Supporting Information

Novel high-pressure phases of nitrogen-rich Y-N compounds

Shuang Liu, Dan Xu, Ran Liu, Zhen Yao* and Peng Wang*

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R.China.

Fig.S1. Enthalpy-pressure diagrams of various nitrogen phases at 0-150 GPa.

* Corresponding author.

E-mail address: yaozhen@jlu.edu.cn

E-mail address: wangpengtrrs@jlu.edu.cn

Figure.S2. Enthalpy-pressure diagrams of Y_4N_3 (a), YN (b), Y_2N_3 (c) and YN_3 (d).

Figure.S3. Enthalpy-pressure diagrams of YN_4 (a), YN_6 (b) and YN_8 (c).

Figure.S4. The phonon dispersion curves for (a) I-43d-Y₄N₃ phase at 100 GPa; (b) R3c-Y₂N₃ phase at 100 GPa; (c) P-1-II-YN₄ at 0 GPa; (d) P-1-II-YN₄ at 100 GPa; (e) P-1-YN₆ at 0 GPa; (f) P-1-YN₆ at 50 GPa; (g) P31c-YN₈ at 0 GPa; and (h) P31c-YN₈ at 150 GPa.

Figure.S5. The polyhedral structures of predicted Y-N compounds: (a) $I-43d-Y_4N_3$ phase at 100 GPa; (b) $R3c-Y_2N_3$ phase at 100 GPa; (c) $P-1-II-YN_4$ phase at 100 GPa; (d) $P-1-YN_6$ phase at 50 GPa and (e) $P31c-YN_8$ phase at 150 GPa. The green and white spheres denote Y and nitrogen atoms, respectively.

Figure.S6. The phonon dispersion curves for P31c-YN₈ at 60 GPa (a); fluctuations of total energies and snapshots of P31c-YN₈ at 60 GPa (b).

Figure.S7 Lewis structure for the periodic unit of the (a) R3c-Y₂N₃, (b) P-1-II-YN₄, (c) P-1-YN₆, and (d) P31c-YN₈.

Figure.S8 The IR spectrum of *P*-1-II-YN₄ at 100 GPa.

Figure.89 The IR spectrum of P-1-YN₆ at 50 GPa.

Figure.S12. IR active images of *P*-1-YN₆.

Figure.S13. IR active images of *P*31*c*-YN₈.

Table S1. Elastic tensor	C_{ii}	(in GPa) of cubic	<i>I</i> -43 <i>d</i> -Y ₄ N ₃ :
--------------------------	----------	---------	------------	--

		IJ (/	1 5		
C _{ij}	1	2	3	4	5	6
1	745.323	207.651	207.663	0.029	0.032	0.037
2	207.651	745.318	207.654	0.030	0.043	0.030
3	207.663	207.654	745.328	0.026	0.032	0.039
4	0.029	0.030	0.026	147.480	0.009	0.009
5	0.032	0.043	0.032	0.009	147.476	0.002
6	0.037	0.030	0.039	0.009	0.002	147.467

Table S2. Elastic tensor C_{ij} (in GPa) of rhombohedral R3c- Y_2N_3 :

C _{ij}	1	2	3	4	5	6
1	705.652	271.457	323.263	-72.511	0.000	0.000
2	271.457	705.652	323.263	72.511	0.000	0.000
3	323.263	323.263	793.240	0.000	0.000	0.000

4	-72.511	72.511	0.000	270.018	0.000	0.000
5	0.000	0.000	0.000	0.000	270.018	-72.511
6	0.000	0.000	0.000	0.000	-72.511	217.097

Table S3. Elastic tensor C_{ij} (in GPa) of triclinic *P*-1-II-YN₄:

C _{ij}	1	2	3	4	5	6
1	626.629	242.375	266.719	-7.653	8.49	-8.186
2	242.375	996.54	245.267	-31.671	-31.073	77.867
3	266.719	245.267	695.532	-7.591	-83.248	-15.114
4	-7.653	-31.671	-7.591	196.406	10.225	-61.593
5	8.49	-31.073	-83.248	10.225	211.865	10.118
6	-8.186	77.867	-15.114	-61.593	10.118	217.043

Table S4. Elastic tensor C_{ij} (in GPa) of triclinic *P*-1-YN₆:

C _{ij}	1	2	3	4	5	6
1	599.118	252.695	177.616	-71.517	10.015	-24.61
2	252.695	386.018	219.506	-120.224	-13.156	51.382
3	177.616	219.506	347.887	47.762	28.918	-8.231
4	-71.517	-120.224	47.762	185.717	-10.785	-20.54
5	10.015	-13.156	28.918	-10.785	89.277	-81.411
6	-24.61	51.382	-8.231	-20.54	-81.411	173.399

Table S5. Elastic tensor C_{ij} (in GPa) of trigonal P31c-YN₈:

	-	IJ () 0	0		
C _{ij}	1	2	3	4	5	6
1	1158.402	253.814	304.103	0.000	-60.767	0.000
2	253.814	1158.402	304.103	0.000	60.767	0.000
3	304.103	304.103	845.926	0.000	0.000	0.000
4	0.000	0.000	0.000	140.746	0.000	60.767
5	-60.767	60.767	0.000	0.000	140.746	0.000
6	0.000	0.000	0.000	60.767	0.000	452.294

The mechanical stability criteria of cubic structure shown as follows:

 $\begin{array}{l} C_{11}\text{-}C_{12} \!\!>\!\!0;\\ C_{11}\!\!+\!\!2C_{12}\!\!>\!\!0;\\ C_{44}\!\!>\!\!0. \end{array}$

The cubic I-43d-Y₄N₃ is mechanically stable due to their elastic tensor C_{ij} satisfy to all the criteria.

The mechanical stability criteria of tetragonal structure shown as follows:

 $\begin{array}{l} C_{11}\!\!>\!\!|C_{12}|;\\ 2C_{13}C_{13}\!\!<\!\!C_{33}(C_{11}\!\!+\!\!C_{12});\\ C_{44}\!\!>\!\!0. \end{array}$

The rhombohedral R3c-Y₂N₃ is mechanically stable due to their elastic tensor C_{ij} satisfy to all the criteria.

The mechanical stability criteria of monoclinic/triclinic structure shown as follows:

 $\begin{array}{l} C_{11} > 0 \\ C_{22} > 0 \\ C_{33} > 0 \\ C_{44} > 0 \\ C_{55} > 0 \\ C_{66} > 0 \\ [C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})] > 0 \\ (C_{33}C_{55} - C_{35}C_{35}) > 0 \\ (C_{44}C_{66} - C_{46}C_{46}) > 0 \\ (C_{22} + C_{33} - 2C_{23}) > 0 \\ (C_{22}(C_{33}C_{55} - C_{35}C_{35}) + 2C_{23}C_{25}C_{35} - C_{25}C_{25}C_{33}) > 0(2(C_{15}C_{25}(C_{33}C_{12} - C_{13}C_{23}) + C_{15}C_{35}(C_{22}C_{13} - C_{12}C_{23}) + C_{25}C_{35}(C_{11}C_{23} - C_{12}C_{13})) - (C_{15}C_{15}(C_{23}C_{33} - C_{23}C_{23}) + C_{25}C_{25}(C_{11}C_{33} - C_{13}C_{13}) + C_{35}C_{35}(C_{11}C_{22} - C_{12}C_{12})) + C_{55}g) > 0 \end{array}$

 $g = C_{11}C_{22}C_{33} - C_{11}C_{23}C_{23} - C_{22}C_{13}C_{13} - C_{33}C_{12}C_{12} + 2C_{12}C_{13}C_{23}$

The triclinic P-1-II-YN₄ and triclinic P-1–YN₆ are mechanically stable due to their elastic tensor C_{ij} satisfy to all the criteria.

The mechanical stability criteria of trigonal structure shown as follows: $C_{11}>|C_{12}|$; $C_{13}C_{13}<0.5C_{33}(C_{11}+C_{12})$; $C_{14}C_{14}<0.5C_{44}(C_{11}-C_{12})$; $C_{44}>0$.

The trigonal P31c-YN₈ is mechanically stable due to their elastic tensor C_{ij} satisfy to all the criteria.

Comp	Pressure	Space	Lattice Parameters	Wyckoff Positions			ns		
ounds	(GPa)	Group							
Y_4N_3	100	I-43d	a=b=c=6.6724	Y1	0.4334	0.9334	0.5666		
			$\alpha = \beta = \gamma = 90^{\circ}$	N1	0.75	0.125	0.0000		
Y_2N_3	100	R3c	a=b=10.1362,c=6.2071	Y1	0.2308	0.3653	0.4145		
			α=β=90°,γ=120°	Y2	0.0000	0.0000	0.4526		
				N1	0.0736	0.1766	0.6958		
				N2	0.2302	-0.098	0.5688		
YN ₄	100	<i>P</i> -1-II	a=3.9200,b=4.0558,c=4.9745	Y1	0.7804	0.2528	0.2176		

Table S6. Crystal structure parameters for Y-N compounds.

			α=93.2471°,β=111.7120°,γ=9	N1	0.9301	0.2129	0.7158
			6.9587°	N2	0.3940	0.3649	0.5125
				N3	0.4154	0.8019	0.2859
				N4	0.8253	0.7466	0.0186
YN_6	50	<i>P</i> -1	a=3.7918,b=5.2520,c=5.9531	Y1	0.8000	0.7188	0.2504
			α=99.2457°,β=91.7902°,γ=11	N1	0.8061	0.6235	0.8140
			0.7240°	N2	0.5646	0.3011	0.4180
				N3	0.3440	0.9681	0.9352
				N4	0.3655	0.8708	0.4682
				N5	0.7777	0.8059	0.6917
				N6	0.8572	0.2927	0.0644
YN ₈	150	P31c	a=52216,b=5.2216,c=4.4949	Y1	0.6667	0.3333	0.5845
			α=β=90°,γ=106.1348°	N1	0.2630	0.2242	0.9009
				N2	0.7005	0.5905	0.0216
				N3	0.6667	0.3333	0.1030
				N4	0.0000	0.0000	0.8526