6) - N(2)$	2 164(6)
$M_0(6) - O(9)$	1 981(5)	$M_0(7) - M_0(8)$	2,5753(8)
$M_0(6) - O(8)$	1 940(4)	$M_0(7) - O(5)$	2 063(4)
	1.5(.)		2.000(1)
Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°
$Mo(2)^{1}-Mo(1)-Mo(1)^{1}$	58.99(2)	O(13)–Mo(8)–Mo(7)	49.79(3)
$Mo(2)-Mo(1)-Mo(1)^{1}$	59.10(2)	O(13)–Mo(8)–O(20)	90.88(7)
$Mo(2)-Mo(1)-Mo(2)^{1}$	118.09(2)	O(13)–Mo(8)–O(12)	96.45(9)
$O(3)^1$ -Mo(1)-Mo(1)^1	96.41(2)	O(13)–Mo(8)–O(21)	162.7(2)
$O(3)^{1}-Mo(1)-Mo(2)^{1}$	49.14(2)	O(13)-Mo(8)-N(4)	83.65(9)
$O(3)^{1}-Mo(1)-Mo(2)$	140.35(2)	O(20)–Mo(8)–Mo(7)	95.60(2)
$O(3)^1$ -Mo(1)-O(1)^1	88.79(7)	O(12)–Mo(8)–Mo(7)	48.41(4)
$O(3)^{1}$ -Mo(1)-O(1)	99.41(7)	O(12)–Mo(8)–O(20)	82.59(9)
$O(3)^1 - Mo(1) - N(7)^1$	81.42(8)	O(12)–Mo(8)–O(21)	89.4(2)
$O(3)^{1}-Mo(1)-N(1)$	90.07(9)	O(12)-Mo(8)-N(4)	167.4(2)
$O(2)-Mo(1)-Mo(1)^{1}$	92.94(2)	O(21)-Mo(8)-Mo(7)	137.80(5)
O(2)-Mo(1)-Mo(2)	48.44(2)	O(21)-Mo(8)-O(20)	73.75(8)
$O(2)-Mo(1)-Mo(2)^{1}$	135.66(2)	O(21)-Mo(8)-N(4)	87.1(2)
$O(2)-Mo(1)-O(3)^{1}$	170.15(7)	O(15)-Mo(8)-Mo(7)	98.82(8)
$O(2)-Mo(1)-O(1)^{1}$	99.58(7)	O(15)-Mo(8)-O(13)	105.2(2)

Table S10. Selected bond distances (Å) and angles (°) in Na₂[Mo₁₆O₁₂(μ_2 -O)₆(μ_2 -OH)₂(μ_3 -O)₁₂(glyc)₄(Hpz)₄(pz)₈]·28H₂O (**4**).

O(2)-Mo(1)-O(1)	84.20(7)	O(15)-Mo(8)-O(20)	163.1(2)
$O(2)-Mo(1)-N(7)^{1}$	93.67(8)	O(15)-Mo(8)-O(12)	100.5(2)
O(2)-Mo(1)-N(1)	80.46(9)	O(15)-Mo(8)-O(21)	89.6(2)
$O(1)-Mo(1)-Mo(1)^{1}$	50.36(1)	O(15)-Mo(8)-N(4)	91.6(2)
$O(1)1-Mo(1)-Mo(1)^{1}$	50.43(1)	N(4) - Mo(8) - Mo(7)	133.42(4)
O(1)-Mo(1)-Mo(2)	88.06(2)	N(4)-Mo(8)-O(20)	84.80(9)
$O(1)^{1}-Mo(1)-Mo(2)^{1}$	88.02(1)	N(10)-Mo(7)-O(9)	83.2(2)
$O(1)^{1}-Mo(1)-Mo(2)$	51.60(3)	O(5) - Mo(4) - Mo(3)	49.39(3)
$O(1)-Mo(1)-Mo(2)^{1}$	51.53(2)	O(5) - Mo(4) - O(17)	87.42(8)
$O(1)^{1}-Mo(1)-O(1)$	100.79(4)	O(5) - Mo(4) - O(18)	161.34(9)
$O(1)^{1}-Mo(1)-N(7)^{1}$	87.68(7)	O(5) - Mo(4) - N(9)	83.8(2)
$O(1)-Mo(1)-N(7)^{1}$	171.49(7)	N(10)-Mo(7)-Mo(8)	135.71(6)
$O(1)^{1}-Mo(1)-N(1)$	164.37(7)	O(17)-Mo(4)-Mo(3)	93.62(2)
O(1)-Mo(1)-N(1)	94.77(7)	O(5)-Mo(7)-N(10)	83.8(2)
$N(7)^{1}-Mo(1)-Mo(1)^{1}$	138.10(3)	O(4) - Mo(4) - Mo(3)	48.44(3)
$N(7)^{1}-Mo(1)-Mo(2)^{1}$	130.44(4)	O(4) - Mo(4) - O(5)	96.16(9)
$N(7)^{1}-Mo(1)-Mo(2)$	96.70(4)	O(4) - Mo(4) - O(17)	83.64(9)
$N(1)-Mo(1)-Mo(1)^{1}$	145 11(4)	O(4) - Mo(4) - O(18)	86 2(2)
N(1)-Mo(1)-Mo(2)	128 32(5)	O(4)-Mo(4)-N(9)	161.5(2)
$N(1)-Mo(1)-Mo(2)^{1}$	102.95(4)	O(14)-Mo(7)-O(12)	104 9(2)
$N(1)-Mo(1)-N(7)^{1}$	76 74(9)	O(18) - Mo(4) - Mo(3)	134 47(5)
$M_0(1)-M_0(2)-M_0(1)^1$	61 91(2)	O(18) - Mo(4) - O(17)	74 42(8)
O(3)-Mo(2)-Mo(1)	100.56(3)	O(18) - Mo(4) - N(9)	88 1(2)
$O(3)-Mo(2)-Mo(1)^{1}$	51 37(3)	O(14)-Mo(7)-O(9)	168 8(2)
$O(3)-Mo(2)-O(1)^{1}$	101.78(7)	O(7) - Mo(4) - Mo(3)	103.79(7)
O(3)-Mo(2)-O(13)	89 67(7)	O(7)-Mo(4)-O(5)	106 8(2)
O(3)-Mo(2)-N(3)	162.67(9)	O(7)-Mo(4)-O(17)	162.2(2)
O(3)-Mo(2)-N(5)	86.73(8)	O(7)-Mo(4)-O(4)	104.9(2)
$O(2)-Mo(2)-Mo(1)^{1}$	96.92(3)	O(7)-Mo(4)-O(18)	90.3(2)
O(2)-Mo(2)-Mo(1)	50.87(3)	O(7) - Mo(4) - N(9)	92.7(2)
O(2)-Mo(2)-O(3)	98.66(7)	O(13)-Mo(7)-O(9)	84.21(7)
$O(2)-Mo(2)-O(1)^{1}$	102.13(7)	N(9) - Mo(4) - Mo(3)	133.01(6)
O(2)-Mo(2)-O(13)	81.75(7)	N(9)-Mo(4)-O(17)	77.9(2)
O(2)-Mo(2)-N(3)	95.14(8)	O(14)-Mo(7)-N(10)	91.8(2)
O(2)-Mo(2)-N(5)	171.5(2)	$M_0(1)^1 - O(3) - M_0(3)$	129.0(2)
$O(1)^{1}-Mo(2)-Mo(1)^{1}$	51.74(1)	$Mo(2)-O(3)-Mo(1)^{1}$	79.49(5)
$O(1)^{1}-Mo(2)-Mo(1)$	51.74(1)	$M_0(2) - O(3) - M_0(3)$	148.8(2)
$O(1)^{1}-Mo(2)-O(13)$	167.09(6)	$M_0(1) - O(2) - M_0(6)$	130.0(2)
$O(1)^{1}-Mo(2)-N(3)$	85.41(9)	$M_0(2) - O(2) - M_0(1)$	80.69(6)
$O(1)^{1}-Mo(2)-N(5)$	83.01(9)	$M_0(2) - O(2) - M_0(6)$	148.4(2)
$O(13)-Mo(2)-Mo(1)^{1}$	140.59(1)	$Mo(1)^{1}-O(1)-Mo(1)$	79.21(4)
O(13)-Mo(2)-Mo(1)	132.39(2)	$Mo(2)^{1}-O(1)-Mo(1)$	76.73(5)
O(13)-Mo(2)-N(3)	82.0(2)	$Mo(2)^{1}-O(1)-Mo(1)^{1}$	76.66(4)
O(13)-Mo(2)-N(5)	91.81(9)	Mo(3)-O(5)-Mo(7)	149.1(2)
N(3)-Mo(2)-Mo(1)	96.28(5)	Mo(4)-O(5)-Mo(3)	82.16(7)
$N(3)-Mo(2)-Mo(1)^{1}$	137.02(6)	Mo(4)-O(5)-Mo(7)	128.3(2)
N(3)-Mo(2)-N(5)	78.45(9)	Mo(7)–O(13)–Mo(2)	146.4(2)
N(5)-Mo(2)-Mo(1)	134.74(6)	Mo(8)-O(13)-Mo(2)	125.3(2)
	> /		

$N(5)-Mo(2)-Mo(1)^{1}$	91.54(5)	Mo(8)-O(13)-Mo(7)	81.45(7)
O(3)-Mo(3)-Mo(4)	139.37(2)	Mo(5)-O(16)-Mo(3)	133.8(2)
O(3)-Mo(3)-O(16)	76.37(6)	Mo(6)-O(20)-Mo(8)	124.6(2)
O(3)-Mo(3)-N(8)	83.49(8)	O(13)-Mo(7)-Mo(8)	48.76(2)
O(5)-Mo(3)-Mo(4)	48.45(3)	O(13)-Mo(7)-O(5)	89.55(8)
O(5)-Mo(3)-O(3)	91.53(8)	Mo(6)-O(9)-Mo(7)	133.5(2)
O(5)-Mo(3)-O(16)	81.90(8)	Mo(5)-O(9)-Mo(6)	81.28(8)
O(5)-Mo(3)-N(8)	164.03(9)	Mo(5)-O(9)-Mo(7)	141.6(2)
O(16)-Mo(3)-Mo(4)	89.22(2)	Mo(5)-O(8)-Mo(6)	83.38(8)
O(6)-Mo(3)-Mo(4)	98.17(7)	Mo(7)-O(12)-Mo(8)	82.13(8)
O(6)-Mo(3)-O(3)	96.0(2)	Mo(5)-O(17)-Mo(4)	127.6(2)
O(6)-Mo(3)-O(5)	100.8(2)	O(13)-Mo(7)-N(10)	166.8(2)
O(6)-Mo(3)-O(16)	172.1(2)	O(9)–Mo(7)–Mo(8)	92.45(2)
O(6)-Mo(3)-O(4)	103.7(2)	O(5)–Mo(7)–O(9)	76.58(7)
O(6)-Mo(3)-N(8)	94.8(2)	Mo(4)-O(4)-Mo(3)	83.19(8)
O(4)-Mo(3)-Mo(4)	48.38(4)	O(16)–Mo(5)–Mo(6)	97.94(2)
O(4)-Mo(3)-O(3)	157.54(9)	O(16)–Mo(5)–O(17)	79.90(8)
O(4)–Mo(3)–O(5)	95.20(9)	O(16)–Mo(5)–N(11)	76.08(9)
O(4)-Mo(3)-O(16)	83.39(8)	O(9)–Mo(5)–Mo(6)	49.44(4)
O(4)-Mo(3)-N(8)	84.2(2)	O(9)–Mo(5)–O(16)	88.71(7)
N(8)-Mo(3)-Mo(4)	132.55(4)	O(9)–Mo(5)–O(17)	92.96(9)
N(8)-Mo(3)-O(16)	82.18(8)	O(9)–Mo(5)–N(11)	164.7(2)
O(2)–Mo(6)–Mo(5)	102.88(1)	O(8)–Mo(5)–Mo(6)	48.39(3)
O(2)–Mo(6)–O(20)	76.33(6)	O(8)–Mo(5)–O(16)	85.92(8)
O(2)-Mo(6)-N(2)	76.52(8)	O(8)–Mo(5)–O(9)	95.60(9)
O(20)-Mo(6)-Mo(5)	136.84(3)	O(8)–Mo(5)–O(17)	163.25(9)
O(9)-Mo(6)-Mo(5)	49.28(3)	O(8)-Mo(5)-N(11)	85.0(2)
O(9)–Mo(6)–O(2)	90.12(7)	O(17)-Mo(5)-Mo(6)	142.38(3)
O(9)–Mo(6)–O(20)	87.67(8)	O(17)-Mo(5)-N(11)	82.9(2)
O(9)-Mo(6)-N(2)	165.69(9)	O(10)–Mo(5)–Mo(6)	99.62(7)
O(8)–Mo(6)–Mo(5)	48.23(4)	O(10)–Mo(5)–O(16)	162.0(2)
O(8)–Mo(6)–O(2)	91.20(7)	O(10)–Mo(5)–O(9)	105.8(2)
O(8)–Mo(6)–O(20)	167.21(8)	O(10)–Mo(5)–O(8)	102.8(2)
O(8)-Mo(6)-O(9)	95.28(9)	O(10)–Mo(5)–O(17)	88.6(2)
O(8)-Mo(6)-N(2)	80.1(2)	O(10)-Mo(5)-N(11)	88.9(2)
O(11)-Mo(6)-Mo(5)	99.75(7)	N(11)-Mo(5)-Mo(6)	133.42(5)
O(11)-Mo(6)-O(2)	157.3(2)	O(12)–Mo(7)–Mo(8)	49.47(5)
O(11)-Mo(6)-O(20)	87.9(2)	O(12)–Mo(7)–O(5)	159.87(8)
O(11)-Mo(6)-O(9)	105.6(2)	O(12)-Mo(7)-O(13)	96.48(9)
O(11)-Mo(6)-O(8)	103.2(2)	O(12)–Mo(7)–O(9)	84.92(8)
O(11)-Mo(6)-N(2)	88.7(2)	O(12)-Mo(7)-N(10)	86.3(2)
N(2)-Mo(6)-Mo(5)	128.32(5)	O(14)-Mo(7)-Mo(8)	98.13(7)
N(2)-Mo(6)-O(20)	94.00(9)	O(14)-Mo(7)-O(5)	92.9(2)
O(5)-Mo(7)-Mo(8)	138.06(3)	O(14)-Mo(7)-O(13)	99.9(2)

Symmetric codes: ${}^{1}\frac{1}{2} - x$, ${}^{1}\frac{1}{2} - y$, 1 - z.

Gases		O ₂		CO ₂		CH ₄		N2		H ₂
Temperatur (°C)	e Pressure (bar)	Adsorption	Pressure (bar)	Adsorption (mg/g)						
(0)	0	0	0	0	0	0	0	0	0	0
	0.890	3.4998	0.892	6.6610	0.892	1.85039	0.890	1.6038	0.892	0.892
	1.890	5.2060	1.890	9.3815	1.890	2.69209	1.900	2.6457	1.890	1.890
	3.900	8.1738	3.892	12.4707	3.892	3.11232	3.891	3.3619	3.892	3.892
	5.898	10.9607	5.896	15.3245	5.896	3.39305	5.900	3.3120	5.896	5.896
	7.895	13.5227	7.894	16.9496	7.894	3.84454	7.900	3.7706	7.894	7.894
	9.900	16.2109	9.895	18.1760	9.895	4.13023	9.900	3.7187	9.895	9.895
25.0	11.900	18.7349	11.892	20.2010	11.892	4.05501	11.898	3.5520	11.892	11.892
25.0	13.896	21.4256	13.895	20.6612	13.895	4.48924	13.895	2.8474	13.895	13.895
	15.896	24.2378	15.899	20.5404	15.899	4.24398	15.896	2.3342	15.899	15.899
	17.890	26.7388	17.899	22.4261	17.899	4.49908	17.894	3.1299	17.899	17.899
	19.896	29.7496	19.894	22.5480	19.894	4.17718	19.898	3.3014	19.894	19.894
	21.894	32.2922	21.895	23.1963	21.895	4.04903	21.894	3.3090	21.895	21.895
	23.894	34.7491	23.891	23.7147	23.891	4.39791	23.894	3.1755	23.891	23.891
	25.893	37.0642	25.895	23.3122	25.895	4.41047	25.895	2.3057	25.895	25.895
	27.891	39.5402	27.894	23.1564	27.894	4.34825	27.897	2.8725	27.894	27.894
	29.891	42.2306	29.890	21.2955	29.890	4.26905	29.894	2.6617	29.890	29.890

 $\textbf{Table S11.} Detail calibrated adsorption data of O_2, N_2 and CO_2 for Na_2[Mo_{16}O_{12}(\mu_2-O)_6(\mu_2-OH)_2(\mu_3-O)_{12}(glyc)_4(Hpz)_4(pz)_8] \cdot 28H_2O~\textbf{(4)} at 298~K.$

Adaarbanta	Spacias	Amounts	Pressure	Temperature
Ausorbents	species	$(\text{mmol} \cdot \text{g}^{-1})$	(bar)	(K)
4		0.123	1	298
		1.320	30	298
MOF-177 ²	MOF	0.18	1	298
SNU-50' ³		34.6	0.70	87
SNU-9 ⁴		12.3	0.61	87
Zeolite 5A ⁵	Zeolite	0.10	0.96	303
SBFO ⁶		0.31	1	723
$SrCo_{0.8}Fe_{0.2}O_{3-\delta}^7$		0.40	1	773
COP-1 ⁸	COP	0.12	1.3	298
$COP-2^8$		0.20	1.3	298
$COP-3^8$		0.17	1.3	298
$COP-4^8$		0.18	1.3	298
AgF ⁹	salt	0.0075	1	295
AgCl ⁹		0.0067	1	295
AgBr/SiO ₂ ⁹		0.243	1	295

Table S12. Comparisons of O_2 adsorption data for **4** with some other adsorbents at different conditions.

Table S13. Comparisons of CO_2 adsorption data for **4** with the other typical MOFs at 298 K.

Adsorbents	Amounts (mmol·g ^{-1})	Pressure (bar)
4	0.170	1
	0.484	30
Mg-MOF-1 ¹⁰	0.614	1
MOF-253 ¹¹	1.409	1
$[Fe(III)(Tp)(CN)_3]_2Co(II)^{12}$	0.682	1
$Co(doborDC)_2(py)^{13}$	0.364	1
$Ni_3(pzdc)_2(7H-ade)_2(H_2O)_4^{14}$	2.228	1
HKUST-1 ¹⁵	4.182	1
$SNU-50^3$	3.114	1
ZIF-78 ¹⁶	2.068	1
IMOF-3 ¹⁷	1.955	1
Cd-ADA-1 ¹⁸	0.773	1

List of abbreviations: Tp = hydrotris(pyrazolyl)borate; doborDC = 1,12-dihydroxycarbonyl-1,12-dicarba-closo-dodecaborane, py = pyridine; pzdc = 2,3pyrazinedicarboxylate, ade = adenine.

Compound	δ (-CO ₂)	δ (-CO)	δ (-CH)
1	175.23	61.69	108.27, 133.98, 143.69 117.15,
2	181.86, 186.79	65.61, 69.72	136.03, 140.06, 143.11, 146.65, 151.47
3	178.60	_	114.72 ~ 152.22
4	183.48	74.79	105.84 ~ 144.66

Table S14. Solid ¹³C NMR spectral data (ppm) of $1 \sim 4$.

References

- 1. J. L. C. Rowsell and O. M. Yaghi, *J. Am. Chem. Soc.*, 2006, **128**, 1304–1315.
- 2. Y. Li and R. T. Yang, *Langmuir*, 2007, **23**, 12937–12944.
- 3. T. K. Prasad, D. H. Hong and M. P. Suh, *Chem.–Eur. J.*, 2010, **16**, 14043–14050.
- 4. H. J. Park and M. P. Suh, *Chem. Commun.*, 2010, **46**, 610–612.
- 5. M. Mofarahi and M. Seyyedi, *J. Chem. Eng. Data*, 2009, **54**, 916–921.
- 6. T. Masunaga, J. Izumi and N. Miura, *Chem. Eng. Sci.*, 2012, **84**, 108–112.
- 7. Y. He, X. Zhu, Q. Li and W. Yang, *AICHE J.*, 2009, **55**, 3125–3133.
- 8. Z. Xiang, X. Zhou, C. Zhou, S. Zhong, X. He, C. Qin and D. Cao, *J. Mater. Chem.*, 2012, **22**, 22663–22669.
- 9. A. Jayaraman and R. T. Yang, *Chem. Eng. Sci.*, 2005, **60**, 625–634.
- 10. A. Mallick, S. Saha, P. Pachfule, S. Roy and R. Banerjee, *J. Mater. Chem.*, 2010, **20**, 9073–9080.
- E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribe Romo, H. Furukawa, J. R. Long and O. M. Yaghi, *J. Am. Chem. Soc.*, 2010, **132**, 14382–14384.
- 12. Y. J. Zhang, T. Liu, S. Kanegawa and O. Sato, *J. Am. Chem. Soc.*, 2010, **132**, 912–913.
- 13. Y. S. Bae, A. M. Spokoyny, O. K. Farha, R. Q. Snurr, J. T. Hupp and C. A. Mirkin, *Chem. Commun.*, 2010, **46**, 3478–3480.
- 14. K. C. Stylianou, J. E. Warren, S. Y. Chong, J. Rabone, J. Bacsa, D. Bradshaw and M. J. Rosseinsky, *Chem. Commun.*, 2011, **47**, 3389–3391.
- A. O. Yazaydin, A. I. Benin, S. A. Faheem, P. Jakubczak, J. J. Low, R. R. Willis and R. Q. Snurr, *Chem. Mat.*, 2009, **21**, 1425–1430.
- 16. A. Phan, C. J. Doonan, F. J. Uribe Romo, C. B. Knobler, M. O'Keeffe and O. M. Yaghi, *Accounts Chem. Res.*, 2010, **43**, 58–67.
- F. Debatin, A. Thomas, A. Kelling, N. Hedin, Z. Bacsik, I. Senkovska, S. Kaskel, M. Junginger, H. Mueller, U. Schilde, C. Jaeger, A. Friedrich and H. J. Holdt, *Angew. Chem. Int. Edit.*, 2010, **49**, 1258–1262.
- 18. P. Pachfule, T. Panda, C. Dey and R. Banerjee, *Crystengcomm*, 2010, **12**, 2381–2389.