In-situ growth of Prussian blue analogues derived Fe-doped NiS on Ni(OH)₂ for efficient hydrogen evolution reaction

Xinyao Ding, Mingyi Zhang *, Xin Chang, and Xuejiao Zhou *

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, People’s Republic of China.

*Corresponding author:
E–mail: zhouxj@hrbnu.edu.cn (X.J. Zhou)
E–mail: zhangmingyi@hrbnu.edu.cn (M.Y. Zhang)
Fig. S1. (a) XRD patterns of NiS/Ni(OH)$_2$/CC. (b) XRD patterns of Fe-NiS/Ni(OH)$_2$/CC with different sulfurization temperatures.
Fig. S2. SEM image of (a, b) NiS/Ni(OH)$_2$/CC.
Fig. S3. High-resolution XPS spectra of O 1s (a) Fe-NiS/Ni(OH)$_2$/CC; (b) NiS/Ni(OH)$_2$/CC; (c) Ni-Fe PBA/Ni(OH)$_2$/CC; (d) Ni(OH)$_2$/CC.
Fig. S4. CVs curves of (a) Ni(OH)$_2$/CC; (b) Ni-Fe PBA/Ni(OH)$_2$/CC; (c) NiS/Ni(OH)$_2$/CC; (c) Fe-NiS/Ni(OH)$_2$/CC in 1.0 M KOH solution at different scan rates.
Fig. S5. SEM image of (a, b) Fe-NiS/Ni(OH)$_2$/CC after long-term stability test.
Fig. S6. XRD image of Fe-NiS/Ni(OH)$_2$/CC after long-term stability test.