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3 Characterization methodology

4 X-ray powder diffraction (XRD) was carried out on a D8 Advance X-ray powder 

5 diffractometer. Fourier transform infrared (FTIR) spectroscopy analysis was carried out on a 

6 FTIR-650 spectrometer. Ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy (DRS) 

7 measurement was done on a TU-1901 double beam spectrophotometer. X-ray photoelectron 

8 spectroscopy (XPS) investigation was performed an AXIS Supra X-ray photoelectron 

9 spectrometer. Scanning electron microscopy (SEM) observation was performed on a JSM-6701F 

10 field-emission scanning electron microscope. Transmission electron microscopy (TEM) analysis 

11 was performed on a JEM-F200 field-emission transmission electron microscope. Electron 

12 paramagnetic resonance (EPR) signals were monitored on a Bruker microESR spectrometer. 

13 Liquid chromatography-mass spectrometry (LC-MS) analysis was performed on a thermos TSQ 

14 Quantum Ultra mass spectrometer and Agilent 1100 liquid chromatograph.

15 Photoelectrochemical measurement

16 The photocurrent response spectra and electrochemical impedance spectroscopy (EIS) 

17 spectra of the samples were obtained using a CST 350 electrochemical workstation. A three-

18 electrode cell configuration was used for the photoelectrochemical testing, where a platinum foil 

19 electrode and a standard calomel electrode (SCE) were used as the counter electrode and 

20 reference electrode, respectively. To prepare the working electrode, 15 mg of the photocatalyst, 

21 0.75 mg of acetylene black and 0.75 mg of poly-vinylidene fluoride (PVDF) were uniformly 

22 mixed using 1-methyl-2-pyrrolidione (NMP) as the solvent. The formed slurry mixture was 

23 uniformly coated onto a fluorine-doped tin oxide (FTO) glass substrate with an effective area 1 × 

24 1 cm2, followed by 5 h of drying at 60 oC. 0.1 M Na2SO4 aqueous solution was used as the 

25 electrolyte. A PLS-SXE300BF 300 W xenon lamp was employed as the light source to generate 
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26 simulated sunlight. The photocurrent response was measured at a bias potential of 0.2 V. EIS 

27 measurements were conducted by applying a sinusoidal voltage pulse with amplitude of 5 mV 

28 over a frequency range of 10−2 to 105 Hz.

29 DFT calculation

30 The calculations of geometry configurations and the band structures were carried out by the 

31 Vienna ab-inito simulation package (VASP), taking advantage of the density-functional theory 

32 (DFT) in Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). SCF 

33 convergence criteria was set to be 10−5 eV and the relaxation convergence criteria was set to be 

34 0.03 eV Å−1 in the calculation. An energy cutoff of 400 eV was used for the plane-wave 

35 expansion of the electronic wave function. BOB (012) crystal plane was built from the optimized 

36 BOB unit cell with lattice parameters of a = b = 3.93219 Å, c = 8.51622 Å, α = β = γ = 90.0000o 

37 and the corresponding 9 × 3 × 1 k-point mesh was modeled in the calculations. AMO (220) 

38 crystal plane was built from the optimized AMO nanosheet unit cell with lattice parameters of a = 

39 b = c = 9.2588 Å, α = β = γ = 90.0000o and the corresponding 5 × 5 × 1 k-point mesh was 

40 modeled in the calculations.
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51 Table S1. Comparison of the photocatalytic performance of 20%AMO/BOB with that of previously 

52 reported AMO- or BOB-based composite photocatalysts towards the degradation of MB.

Samples Light sources Cphotocatalyst MB Irradiation 

time (min)
η References

20%Ag2MoO4/BiOBr 300-W Xe 

lamp

0.5 g L−1 10 mg L−1 30 93.8% This work

5%Ag2MoO4/Ag3PO4 350-W xenon 

lamp with a 

420 nm 

ultraviolet 

filter

0.5 g L−1 10 mg L−1 15 94% [1]

Ag2MoO4/AgBr 410 nm LED 

irradiation

1 g L−1 20 mg L−1 6 88% [2]

Bi2MoO6/Ag2MoO4 tungsten lamp 

of 25W/m2

- 10 mg L−1 140 91.8% [3]

60%α-Ag2MoO4/WO3 300-W Xe 

lamp (λ > 420 

nm)

0.5 g L−1 0.5 g L−1 150 68% [4]

30wt%Ag2MoO4/Bi4Ti3O1

2

simulated 

sunlight 

emitted from 

a 300-W 

xenon lamp

1 g L−1 5 mg L−1 15 98.3% [5] 

40%g-C3N4/Ag2MoO4 410 nm LED 

light (50 W)

1 g L−1 20 mg L−1 12 99.5% [6]

Ag/AgCl/Ag2MoO4 300-W Xe 

lamp with a 

cut-off filter 

(λ > 420 nm)

0.6 MB (10 mg 

L−1)

90 98.3 [7]

BiOBr-M 300-W Xe 

lamp

0.5 g L−1 4 × 10−5 mol 

L−1

36 92% [8]

BiOBr lamellas 350-W Xe 

lamp with a 

420 nm 

ultraviolet 

filter

0.4 g L−1 5 mg L−1 450 50% [9]

40%BiOCl/BiOBr visible LED 

light 

irradiation

0.6 g L−1 10 mg L−1 360 93% [10]

Bi4O5Br2/BiOBr blue light 

(405 nm, 20 

W)

1.58 g L−1 80 mg L−1 100 36% [11]

BiOBr/Ag2CrO4 (2:1) 500 W xenon 0.5 g L−1 10 mg L−1 20 98.3% [12]
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lamp 

equipped with 

a 420 nm 

filter

3%p-C3N4/f-BiOBr 250-W Xe 

lamp with a 

400 nm cut-

off filter

1 g L−1 25 mg L−1 100 94.3% [13]

Ag3PO4/RGO/BiOBr high pressure 

mercury lamp 

with a 420nm 

cutoff filter

0.5 g L−1 20 mg L−1 60 96.5% [14]

20%CuBi2O4/Bi/BiOBr 500 W Xenon 

lamp with a 

UV-cutoff 

filter (λ > 420 

nm)

1 g L−1 20 mg L−1 120 73% [15]

BiOBr/Ag6Si2O7 (5:1) 300 xenon 

lamp and a 

400 nm cutoff 

filter

1 g L−1 20 ppm 15 98% [16]
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116

117 Fig. S1. Photocurrent response spectra (a) and EIS spectra (b) of AMO, BOB and 20%AMO/BOB.
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143

144 Fig. S2. Mass spectral database for decomposition products of MB over 20%AMO/BOB.
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159

160 Fig. S3. UV-vis absorption spectra of various organic pollutants photodegraded by 20%AMO/BOB 

161 (Cphotocatalyst = 0.5 g L−1, Cpollutant = 10 mg L−1).
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