Luminescent MOFs constructed by butterfly-like AIE ligands

Pan-Pan Dong^{†a}, Yuan-Yuan Liu^{†a}, Qiu-Chen Peng^a, Hai-Yang Li^a, Kai Li^{*a}, Shuang-Quan Zang^a and Ben Zhong Tang^{*b,c}

^a Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. E-mail: likai@zzu.edu.cn.

^b The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China.

^c School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China, Email: tangbenz@cuhk.edu.cn

[†] These authors contributed equally.

Figure S1. ¹H-NMR spectrum of ONP-1.

Figure S2. ¹³C-NMR spectrum of ONP-1.

Figure S3. ESI-MS spectra of ONP-1.

Figure S4. ¹H-NMR spectrum of ONP-2.

Figure S5. ¹³C-NMR spectrum of ONP-2.

Figure S6. ESI-MS spectra of ONP-2.

Figure S7. ¹H-NMR spectrum of ONP-3.

Figure S8. ¹³C-NMR spectrum of ONP-3.

Figure S9. ESI-MS spectra of ONP-3.

Figure S10. A) Luminescence spectra of ONP-2 in water/DMSO mixtures with different f_w . B) Luminescence intensity of ONP-2 at 398 nm as a function of f_w . C) Absorption spectra of ONP-2 in water/DMSO mixtures with different f_w . Inset: DLS results of ONP-2 in 99% water/DMSO mixture. D) Luminescence spectra of ONP-2 in glycerol/DMSO mixtures with different f_g . Condition: [ONP-2] = 10 µmol/L.

Figure S11. A) Luminescence spectra of **ONP-3** in water/DMSO mixtures with different f_w . B) Luminescence intensity of **ONP-3** at 381 nm as a function of f_w . C) Absorption spectra of **ONP-3** in water/DMSO mixtures with different f_w . Inset: DLS results of **ONP-3** in 99% water/DMSO mixture. D) Luminescence spectra of **ONP-3** in glycerol/DMSO mixtures with different f_g . Condition: [**ONP-3**] = 10 µmol/L.

Figure S12. PXRD patterns of MOF-1.

Figure S13. PXRD patterns of MOF-2.

Figure S14. PXRD patterns of MOF-3.

Figure S15. TGA curves of MOF-1.

Figure S16. TGA curves of MOF-2.

Figure S17. Photograph of MOF-1.

Figure S18. Photograph of MOF-2.

Figure S19. Photograph of MOF-3.

Figure S20. A) the dihedral angle between two naphthalene rings in free ligand. B) the dihedral angle between two pyrazine rings in free ligand. C) the dihedral angle between two naphthalene rings in **MOF-2**. D) the dihedral angle between two pyrazine rings in **MOF-2**.

Figure S21. A) the dihedral angle between two naphthalene rings in free ligand. B) the dihedral angle between two pyrazine rings in free ligand. C) the dihedral angle between two naphthalene rings in **MOF-3**. D) the dihedral angle between two pyrazine rings in **MOF-3**.

Figure S22. ADPs of compound ONP-2.

Figure S23. ADPs of compound ONP-3.

Figure S24. ADPs of compound MOF-1.

Figure S25. ADPs of compound MOF-2.

Figure S26. ADPs of compound MOF-3.

Compound	ONP-2	ONP-3
CCDCnumber	2211413	2157115
Empirical formula	$C_{28}H_{16}N_4O_4$	$C_{28}H_{16}N_4O_4$
Formula weight	472.45	472.45
Temperature/K	273.15	200.00
Crystal system	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1
a/Å	9.7538(16)	7.6216(3)
b/Å	11.407(2)	11.7920(5)
c/Å	11.4194(19)	13.0678(4)
α/°	103.712(7)	77.628(3)
β/°	113.415(6)	88.737(3)
γ/°	100.779(7)	71.633(4)
Volume/Å ³	1074.8(3)	1087.43(8)
Z	2	2
$\rho_{calc}g/cm^3$	1.460	1.443
μ/mm ⁻¹	0.101	0.816
F(000)	488.0	488.0
Crystal size/mm ³	0.12 imes 0.11 imes 0.1	0.02 imes 0.02 imes 0.01
Radiation	Mo Kα ($\lambda = 0.71073$)	Cu Ka ($\lambda = 1.54184$)
2θ range for data collection/°	3.874 to 55.082	6.934 to 146.218
Index ranges	$-12 \le h \le 12,$ $-14 \le k \le 14,$ $-14 \le 1 \le 14$	$\begin{array}{c} -4 \leqslant h \leqslant 9, \\ -14 \leqslant k \leqslant 14, \\ -15 \leqslant l \leqslant 16 \end{array}$
Reflections collected	28784	10319
Independent reflections	$4938[R_{int} = 0.0540, R_{sigma} =$	4192 [$R_{int} = 0.0464, R_{sigma} =$
	0.0327]	0.0558]
Data/restraints/parameters	4938/0/325	4192/0/326
Goodness-of-fit on F ²	1.030	1.075
Final R indexes [I>=2σ (I)]	$R_1 = 0.0422, wR_2 = 0.0953$	$R_1 = 0.0597, wR_2 = 0.1668$
Final R indexes [all data]	$R_1 = 0.0697, wR_2 = 0.1090$	$R_1 = 0.0722, wR_2 = 0.1802$

 Table S1. Crystallographic data and structure refinement.

 $R_1 = \sum ||F_o| - |F_c|| \sum / |F_o|. \ wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$

Compound	MOF-1	MOF-2	MOF-3
CCDC number	2211414	2211415	2211417
Empirical formula	$Cu_{2}I_{2}(C_{28}H_{16}N_{4}O_{4})_{2}$	$Cu_2I_2(C_{28}H_{16}N_4O_4)_2$	$Cu_2I_2(C_{28}H_{16}N_4O_4)_2$.
	2CH ₃ CN	2CH ₃ OH	$2CH_3CN \cdot 2CH_2Cl_2$
Formula weight	1407.88	1389.86	1577.73
Temperature/K	150	200	200
Crystal system	monoclinic	orthorhombic	monoclinic
Space group	$P2_1/n$	Pbam	<i>C</i> 2/m
a/Å	10.4836(4)	30.9478(5)	27.2643(2)
b/Å	13.4881(4)	8.7794(2)	9.67980(10)
c/Å	19.6808(5)	12.2189(3)	11.31850(10)
α/°	90	90	90
β/°	97.791(3)	90	90.5060(10)
γ/°	90	90	90
Volume/Å ³	2757.25(15)	3319.91(12)	2986.98(5)
Z	2	2	2
$\rho_{calc}g/cm^3$	1.696	1.326	1.754
µ/mm ⁻¹	10.294	8.507	11.186
F(000)	1392.0	1304.0	1560.0
Crystal size/mm ³	0.1 imes 0.05 imes 0.03	$0.15 \times 0.06 \times 0.03$	0.1 imes 0.04 imes 0.03
Radiation	Cu Ka (λ = 1.54184)	Cu Ka (λ = 1.54184)	Cu Ka (λ = 1.54184)
2θ range for data collection/°	7.97 to 146.592	7.234 to 132.962	6.484 to 146.99
Index ranges	$-12 \le h \le 10,$ $-16 \le k \le 12$	$-36 \le h \le 34,$ $-10 \le k \le 10$	$-33 \le h \le 32$, $-11 \le k \le 11$
mack runges	$-24 \le 1 \le 20$	$-10 \le 1 \le 10$,	-14 ≤ 1 ≤ 13
Reflections collected	13917	10684	7750
Independent reflections	5377 [$R_{int} = 0.0264$,	$3085 [R_{int} = 0.0398,$	$3124 [R_{int} = 0.0343,$
	$R_{sigma} = 0.0312$]	$R_{sigma} = 0.0388$]	$R_{sigma} = 0.0329$]
Data/restraints/parameters	5377/0/371	3085/400/283	3124/149/284
Goodness-of-fit on F ²	1.199	1.057	1.043
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0899, wR_2 =$	$R_1 = 0.0512, wR_2 =$	$R_1 = 0.0496, wR_2 =$
	0.2050	0.1486	0.1381
Final R indexes [all data]	$R_1 = 0.1026, wR_2 =$	$R_1 = 0.0602, wR_2 =$	$R_1 = 0.0501, wR_2 =$
	0.2122	0.1565	0.1386

 Table S2. Crystallographic data and structure refinement.

 $R_1 = \sum ||F_o| - |F_c|| \sum /|F_o|. \ wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$

Atom	Atom	Length/Å
I1	Cu1	2.6094(18)
I1	Cu1 ¹	2.6151(19)
Cu1	Cu1 ¹	2.525(3)
Cu1	N1	2.070(10)
Cu1	N4 ²	2.083(8)

Table S3. The main bond lenghs (Å) of MOF-1.

Symmetry codes: ¹1-X,2-Y,1-Z; ²1/2-X, 1/2+Y,3/2-Z

Table S4. The main bond lenghs (Å) of MOF-2.

Atom	Atom	Length/Å
I1	Cu1 ¹	2.6585(8)
I1	Cu1	2.6585(8)
I1	Cu2	2.629(11)
I1	$Cu2^1$	2.630(10)
Cu1	Cu1 ¹	2.664(3)
Cu1	N1	2.125(10)
Cu2	Cu2 ¹	2.55(2)

Symmetry codes: ¹1-X,-Y,-Z

Table	S5 .	The r	nain	bond	lenghs	(Å)) of MOF-3 .
-------	-------------	-------	------	------	--------	-----	---------------------

Atom	Atom	Length/Å
I1	Cu1	2.6716(5)
I1	Cu1 ¹	2.6716(5)
Cu1	Cu1 ¹	2.7489(18)
Cu1	N1 ²	2.050(3)
Cu1	N1	2.051(3)

Symmetry codes: ¹1-X,-Y,-Z; ²1-X,+Y,-Z; ³+X,1-Y,+Z; ⁴1-X,-Y,1-Z; ⁵1-X,+Y,1-Z

	0 ()		
Atom	Atom	Atom	Angle/°
Cu1	I1	Cu1 ¹	57.80(6)
I1	Cu1	I1 ¹	122.20(6)
Cu1 ¹	Cu1	I1	61.21(7)
Cu1 ¹	Cu1	I1 ¹	60.99(7)
N1	Cu1	I1	108.6 (3)
N1	Cu1	I1 ¹	110.1(3)
N1	Cu1	Cu1 ¹	133.2(3)
N1	Cu1	N4 ²	96.3(3)
N4 ²	Cu1	I1	108.3(3)
N4 ²	Cu1	I1 ¹	108.3(3)
N4 ²	Cu1	Cu1 ¹	130.5(3)

Table S6. The main bond angles (°) of MOF-1.

Symmetry codes:¹1-X,2-Y,1-Z; ²1/2-X, 1/2+Y,3/2-Z; ³1/2-X, -1/2+Y,3/2-Z

Table S7. The main bond angles (°) of MOF-2.

		1	
Atom	Atom	Atom	Angle/°
Cu1 ¹	I1	Cu1	60.13(5)
Cu2	I1	Cu2 ¹	57.9(5)
I1	Cu1	I1 ¹	119.87(5)
I1	Cu1	Cu1 ¹	59.93(3)
I1 ¹	Cu1	Cu1 ¹	59.93(3)
N1	Cu1	I1 ¹	107.0(3)
N1	Cu1	I1	103.6(3)
N1	Cu1	Cu1 ¹	121.7(4)
I1	Cu2	I1 ¹	122.1(5)
Cu2 ¹	Cu2	I1	61.1(4)
N1	Cul	N1	116.52(4)°

Symmetry codes:¹1-X,-Y,-Z

	8		
Atom	Atom	Atom	Angle/°
Cu1	I1	Cu1 ¹	61.92(3)
I1	Cu1	I1 ¹	118.08(3)
I1	Cu1	Cu1 ¹	59.038(17)
I11	Cu1	Cu1 ¹	59.038(17)
N1 ²	Cu1	I1	104.41(10)
N1	Cu1	I1	105.13(10)
N1 ²	Cu1	I1 ¹	105.13(10)
N1	Cu1	I1 ¹	104.40(10)
N1	Cu1	Cu1 ¹	119.70(11)
N1 ²	Cu1	Cu1 ¹	119.70(11)
N1 ²	Cu1	N1	120.6(2)

Table S8. The main bond angles (°) of MOF-3.

Symmetry codes: ¹1-X,-Y,-Z; ²1-X,+Y,-Z; ³+X,1-Y,+Z; ⁴1-X,+Y,1-Z; ⁵1-X,-Y,1-Z