The Supporting Information for

Rotaxane formation by an allosteric pseudomacrocyclic anion receptor utilising kinetically labile copper(I) coordination properties

Taeko Aizawa, Shigehisa Akine, Toshiyuki Saiki, Takashi Nakamura and Tatsuya Nabeshima*

Faculty of Pure and Applied Sciences

and Tsukuba Research Center for Energy Materials Science (TREMS),

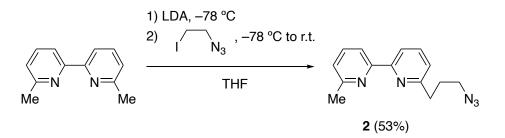
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

*Corresponding Author. E-mail: nabesima@chem.tsukuba.ac.jp

Contents

Materials and methods	S3
Synthesis of ligand 1 and complex [1·Cu](PF ₆)	S4
Anion titration experiments of 1 and $[1 \cdot Cu]^+$	S8
References for the Supporting Information	

Materials and methods

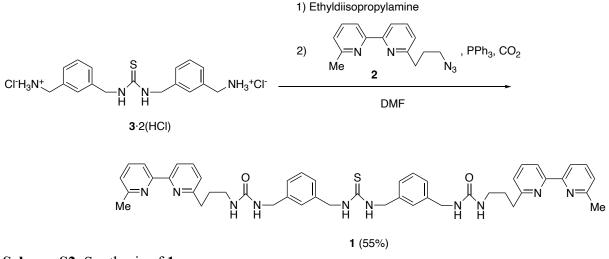

Unless otherwise noted, solvents and reagents were purchased from TCI Co., Ltd., Wako Pure Chemical Co., Ltd., Kanto Chemical Co., Inc., Nacalai Tesque, Inc. or Sigma-Aldrich Co., and used without further purification. THF was distilled from sodium benzophenone ketyl prior to use.

Measurements were performed at 298 K unless otherwise noted. NMR spectra were recorded on Bruker AC300, ARX400 or AV600 spectrometers. Tetramethylsilane was used as an internal standard (δ 0.00 ppm) for ¹H and ¹³C NMR measurements.

ESI-TOF mass data were recorded on an Applied Biosystems QStar Pulsar i spectrometer. UV-vis spectra were recorded on a JASCO V-570 spectrometer. IR spectra were recorded on a JASCO FT/IR-480Plus spectrometer. Elemental analyses were performed at Chemical Analysis Center, University of Tsukuba. We appreciate Mr. Ikuo Iida for the elemental analysis measurements.

The structural calculations of the complexes were performed on a Spartan'18 software (Wavefunction Inc., *ver* 1.4.1 (2019)). The initial structures of $(3,5-di-tBuC_6H_3O)_2P(O)O^- \subset [1\cdotCu]^+$ were optimized by molecular mechanics calculations (MMFF), then the obtained structures were optimized by semi-empirical calculations (PM6).

Synthesis of ligand 1 and complex [1·Cu]PF₆



Scheme S1. Synthesis of 2

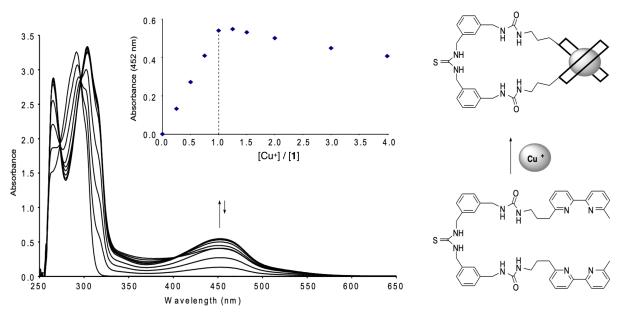
Synthesis of 2

6,6'-dimethyl-2,2'-bipyridine (502 mg, 2.72 mmol) was placed in a three-necked roundbottom flask, and dried in vacuo at room temperature for 2 h. Dry THF (40 mL) was added to the flask under an Ar atmosphere. The solution was cooled to -78 °C, and 1.50 mL of dry THF solution of LDA (2.0 M, 3.00 mmol) was added dropwise, and then stirred for 1 h at the same temperature. Next, 20 mL of dry THF solution of 1-azide-2-iodoethane^[S1] (1.00 g, 5.08 mmol) was added dropwise. The mixture was gradually warmed to room temperature with stirring for 6 h. The mixture was cooled in an ice bath, and 10 mL of aqueous solution of NaOH (0.5 M) was added. The mixture was extracted with Et₂O (20 mL × 4), and the combined organic layer was dried over K₂CO₃, filtered, and concentrated in vacuo. The obtained yellow oil was purified by column chromatography (silica gel, eluent: CHCl₃/AcOEt = 10/1) to obtain **2** (242 mg, 0.955 mmol, 35%) as a pale yellow oil.

2: Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 2.15 (quint, *J* = 7.2 Hz, 2H), 2.63 (s, 3H), 2.95 (t, *J* = 7.2 Hz, 2H), 3.39 (t, *J* = 7.2 Hz, 2H), 7.15 (d, *J* = 7.2 Hz, 1H), 7.17 (d, *J* = 7.2 Hz, 1H), 7.70 (t, *J* = 7.2 Hz, 1H), 7.72 (t, *J* = 7.2 Hz, 1H), 8.22 (d, *J* = 7.2 Hz, 1H), 8.24 (d, *J* = 7.2 Hz, 1H).

Scheme S2. Synthesis of 1

Synthesis of 1


3·2(HCl) (155 mg, 0.398 mmol), a hydrochloride salt of diamine $3^{[S2]}$, was placed in 30 mL a two-necked round-bottom flask, and the atmosphere was replaced with argon. Dry DMF (14 mL) was added to the flask, and diisopropylethylamine (1.54 g, 2.1 mL, 11.94 mmol) was added dropwise to the resulting solution with stirring. The solution was stirred for 2 h. This solution was added to azide 2 (242 mg, 0.955 mmol), which was dried in vacuo at room temperature for 30 min and placed under an argon atmosphere prior to use. PPh₃ (476 mg, 1.81 mmol) was added to the flask, and the mixture was stirred at room temperature for 48 h with CO₂ bubbling. The solvent was removed in vacuo, and the obtained yellow oil was purified by column chromatography (silica gel (pretreated with CHCl₃/MeOH = 7/3), eluent: CHCl₃/MeOH = 100/1→10/1). To the obtained residue was added chloroform (100 mL), and washed with H₂O (100 mL × 2), dried over MgSO₄, filtered, and dried in vacuo. CH₂Cl₂ and CH₃OH were added to the obtained residue, and CH₂Cl₂ was removed under reduced pressure. Colorless solid appeared in the methanol-rich solution, which was collected by filtration to obtain 1 (180 mg, 0.220 mmol, 55%).

1: Colorless solid, mp 169–171 °C; ¹H NMR (600 MHz, CDCl₃/DMSO- $d_6 = 1/1$): δ 1.93 (m, 4H), 2.58 (s, 6H), 2.84 (m, 4H), 3.18 (m, 4H), 4.25 (d, J = 4.7 Hz, 4H), 4.70 (br, 4H), 5.97 (m, 2H), 6.27 (br, 2H), 7.15–7.26 (12H), 7.71–7.78 (6H), 8.20–8.22 (4H); ¹³C NMR (150 MHz, CDCl₃/DMSO- $d_6 = 1/1$) δ 24.35, 30.01, 35.07, 39.10, 43.20, 117.64, 117.83, 122.58, 122.99, 125.72, 125.80, 126.18, 128.20, 136.87, 136.93, 139.01, 140.82, 155.04, 155.12, 157.23, 158.34, 160.60; FT-IR (KBr) 3315, 3061, 2923, 2865, 1636, 1622, 1573, 1440, 1374, 1351, 1336, 1255, 1152, 1083, 991, 959 cm⁻¹; Anal. Calcd for C₄₇H₅₂N₁₀O₂S: C, 68.75; H, 6.38; N, 17.06. Found: C, 68.31; H, 6.37; N, 17.46; ESI-MS observed *m*/*z* 411.21 ([M+2H]²⁺), 821.38 ([M+H]⁺).

Synthesis of complex $[1 \cdot Cu]PF_6$

The ligand 1 (123.2 mg, 0.15 mmol) was dissolved in a $CHCl_3/CH_3OH = 10/1$ mixed solvent (20 mL). A CH_3CN solution (30 mL) of $[Cu(CH_3CN)_4]PF_6$ (55.91 mg, 0.15 mmol) was added to the solution, and the solvent was removed in vacuo. The residue was dissolved in a $CHCl_3/CH_3CN = 10/1$ mixed solvent (5 mL), and then Et_2O (30 mL) was added. The precipitate was collected by filtration to obtain $[1 \cdot Cu]PF_6$ (143.9 mg, 0.139 mmol, 93%) as a pale orange solid.

[1·Cu]PF₆: pale orange solid; ¹H NMR (400 MHz, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$) δ 1.56 (m, 4H), 2.18 (s, 6H), 2.54–2.67 (6H), 2.83 (m, 2H), 4.11 (br, 4H), 4.71 (br, 4H), 5.63 (br, 2H), 6.40 (m, 2H), 7.05–7.28 (8H), 7.47 (d, J = 7.6 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.98–8.04 (4H), 8.22–8.27 (m, 4H); ¹³C NMR (150 MHz, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$) δ 24.85, 29.29, 36.69, 39.10, 43.57, 119.64, 120.07, 125.30, 125.94, 126.19, 128.40, 138.43, 138.54, 151.62, 151.69, 156.95, 158.54, 160.31; FT-IR (KBr) 3435, 2925, 1647, 1597, 1562, 1464, 1440, 1376, 1356, 1335, 1257, 1173, 1084, 961, 847 cm⁻¹; Anal. Calcd for C₄₇H₅₂CuF₆N₁₀O₂PS: C, 54.83; H, 5.09; N, 13.60. Found: C, 54.61; H, 5.17; N, 13.40; ESI-MS (M = 1·Cu⁺) observed *m/z* 883.33 ([M]⁺).

Figure S1. A titration experiment of **1** and $[Cu(CH_3CN)_4]PF_6$ (UV-vis absorption, DMF/CH₃CN = 1/1, [**1**] = 100 μ M, l = 1.0 cm).

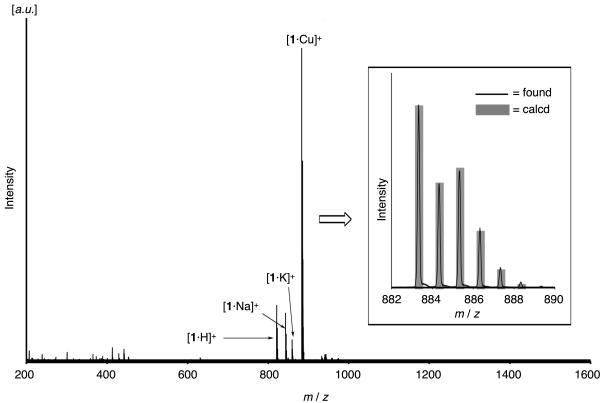


Figure S2. ESI TOF mass spectrum of $[1 \cdot Cu]PF_6$.

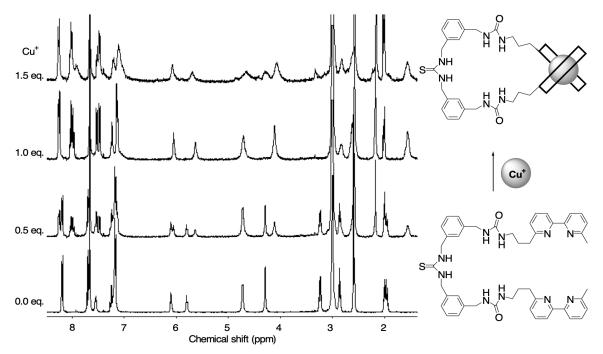


Figure S3. A titration experiment of 1 and $[Cu(CH_3CN)_4]PF_6$ (¹H NMR, CDCl₃/CD₃CN/DMSO-*d*₆ = 15/1/4, 400 MHz, [1] = 2.0 mM).

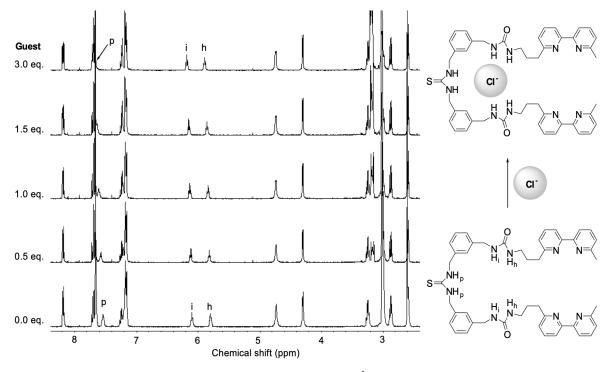
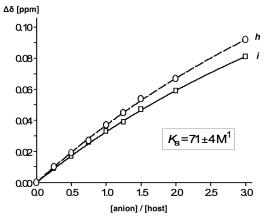
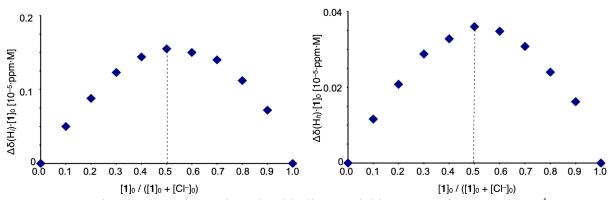
Anion titration experiments of 1 and $[1 \cdot Cu]^+$

A representative procedure: ¹H NMR titration experiment of *n*Bu₄NCl and ligand 1

The ligand **1** (8.21 mg, 10.0 µmol) was dissolved in CHCl₃/CH₃OH = 10/1, and a 2.00 mM solution of **1** was prepared in a 5 mL volumetric flask. *n*Bu₄NCl (27.79 mg, 100.0 µmol) was dissolved in CHCl₃, and a 10.00 mM solution of *n*Bu₄NCl was prepared in a 10 mL volumetric flask. 500 µL of the solution of **1** (1.00 µmol) was added to 9 NMR tubes. The solution of *n*Bu₄NCl was added to each NMR tube with a ratio of [Cl⁻]/[**1**] = 0, 0.25, 0.50, 0.75, 1.0, 1.25, 1.5, 2.0, 3.0, respectively. The solvents were removed under reduced pressure, and the samples were dried in vacuo for 5 h. DMSO-*d*₆ (100 µL) were added to each NMR tube to dissolve the solid. Then 400 µL of CDCl₃/CD₃CN = 15/1 were added to prepare the samples ([**1**] = 2.00 mM), and ¹H NMR measurements were performed. The binding constant between **1** and Cl⁻ was evaluated from the least square fitting of the chemical shift changes of signals *h* and *i* (see Fig. S4 for the assignment).

<u>A representative procedure: ¹H NMR titration experiment of nBu_4NCl and complex [1·Cu]PF_6</u>

The complex $[\underline{1} \cdot \underline{Cu}] PF_6$ (10.3 mg, 10.0 µmol) was dissolved in CHCl₃/CH₃CN = 1/1, and a 2.00 mM solution of **1** was prepared in a 5 mL volumetric flask. *n*Bu₄NCl (27.79 mg, 100.0 µmol) was dissolved in CHCl₃, and a 10.00 mM solution of *n*Bu₄NCl was prepared in a 10 mL volumetric flask. 500 µL of the solution of $[\underline{1} \cdot \underline{Cu}] PF_6$ (1.00 µmol) was added to 9 NMR tubes. The solution of *n*Bu₄NCl was added to each NMR tube with a ratio of $[Cl^-]/[\underline{1} \cdot \underline{Cu}] = 0$, 0.25, 0.50, 0.75, 1.0, 1.25, 1.5, 2.0, 3.0, respectively. The solvents were removed under reduced pressure, and the samples were dried in vacuo for 5 h. DMSO-*d*₆ (100 µL) were added to each NMR tube to dissolve the solid. Then 400 µL of CDCl₃/CD₃CN = 15/1 were added to prepare the samples ($[\underline{1} \cdot \underline{Cu}] = 2.00$ mM), and ¹H NMR measurements were performed. The binding constant between $[\underline{1} \cdot \underline{Cu}]^+$ and Cl⁻ was evaluated from the least square fitting of the chemical shift changes of signals *h* and *i* (see Fig. S16 for the assignment).

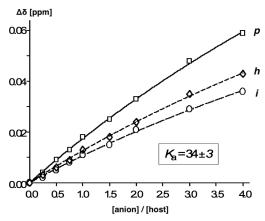

Figure S4. A titration experiment of 1 and nBu_4NCl (¹H NMR, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$, 400 MHz, [1] = 2.0 mM).

Figure S5. A least squares fitting to determine the binding constant K_a of Cl⁻ and 1 (data of NMR signals of urea ¹H(*h* and *i*)).

Figure S6. Job plots to determine the binding stoichiometry of Cl⁻ and **1** (¹H NMR, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$, 400 MHz, $[1]_0 + [Cl^-]_0 = 4.0$ mM, data of NMR signals of urea ¹H(*h* and *i*)).

Figure S7. A least squares fitting to determine the binding constant K_a of Br⁻ and 1 (data of NMR signals of urea ¹H(*h* and *i*) and thiourea ¹H(*p*)).

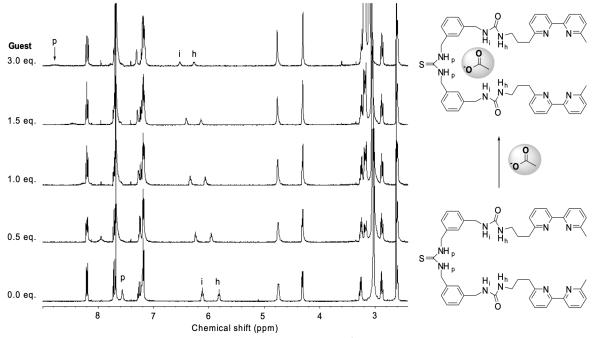
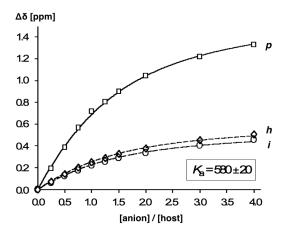



Figure S8. A titration experiment of 1 and *n*Bu₄NOAc (¹H NMR, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$, 400 MHz, [1] = 2.0 mM).

Figure S9. A least squares fitting to determine the binding constant K_a of AcO⁻ and 1 (data of NMR signals of urea ¹H(*h* and *i*) and thiourea ¹H(*p*)).

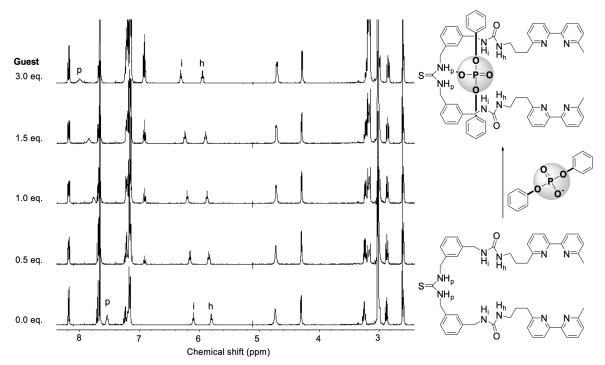
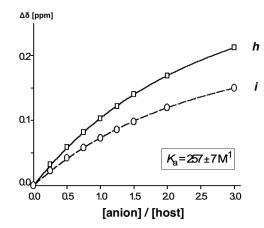
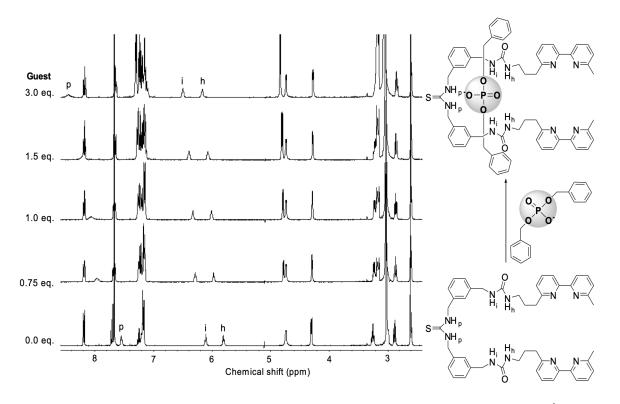
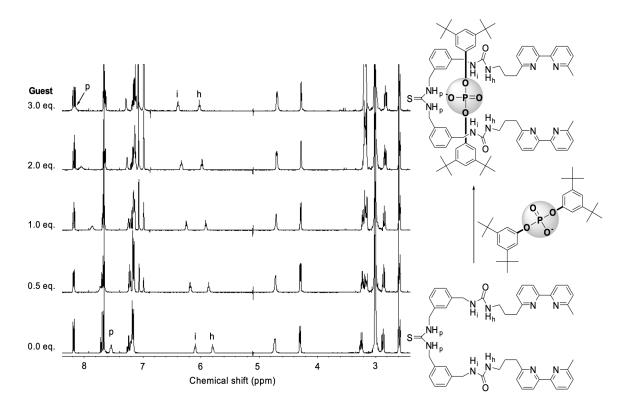
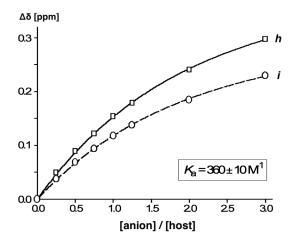
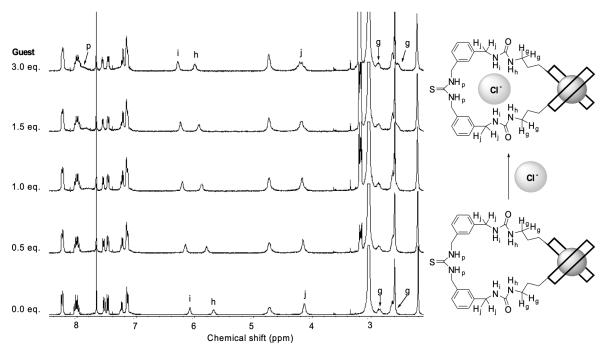




Figure S10. A titration experiment of 1 and $nBu_4N[(PhO)_2P(O)O]$ (¹H NMR, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$, 400 MHz, [1] = 2.0 mM).

Figure S11. A least squares fitting to determine the binding constant K_a of (PhO)₂P(O)O⁻ and 1 (data of NMR signals of urea ¹H(*h* and *i*)).

Figure S12. A titration experiment of **1** and $nBu_4N[(BnO)_2P(O)O]$ (¹H NMR, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$, 400 MHz, [**1**] = 2.0 mM).

Figure S13. A least squares fitting to determine the binding constant K_a of $(BnO)_2P(O)O^-$ and 1 (data of NMR signals of urea ¹H(*h* and *i*)).

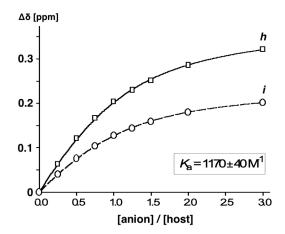
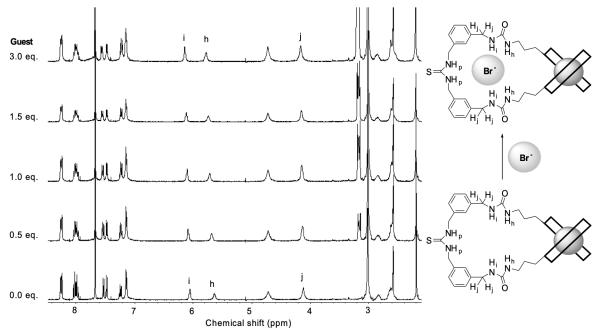
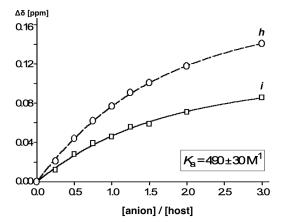
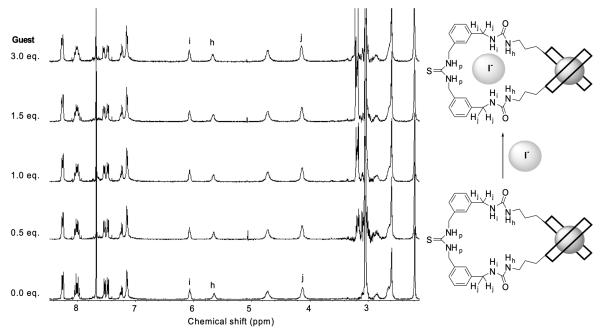
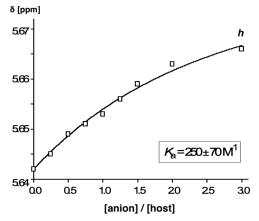

Figure S14. A titration experiment of 1 and $nBu_4N[(3,5-di-tBuC_6H_3O)_2P(O)O]$ (¹H NMR, CDCl₃/CD₃CN/DMSO-*d*₆ = 15/1/4, 400 MHz, [1] = 2.0 mM).

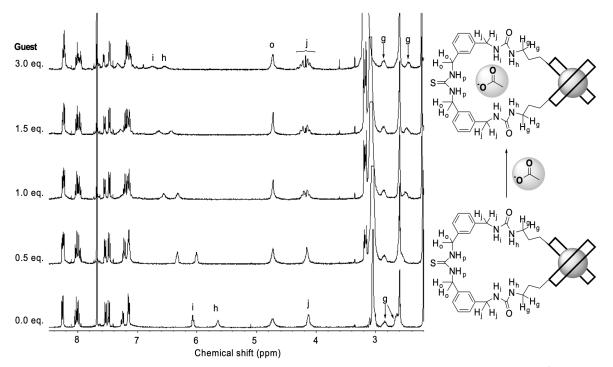
Figure S15. A least squares fitting to determine the binding constant K_a of (3,5-di*t*BuC₆H₃O)₂P(O)O⁻ and **1** (data of NMR signals of urea ¹H(*h* and *i*)).


Figure S16. A titration experiment of $[1 \cdot Cu]PF_6$ and nBu_4NCl (¹H NMR, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$, 400 MHz, $[1 \cdot Cu] = 2.0$ mM).


Figure S17. A least squares fitting to determine the binding constant K_a of Cl⁻ and $[1 \cdot Cu]^+$ (data of NMR signals of urea ¹H(*h* and *i*)).


Figure S18. Job plots to determine the binding stoichiometry of Cl⁻ and $[1 \cdot Cu]^+$ (¹H NMR, CDCl₃/CD₃CN/DMSO-*d*₆ = 15/1/4, 400 MHz, $[1 \cdot Cu]_0 + [Cl^-]_0 = 4.0$ mM, data of NMR signals of urea ¹H(*h* and *i*)).


Figure S19. A titration experiment of $[1 \cdot Cu]PF_6$ and nBu_4NBr (¹H NMR, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$, 400 MHz, $[1 \cdot Cu] = 2.0$ mM).


Figure S20. A least squares fitting to determine the binding constant K_a of Br⁻ and $[1 \cdot Cu]^+$ (data of NMR signals of urea ¹H(*h* and *i*)).

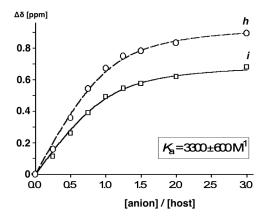
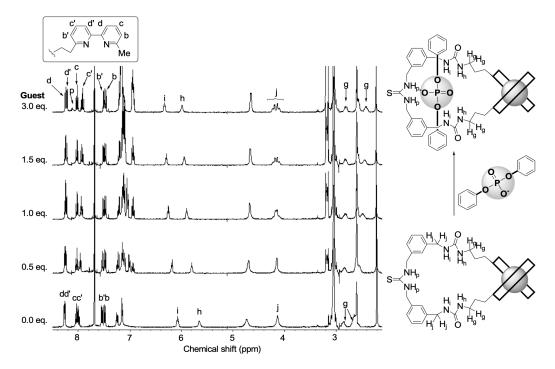
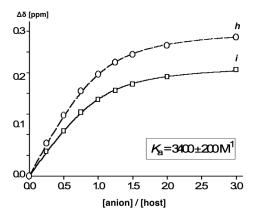
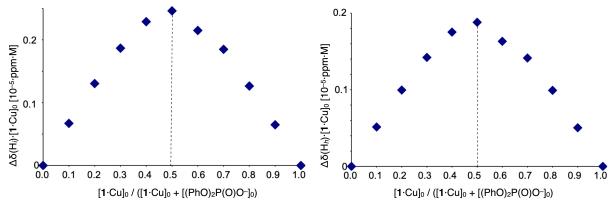
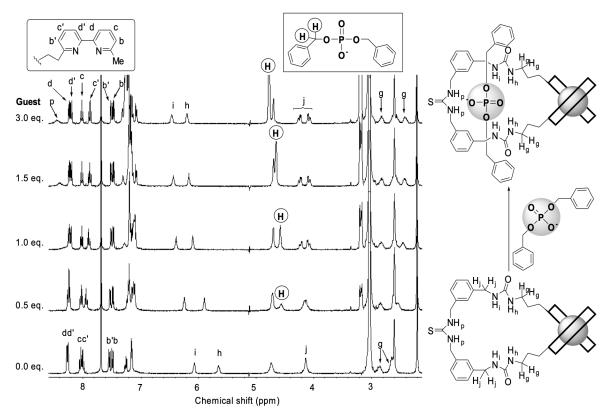

Figure S21. A titration experiment of $[1 \cdot Cu]PF_6$ and nBu_4NI (¹H NMR, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$, 400 MHz, $[1 \cdot Cu] = 2.0$ mM).

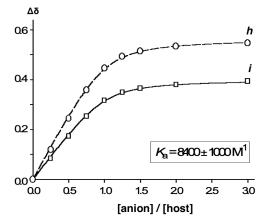
Figure S22. A least squares fitting to determine the binding constant K_a of I⁻ and $[1 \cdot Cu]^+$ (data of NMR signals of urea ¹H(*h*)).

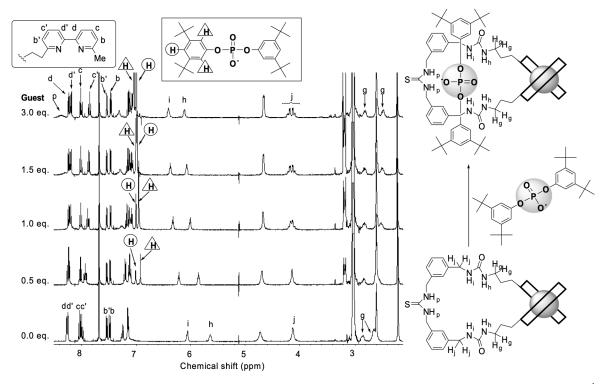
Figure S23. A titration experiment of $[1 \cdot Cu]PF_6$ and nBu_4NOAc (¹H NMR, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$, 400 MHz, $[1 \cdot Cu] = 2.0$ mM).

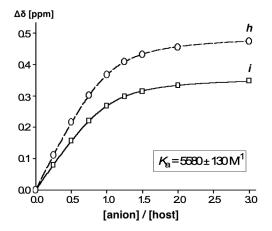
Figure S24. A least squares fitting to determine the binding constant K_a of AcO⁻ and $[1 \cdot Cu]^+$ (data of NMR signals of urea ¹H(*h* and *i*)).

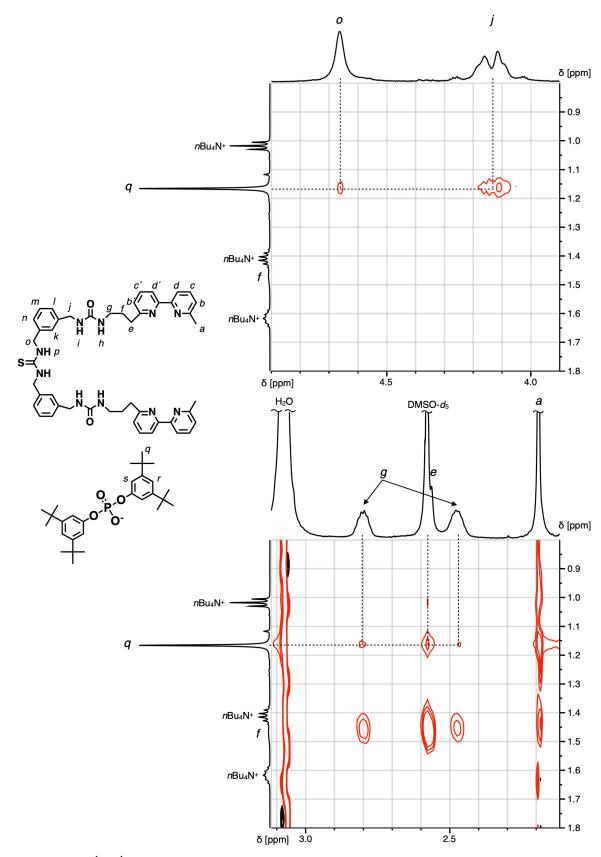





Figure S25. A titration experiment of $[1 \cdot Cu]PF_6$ and $nBu_4N[(PhO)_2P(O)O]$ (¹H NMR, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$, 400 MHz, $[1 \cdot Cu] = 2.0$ mM).


Figure S26. A least squares fitting to determine the binding constant K_a of (PhO)₂P(O)O⁻ and $[1 \cdot Cu]^+$ (data of NMR signals of urea ¹H(*h* and *i*)).


Figure S27. Job plots to determine the binding stoichiometry of $(PhO)_2P(O)O^-$ and $[1 \cdot Cu]^+$ (¹H NMR, CDCl₃/CD₃CN/DMSO-*d*₆ = 15/1/4, 400 MHz, $[1 \cdot Cu]_0 + [(PhO)_2P(O)O^-]_0 = 4.0 \text{ mM}$, data of NMR signals of urea ¹H(*h* and *i*)).


Figure S28. A titration experiment of $[1 \cdot Cu]PF_6$ and $nBu_4N[(BnO)_2P(O)O]$ (¹H NMR, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$, 400 MHz, $[1 \cdot Cu] = 2.0$ mM).


Figure S29. A least squares fitting to determine the binding constant K_a of $(BnO)_2P(O)O^-$ and $[1 \cdot Cu]^+$ (data of NMR signals of urea ${}^{1}H(h \text{ and } i)$).

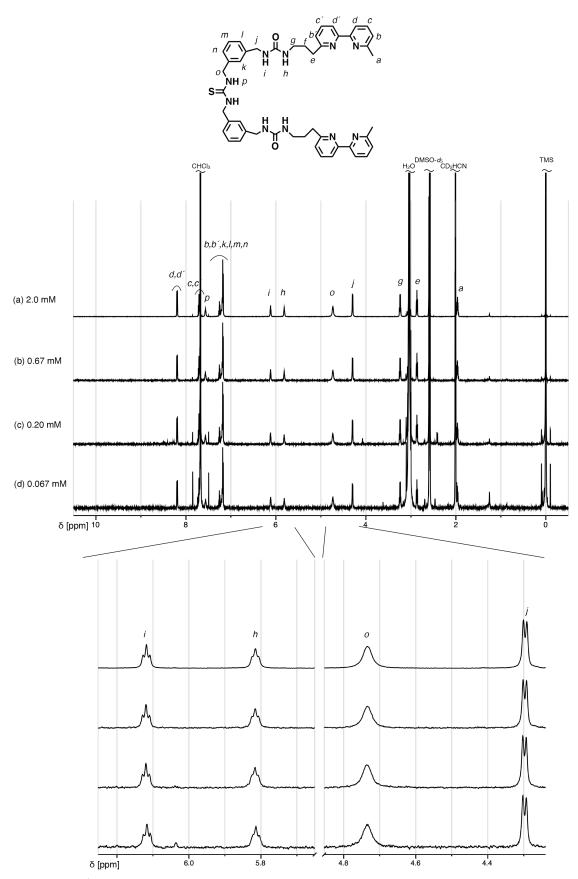

Figure S30. A titration experiment of $[1 \cdot Cu]PF_6$ and $nBu_4N[(3,5-di-tBuC_6H_3O)_2P(O)O]$ (¹H NMR, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$, 400 MHz, $[1 \cdot Cu] = 2.0$ mM).

Figure S31. A least squares fitting to determine the binding constant K_a of (3,5-di*t*BuC₆H₃O)₂P(O)O⁻ and $[1 \cdot Cu]^+$ (data of NMR signals of urea ¹H(*h* and *i*)).

Figure S32. ${}^{1}\text{H}-{}^{1}\text{H}$ ROESY spectra of rotaxane ([$1 \cdot \text{Cu}$]PF₆ + $n\text{Bu}_4\text{N}$ [(3,5-ditBuC₆H₃O)₂P(O)O] (1 equiv.) (600 MHz, CDCl₃/CD₃CN/DMSO-d₆ = 15/1/4).

Figure S33. ¹H NMR spectra of ligand **1** at different concentrations (600 MHz, CDCl₃/CD₃CN/DMSO- $d_6 = 15/1/4$). The intensities of the spectra are normalized. (a) 2.0 mM (16 scans). (b) 0.67 mM (16 scans). (c) 0.20 mM (128 scans). (d) 0.067 mM (512 scans).

References for the Supporting Information

- S1. M. Khoukhi, M. Vaultier and R. Carrié, Tetrahedron Lett., 1986, 27, 1031–1034.
- S2. R. Gross, G. Dürner and M. W. Göbel, Liebigs. Ann. Chem., 1994, 49-58.