Influence of ligand substitution and solvent effect on structures and magnetic properties of dinuclear Dy_2 supramolecular architectures constructed with bis- β -diketonate- Dy_2 building block as metalloligand

Jiamin Tang,^a Sheng Zhang,^{*a} Linzhou Li,^a Linbin Yao,^a Ronghu Zhang,^{*b,c} Bing Yin,^{*d} Jiangwei Zhang^{*e}

AUTHOR ADDRESS

^a School of Science, Hainan University, Haikou 570228, China
^bKey Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
^c Institute of Processing&Design of Agroproducts, Hainan Academy of Agricultural Science, Haikou 571100, China
^d Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127 P. R. China
^eZhang Dayu College of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China

Corresponding authors

- *E-mail: zhangsheng19890501@163.com (S. Zhang)
- *E-mail: zrh0912@ 126.com (R. H. Zhang)
- *E-mail: rayinyin@nwu.edu.cn (B. Yin)
- *E-mail: zjw11@tsinghua.org.cn (J. W. Zhang)

Compound 1	l			
Ato	Atom		Length/Å	
Dy	Dy1 O3		2.330(7)	
Dy1		O4	2.342(8)	
Dy	'1	07	2.321(7)	
Dy	'1	08	2.346(8)	
Dy	'1	O11	2.315(8)	
Dy	'1	O12	2.398(7)	
Dy	'1	O15	2.337(7)	
Dy	'1	O16	2.363(8)	
Dy	2	O1	2.361(8)	
Dy	2	O2	2.329(7)	
Dy	2	05	2.338(8)	
Dy	2	06	2.328(7)	
Dy	2	09	2.352(8)	
Dy	Dy2		2.317(8)	
Dy	r2	O13	2.394(7)	
Dy	2	O14	2.354(7)	
Atom	Atom	Atom	Angle/°	
O3	Dy1	O4	74.3(3)	
O3	Dy1	O8	80.3(3)	
O3	Dy1	O12	147.5(3)	
O3	Dy1	O15	71.3(2)	
O3	Dy1	O16	137.2(2)	
O4	Dy1	O8	73.3(3)	
O4	Dy1	O12	117.2(3)	
O4	Dy1	O16	77.5(3)	
07	Dy1	O3	73.7(3)	
07	Dy1	O4	137.2(3)	
07	Dy1	O8	74.0(3)	
07	Dy1	O12	79.3(3)	
07	Dy1	O15	114.2(3)	
07	Dy1	O16	144.2(3)	
08	Dy1	O12	75.1(3)	
08	Dy1	016	121.0(3)	
011	Dy1	O3	112.6(3)	
011	Dy1	04	148.1(3)	
011	Dy1	07	71.9(3)	

 Table S1 Bond lengths and bond angles for 1-6.

011	Dy1	08	137.6(3)
011	Dy1	012	74.6(3)
011	Dy1	015	73.0(3)
011	Dy1	O16	77.8(3)
O15	Dy1	O4	80.8(3)
O15	Dy1	08	145.7(3)
O15	Dy1	012	138.0(3)
015	Dy1	O16	73.0(3)
O16	Dy1	O12	74.7(3)
01	Dy2	O13	74.2(3)
O2	Dy2	01	73.5(3)
O2	Dy2	05	137.5(3)
O2	Dy2	09	147.0(3)
O2	Dy2	O13	81.3(3)
O2	Dy2	O14	72.1(3)
05	Dy2	01	75.9(3)
05	Dy2	09	74.8(3)
05	Dy2	O13	117.5(3)
05	Dy2	O14	146.9(3)
06	Dy2	01	80.1(3)
06	Dy2	02	72.6(3)
06	Dy2	05	73.7(3)
06	Dy2	09	136.4(3)
O6	Dy2	O13	147.5(3)
06	Dy2	O14	113.9(3)
09	Dy2	01	119.8(3)
09	Dy2	O13	74.8(3)
09	Dy2	O14	79.6(3)
O10	Dy2	01	148.4(3)
O10	Dy2	02	111.1(3)
O10	Dy2	05	81.7(3)
O10	Dy2	06	72.3(3)
O10	Dy2	09	74.1(3)
O10	Dy2	O13	136.9(3)
O10	Dy2	O14	71.2(3)
O14	Dy2	01	136.1(3)
O14	Dy2	O13	74.4(3)
Compound	d 2		

Atom		Atom		Length/Å
Dy1	yl N1		N1	2.533(8)
Dy1		N2		2.551(10)
Dy1			01	2.321(9)
Dy1			O2	2.366(7)
Dy1			O31	2.311(7)
Dy1			O41	2.327(8)
Dy1			O5	2.315(9)
Dy1			O6	2.362(7)
¹ -X,-Y,+Z				
Atom	A	tom	Atom	Angle/°
N1	Ι	Dy1	N2	64.9(4)
01	Ι	Dy1	N1	69.9(5)
01	Ι	Dy1	N2	105.0(3)
01	Ι	Dy1	O2	73.7(3)
01	Ι	Dy1	O41	75.6(3)
01	Ι	Dy1	06	154.1(3)
O2	Ι	Dy1	N1	113.8(3)
O2	Ι	Dy1	N2	74.2(3)
O31	Ι	Dy1	N1	146.7(4)
O31	Ι	Dy1	N2	144.3(3)
O31	Ι	Dy1	01	83.3(3)
O31	Ι	Dy1	O2	75.2(2)
O31	Ι	Dy1	O41	73.4(3)
O31	Ι	Dy1	05	121.7(3)
O31	Ι	Dy1	06	79.5(3)
O41	Ι	Dy1	N1	80.7(3)
O41	Ι	Dy1	N2	142.2(3)
O41	Ι	Dy1	02	138.0(3)
O41	Ι	Dy1	06	117.1(3)
05	Ι	Dy1	N1	69.8(5)
05	Ι	Dy1	N2	77.7(3)
05	Ι	Dy1	01	133.4(3)
05	Ι	Dy1	02	145.7(3)
05	Ι	Dy1	O41	75.8(3)
05	Ι	Dy1	06	72.4(3)
06	Ι	Dy1	N1	132.1(5)
06	Ι	Dy1	N2	79.2(3)
06	I	Dy1	02	83.2(2)

$ ^{1}-X,-Y,+Z$			
Compound 3	3		
Atom	Atom		Length/Å
Dy1		N1	2.534(6)
Dy1		N2	2.567(7)
Dy1		01	2.308(6)
Dy1		O2	2.315(6)
Dy1		05	2.336(6)
Dy1		O6	2.310(5)
Dy1		09	2.335(6)
Dy1		O10	2.350(6)
Dy2		N3	2.543(8)
Dy2		N4	2.537(7)
Dy2		03	2.361(6)
Dy2		O4	2.328(7)
Dy2		O7	2.303(6)
Dy2		O8	2.298(7)
Dy2	Dy2		2.327(5)
Dy2		O12	2.311(6)
Atom	Atom	Atom	Angle/°
		1 HOIII	
N1	Dy1	N2	63.9(2)
N1 01	Dy1 Dy1	N2 N1	63.9(2) 79.5(2)
N1 01 01	Dy1 Dy1 Dy1	N2 N1 N2	63.9(2) 79.5(2) 136.9(2)
N1 01 01 01	Dy1 Dy1 Dy1 Dy1	N2 N1 N2 O2	63.9(2) 79.5(2) 136.9(2) 73.9(2)
N1 01 01 01 01 01	Dy1 Dy1 Dy1 Dy1 Dy1 Dy1	N2 N1 N2 O2 O5	63.9(2) 79.5(2) 136.9(2) 73.9(2) 77.7(2)
N1 01 01 01 01 01 01 01	Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1	N2 N1 N2 O2 O5 O6	63.9(2) 79.5(2) 136.9(2) 73.9(2) 77.7(2) 142.5(2)
N1 01 01 01 01 01 01 01 01 01 01 01 01 01	Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1	N2 N1 N2 O2 O5 O6 O9	63.9(2) 79.5(2) 136.9(2) 73.9(2) 77.7(2) 142.5(2) 75.3(2)
N1 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01	Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1	N2 N1 N2 O2 O5 O6 O9 O10	63.9(2) 79.5(2) 136.9(2) 73.9(2) 77.7(2) 142.5(2) 75.3(2) 119.5(2)
N1 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02	Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1	N2 N1 N2 O2 O5 O6 O9 O10 N1	63.9(2) 79.5(2) 136.9(2) 73.9(2) 77.7(2) 142.5(2) 75.3(2) 119.5(2) 146.3(2)
N1 01 01 01 01 01 01 01 01 01 02	Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1	N2 N1 N2 O2 O5 O6 O9 O10 N1 N2	63.9(2) 79.5(2) 136.9(2) 73.9(2) 77.7(2) 142.5(2) 75.3(2) 119.5(2) 146.3(2) 148.0(2)
N1 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 02	Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1	N2 N1 N2 O2 O5 O6 O9 O10 N1 N2 O5	63.9(2) 79.5(2) 136.9(2) 73.9(2) 77.7(2) 142.5(2) 75.3(2) 119.5(2) 146.3(2) 148.0(2) 84.2(2)
N1 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02	Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1 Dy1	N2 N1 N2 O2 O5 O6 O9 O10 N1 N2 O5 O6 O9 O10 N1 N2 O5 O6	$\begin{array}{c} 63.9(2) \\ \hline 79.5(2) \\ \hline 136.9(2) \\ \hline 73.9(2) \\ \hline 77.7(2) \\ \hline 142.5(2) \\ \hline 75.3(2) \\ \hline 119.5(2) \\ \hline 146.3(2) \\ \hline 148.0(2) \\ \hline 84.2(2) \\ \hline 116.5(2) \end{array}$
N1 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02 02 02 02 02	Dy1	N2 N1 N2 O2 O5 O6 O9 O10 N1 N2 O5 O6 O9 O10 N1 N2 O5 O10 N1 N2 O5 O9 O10	$\begin{array}{c} 63.9(2) \\ \hline 79.5(2) \\ \hline 136.9(2) \\ \hline 73.9(2) \\ \hline 77.7(2) \\ \hline 142.5(2) \\ \hline 75.3(2) \\ \hline 119.5(2) \\ \hline 146.3(2) \\ \hline 148.0(2) \\ \hline 84.2(2) \\ \hline 116.5(2) \\ \hline 76.37(19) \end{array}$
N1 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 05	Dy1	N2 N1 N2 O2 O5 O6 O9 O10 N1 N2 O5 O6 O9 O10 N1 N2 O5 O9 O10 N1 N2 O5 O9 O10 N1	$\begin{array}{c} 63.9(2) \\ \hline 79.5(2) \\ \hline 136.9(2) \\ \hline 73.9(2) \\ \hline 77.7(2) \\ \hline 142.5(2) \\ \hline 75.3(2) \\ \hline 119.5(2) \\ \hline 146.3(2) \\ \hline 148.0(2) \\ \hline 84.2(2) \\ \hline 116.5(2) \\ \hline 76.37(19) \\ \hline 70.0(2) \end{array}$
N1 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 05 05	Dy1	N2 N1 N2 O2 O5 O6 O9 O10 N1 N2 O5 O6 O9 O10 N1 N2 O5 O9 O10 N1 N2 O5 O9 O10 N1 N2	$\begin{array}{c} 63.9(2) \\ \hline 79.5(2) \\ \hline 136.9(2) \\ \hline 73.9(2) \\ \hline 77.7(2) \\ \hline 142.5(2) \\ \hline 75.3(2) \\ \hline 119.5(2) \\ \hline 146.3(2) \\ \hline 148.0(2) \\ \hline 84.2(2) \\ \hline 116.5(2) \\ \hline 76.37(19) \\ \hline 70.0(2) \\ \hline 107.9(2) \end{array}$
N1 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 05 05 05	Dy1	N2 N1 N2 O2 O5 O6 O9 O10 N1 N2 O5 O6 O9 O10 N1 N2 O5 O9 O10 N1 N2 O10 N1 N2 O10	$\begin{array}{c} 63.9(2) \\ \hline 79.5(2) \\ \hline 136.9(2) \\ \hline 73.9(2) \\ \hline 77.7(2) \\ \hline 142.5(2) \\ \hline 75.3(2) \\ \hline 119.5(2) \\ \hline 146.3(2) \\ \hline 148.0(2) \\ \hline 84.2(2) \\ \hline 116.5(2) \\ \hline 76.37(19) \\ \hline 70.0(2) \\ \hline 107.9(2) \\ \hline 148.04(19) \end{array}$
N1 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02 05 05 05 06	Dy1 Dy1	N2 N1 N2 O2 O5 O6 O9 O10 N1 N2 O5 O6 O9 O10 N1 N2 O5 O9 O10 N1 N2 O10 N1 N2 O10 N1 N2 O10 N1	$\begin{array}{c} 63.9(2) \\ \hline 79.5(2) \\ \hline 136.9(2) \\ \hline 73.9(2) \\ \hline 77.7(2) \\ \hline 142.5(2) \\ \hline 75.3(2) \\ \hline 119.5(2) \\ \hline 146.3(2) \\ \hline 148.0(2) \\ \hline 84.2(2) \\ \hline 116.5(2) \\ \hline 76.37(19) \\ \hline 70.0(2) \\ \hline 107.9(2) \\ \hline 148.04(19) \\ \hline 109.6(2) \end{array}$

06	Dy1	O2	81.26(19)
06	Dy1	05	72.1(2)
06	Dy1	09	141.9(2)
06	Dy1	O10	79.93(19)
09	Dy1	N1	75.0(2)
09	Dy1	N2	73.9(2)
09	Dy1	05	139.0(2)
09	Dy1	O10	72.9(2)
O10	Dy1	N1	136.0(2)
O10	Dy1	N2	78.7(2)
N4	Dy2	N3	63.0(3)
03	Dy2	N3	128.0(2)
03	Dy2	N4	77.0(2)
04	Dy2	N3	70.8(3)
04	Dy2	N4	82.2(2)
04	Dy2	03	72.1(2)
07	Dy2	N3	113.2(3)
07	Dy2	N4	72.7(2)
07	Dy2	03	82.30(19)
07	Dy2	04	147.5(2)
07	Dy2	011	77.2(2)
07	Dy2	O12	137.1(2)
08	Dy2	N3	73.0(3)
08	Dy2	N4	104.2(2)
08	Dy2	03	152.9(2)
08	Dy2	04	135.0(2)
08	Dy2	07	72.6(2)
08	Dy2	011	87.1(2)
08	Dy2	O12	75.0(2)
011	Dy2	N3	152.5(2)
011	Dy2	N4	142.6(2)
011	Dy2	03	77.42(19)
011	Dy2	04	114.8(2)
012	Dy2	N3	82.7(3)
012	Dy2	N4	143.5(2)
012	Dy2	03	120.3(2)
012	Dy2	04	74.6(2)
012	Dy2	011	73.7(2)

Compound 4	4			
Atom	A	tom		Length/Å
Dy1	1	N1		2.583(4)
Dy1	1	N2		2.582(4)
Dy1	(D1		2.348(4)
Dy1	(02		2.333(3)
Dy1	C) 3 ¹		2.308(3)
Dy1	C) 4 ¹		2.316(4)
Dy1	(05		2.344(3)
Dy1	(06		2.285(3)
¹ -X,+Y,1/2+	Z			
Atom	Atom	Ato	m	Angle/°
N2	Dy1	N1		63.03(12)
01	Dy1	N1		70.77(14)
01	Dy1	N2		94.40(14)
02	Dy1	N1		117.26(13)
02	Dy1	N2		72.37(11)
02	Dy1	01		71.22(12)
02	Dy1	05		77.15(11)
O3 ¹	Dy1	N1		127.24(13)
O3 ¹	Dy1	N2		77.38(13)
O3 ¹	Dy1	01		149.36(11)
O3 ¹	Dy1	02		78.18(11)
O3 ¹	Dy1	O41		71.78(12)
O3 ¹	Dy1	05		76.72(11)
O4 ¹	Dy1	N1		69.21(14)
O4 ¹	Dy1	N2		81.47(13)
O4 ¹	Dy1	01		136.86(12)
O4 ¹	Dy1	02		143.71(13)
O4 ¹	Dy1	05		114.05(13)
05	Dy1	N1		152.65(12)
05	Dy1	N2		143.26(11)
05	Dy1	01		94.76(13)
O6	Dy1	N1		80.29(12)

06	Dy1	N2		143.23(12)		
O6	Dy1	y1 O1		74.75(14)		
O6	Dy1 O2			132.30(13)		
O6	Dy1	O31		128.31(13)		
O6	Dy1	O41		83.26(14)		
O6	Dy1	O5		73.41(11)		
1-X,+Y,1/2+	Z	·				
Compound 4	4a					
Atom		Atom		Length/Å		
Dy1		N1		2.565(7)		
Dy1		N2		2.572(7)		
Dy1		01		2.283(5)		
Dy1		O2		2.331(4)		
Dy1		05		2.325(7)		
Dy1		O6		2.304(6)		
Dy1		09		2.328(5)		
Dy1		O10		2.343(5)		
Dy2		N5		2.556(7)		
Dy2		N6		2.502(7)		
Dy2		03		2.336(6)		
Dy2		O4		2.266(6)		
Dy2		O7		2.294(6)		
Dy2		O8		2.347(9)		
Dy2		011		2.277(7)		
Dy2		O12		2.388(8)		
Atom	Atom	Atom		Angle/°		
N1	Dy1	N2		62.8(2)		
01	Dy1	N1		83.1(2)		
01	Dy1	N2		145.33(19)		
01	Dy1	02		73.75(18)		
01	Dy1	05		73.8(2)		
01	Dy1	06		133.11(19)		
01	Dy1	09		81.57(19)		
01	Dy1	O10		122.23(19)		
O2	Dy1	N1		153.3(2)		
02	Dy1	N2		140.8(2)		
O2	Dy1	O10		78.86(18)		
05	Dy1	N1		71.0(2)		
05	Dy1	N2		99.0(2)		

05	Dev1	02	$90(\ell(2))$
05	Dy1	02	<u> </u>
05	Dy1	09	132.4(2)
05	Dyl		155.4(2)
06	Dyl	NI	113.9(2)
06	Dyl	N2	/1.6(2)
06	Dyl	02	75.07(19)
06	Dyl	05	71.84(18)
06	Dy1	09	145.21(19)
06	Dy1	O10	84.2(2)
09	Dy1	N1	66.0(2)
09	Dy1	N2	79.1(2)
09	Dy1	O2	121.80(18)
09	Dy1	O10	71.4(2)
O10	Dy1	N1	125.9(2)
O10	Dy1	N2	77.8(2)
N6	Dy2	N5	64.2(2)
03	Dy2	N5	138.6(2)
O3	Dy2	N6	151.0(2)
03	Dy2	08	122.8(3)
03	Dy2	012	81.7(2)
04	Dy2	N5	146.8(2)
04	Dy2	N6	88.2(2)
04	Dy2	03	74.0(2)
04	Dy2	07	111.3(3)
04	Dy2	08	75.1(3)
04	Dy2	011	139.9(3)
04	Dy2	012	76.4(3)
07	Dy2	N5	79.2(2)
07	Dy2	N6	132.8(2)
07	Dy2	03	75.9(2)
07	Dy2	08	72.4(2)
07	Dy2	O12	152.7(2)
08	Dy2	N5	78.8(3)
08	Dy2	N6	72.1(3)
08	Dy2	012	134.1(3)
011	Dy2	N5	68.9(3)
011	Dy2	N6	104.1(3)
011	Dv2	03	77.8(2)
011	Dy2	07	88.2(2)

011	Dy2	08	144.9(3)
011	Dy2	012	71.8(3)
O12	Dy2	N5	109.2(3)
O12	Dy2 N6		71.8(3)
Compound	5		
Atom	A	tom	Length/Å
Dy1		N1	2.541(3)
Dy1		N2	2.528(3)
Dy1		01	2.348(2)
Dy1		O2	2.337(2)
Dy1		O31	2.300(2)
Dy1		O41	2.334(2)
Dy1		05	2.316(2)
Dy1		O6	2.352(2)
¹ -X,+Y,1/2+Z	Z	·	
Atom	Atom	Atom	Angle/°
N2	Dy1	N1	63.64(8)
01	Dy1	N1	70.90(9)
01	Dy1	N2	107.85(9)
01	Dy1	06	149.04(8)
O2	Dy1	N1	110.75(8)
02	Dy1	N2	74.88(9)
02	Dy1	01	72.75(8)
02	Dy1	06	81.76(7)
O31	Dy1	N1	146.56(8)
O31	Dy1	N2	147.24(8)
O31	Dy1	01	82.79(10)
O31	Dy1	O2	79.26(9)
O31	Dy1	O41	72.95(8)
O31	Dy1	05	118.01(9)
O31	Dy1	06	75.33(8)
O41	Dy1	N1	80.26(8)
O41	Dy1	N2	139.36(8)
O41	Dy1	01	74.62(9)
O4 ¹	Dy1	02	139.21(8)
O4 ¹	Dy1	06	118.00(8)
05	Dy1	N1	73.52(8)
05	Dy1	N2	75.38(8)
05	Dy1	01	137.43(8)

05	Dy	1	02	143.44(8)	
05	Dy	1	O41	77.04(8)	
05	Dy	1	06	73.15(7)	
06	Dy	1	N1	136.43(8)	
06	Dy	1	N2	81.31(8)	
¹ -X,+Y,1/2+	Z		•		
Compound	6				
Atom		A	tom	Length/Å	
Dy1			N1	2.538(6)	
Dy1			N2	2.547(5)	
Dy1			01	2.340(5)	
Dy1			O2	2.385(4)	
Dy1			O5	2.290(5)	
Dy1			O6	2.305(4)	
Dy1			O9	2.345(5)	
Dy1		(D10	2.315(4)	
Dy2			N3	2.534(5)	
Dy2		N4		2.523(6)	
Dy2		O3		2.298(5)	
Dy2		O4		2.291(5)	
Dy2	07		O7	2.349(4)	
Dy2			O8	2.342(6)	
Dy2		(D11	2.338(5)	
Dy2		(D12	2.309(6)	
Atom	Ato	m	Atom	Angle/°	
N1	Dy	1	N2	63.68(19)	
01	Dy	1	N1	71.20(19)	
01	Dy	1	N2	114.18(19)	
01	Dy	1	02	72.79(17)	
01	Dy	1	09	131.49(18)	
O2	Dy	1	N1	104.13(19)	
O2	Dy	1	N2	74.73(15)	
05	Dy	1	N1	88.3(2)	
05	Dy	1	N2	141.89(17)	
05	Dy	1	01	76.3(2)	
05	Dy	1	O2	140.51(16)	
05	Dy	1	O6	73.56(16)	
05	Dy	1	09	72.60(18)	
05	Dy	1	O10	109.43(18)	

06	Dy1	N1	150.40(18)
06	Dy1	N2	142.03(15)
06	Dy1	01	81.71(18)
06	Dy1	O2	78.13(15)
06	Dy1	09	122.26(18)
06	Dy1	O10	76.08(16)
09	Dy1	N1	71.6(2)
09	Dy1	N2	74.16(17)
09	Dy1	02	146.87(15)
O10	Dy1	N1	132.94(17)
O10	Dy1	N2	77.57(16)
O10	Dy1	01	154.01(16)
O10	Dy1	O2	89.41(15)
O10	Dy1	09	73.02(16)
N4	Dy2	N3	63.35(18)
03	Dy2	N3	138.71(16)
03	Dy2	N4	157.16(18)
03	Dy2	07	75.73(15)
03	Dy2	08	92.31(19)
03	Dy2	011	78.19(17)
03	Dy2	O12	108.9(2)
04	Dy2	N3	147.98(18)
04	Dy2	N4	85.22(19)
04	Dy2	03	73.25(17)
04	Dy2	07	130.8(2)
04	Dy2	08	72.5(2)
04	Dy2	011	122.1(2)
04	Dy2	O12	71.1(3)
07	Dy2	N3	72.71(16)
07	Dy2	N4	114.95(17)
08	Dy2	N3	102.15(19)
08	Dy2	N4	73.6(2)
08	Dy2	07	71.63(16)
011	Dy2	N3	74.17(17)
011	Dy2	N4	120.98(19)
011	Dy2	07	86.81(15)
011	Dy2	08	158.08(17)
012	Dy2	N3	91.2(2)
012	Dy2	N4	69.8(2)

O12	Dy2	O7	156.7(2)
O12	Dy2	08	129.6(2)
012	Dy2	011	72.33(19)

 Table S2 The distances and angles between Dy(III) ions.

	The intramolecular distances	The intermolecular distances	The angles of
	between Dy(III) ions, Dy…Dy (Å)	between Dy(III) ions, Dy…Dy (Å)	Dy-L-Dy (°)
1	7.5495(11)	10.7388(12)/20.0870(12)	79.629(9)
2	8.1410(6)	16.6783(14)	86.191(7)
3	8.0983(11)	10.0834(10)/13.9362(14)	86.045(11)
4	8.1673(6)	11.2574(8)/14.3113(6)	86.167(6)
4 a	7.9012(8)	11.8914(8)/11.7990(10)/11.8914 (1 0)	83.876(8)
5	8.0712(11)	9.6058(6)/13.0524(11)	84.543(4)
6	7.9973(7)	10.5124(7)/17.3209(7)	84.072(6)

Table S3 Dy^{III} ion geometry analysis by SHAPE 2.1 software.

Configuration		1	2		
Configuration	Dy1	Dy2	Dy1	Dy1A	
Octagon (D_{8h})	28.079	28.660	29.750	29.750	
Heptagonal pyramid (C_{7v})	23.666	23.925	22.935	22.935	
Hexagonal bipyramid (D _{6h})	15.754	15.549	14.544	14.544	
Cube $(O_{\rm h})$	8.465	7.896	8.106	8.106	
Square antiprism (D_{4d})	0.278	0.362	0.616	0.616	
Triangular dodecahedron (D_{2d})	2.197	1.907	2.147	2.147	
Johnson gyrobifastigium J26 (D _{2d})	15.786	16.140	15.172	15.172	
Johnson elongated triangular bipyramid J14 (D_{3h})	28.640	29.011	28.185	28.185	
Biaugmented trigonal prism J50 (C_{2v})	2.856	2.814	2.600	2.600	
Biaugmented trigonal prism (C_{2v})	2.042	2.032	2.038	2.038	
Snub diphenoid J84 (D_{2d})	5.346	5.062	5.224	5.224	
Triakis tetrahedron (T_d)	9.275	8.767	8.778	8.778	
Elongated trigonal bipyramid (D_{3h})	23.759	23.948	23.747	23.747	
Configuration	3		4		
Configuration	Dy1	Dy2	Dy1	Dy1A	
Octagon (D_{8h})	30.249	30.868	31.239	31.239	
Heptagonal pyramid (C_{7v})	22.179	23.142	22.297	22.297	
Hexagonal bipyramid (D _{6h})	16.485	14.012	14.741	14.741	
Cube $(O_{\rm h})$	9.943	7.133	7.825	7.825	
Square antiprism (D_{4d})	0.413	0.919	1.695	1.695	
Triangular dodecahedron (D_{2d})	2.424	1.455	0.827	0.827	
Johnson gyrobifastigium J26 (D _{2d})	16.543	15.746	15.366	15.366	

Johnson elongated triangular bipyramid J14 (D_{3h})	27.856	28.371	27.036	27.036
Biaugmented trigonal prism J50 (C_{2v})	3.067	2.936	2.543	2.543
Biaugmented trigonal prism (C_{2v})	2.397	2.286	1.859	1.859
Snub diphenoid J84 (D_{2d})	5.423	4.831	4.026	4.026
Triakis tetrahedron (T_d)	10.746	7.916	8.680	8.680
Elongated trigonal bipyramid (D_{3h})	23.993	23.939	23.702	23.702

Configuration	4	a	5		
Configuration	Dy1	Dy2	Dy1	Dy1A	
Octagon (D_{8h})	30.494	31.924	30.096	30.096	
Heptagonal pyramid (C_{7v})	22.433	22.979	21.717	21.717	
Hexagonal bipyramid (D_{6h})	13.495	14.085	16.114	16.114	
Cube $(O_{\rm h})$	6.744	7.199	9.274	9.274	
Square antiprism (D_{4d})	1.338	0.996	0.438	0.438	
Triangular dodecahedron (D_{2d})	1.637	1.409	2.386	2.386	
Johnson gyrobifastigium J26 (D_{2d})	14.647	15.857	16.958	16.958	
Johnson elongated triangular bipyramid J14 (D_{3h})	26.327	28.500	28.457	28.457	
Biaugmented trigonal prism J50 (C_{2v})	2.827	2.977	2.922	2.922	
Biaugmented trigonal prism (C_{2v})	2.031	2.592	2.362	2.362	
Snub diphenoid J84 (D_{2d})	5.189	4.355	5.333	5.333	
Triakis tetrahedron (T_d)	7.547	7.907	9.954	9.954	
Elongated trigonal bipyramid (D_{3h})	22.800	24.353	24.127	24.127	

Configuration	6		
Configuration	Dy1	Dy2	
Octagon (D_{8h})	31.380	32.895	
Heptagonal pyramid (C_{7v})	22.712	23.471	
Hexagonal bipyramid (D_{6h})	14.702	11.680	
Cube $(O_{\rm h})$	7.569	4.771	
Square antiprism (D_{4d})	0.993	2.231	
Triangular dodecahedron (D_{2d})	1.085	1.099	
Johnson gyrobifastigium J26 (D _{2d})	16.482	15.651	
Johnson elongated triangular bipyramid J14 (D_{3h})	28.131	27.597	
Biaugmented trigonal prism J50 (C_{2v})	2.961	4.041	
Biaugmented trigonal prism (C_{2v})	2.296	3.499	
Snub diphenoid J84 (D _{2d})	4.280	5.019	
Triakis tetrahedron (T_d)	8.318	5.626	
Elongated trigonal bipyramid (D_{3h})	23.888	24.396	

Figure S1. The intermolecular distances of Dy^{III} units in 1-6 (a-g).

(g)

Figure S2. The asymmetric units of 1-6 (a-g) with the thermal ellipsoids for non-hydrogen atoms.

Figure S3. Local coordination geometries of the Dy ^{III} ions for 1-6 (a-g).

Figure S4. PXRD curves of 1-6 (a-g).

Figure S5. Temperature dependence of $\chi_M T$ measured at 1 KOe for 1-6 (a-g), respectively.

Figure S6. The graphical representations of $\chi_M T$ vs logT at 1 KOe for 1-6 (a-g), respectively.

Figure S7. M(H) plots for 1-6 (a-g), respectively.

Figure S8. Magnetic hysteresis loops for **2** (a, b) at 2.0 K and 5.0 K. Magnetic hysteresis loops for **3** (c, d) at 2.0 K and 5.0 K.

Figure S9. Temperature dependence of the in-phase (χ' , a) and out-of-phase (χ'' , b) ac susceptibility signals under 0 Oe dc field for **1**.

Figure S10. Temperature dependence of the in-phase (χ') ac susceptibility signals under 0 Oe dc field for 2.

Figure S11. Temperature dependence of the in-phase (χ') ac susceptibility signals under 0 Oe dc field for 3.

Figure S12. Temperature dependence of the in-phase (χ' , a) and out-of-phase (χ'' , b) ac susceptibility signals under 0 Oe dc field for 4.

Figure S13. Temperature dependence of the in-phase (χ' , a) and out-of-phase (χ'' , b) ac susceptibility signals under 0 Oe dc field for 4a.

Figure S14. Temperature dependence of the in-phase (χ' , a) and out-of-phase (χ'' , b) ac susceptibility signals under 0 Oe dc field for **5**.

Figure S15. Temperature dependence of the in-phase (χ' , a) and out-of-phase (χ'' , b) ac susceptibility signals under 0 Oe dc field for **6**.

Figure S16. Plots of the frequency-dependent in-phase (χ' , a) and out-of-phase (χ'' , b) ac susceptibility at 3.0 K for 1 under 0 Oe dc field.

Figure S17. Plots of the frequency-dependent in-phase (χ') ac susceptibility from 2.0 K to 17.0 K for **2** under 0 Oe dc field.

Figure S18. Plots of the frequency-dependent in-phase (χ') ac susceptibility from 2.0 K to 16.0 K for **3** under 0 Oe dc field.

Figure S19. Plots of the frequency-dependent in-phase (χ' , a) and out-of-phase (χ'' , b) ac susceptibility from 2.0 K to 8.0 K for 4 under 0 Oe dc field.

Figure S20. Plots of the frequency-dependent in-phase (χ' , a) and out-of-phase (χ'' , b) ac susceptibility from 2.0 K to 8.0 K for **4a** under 0 Oe dc field.

Figure S21. Plots of the frequency-dependent in-phase (χ' , a) and out-of-phase (χ'' , b) ac susceptibility from 2.0 K to 8.0 K for **5** under 0 Oe dc field.

Figure S22. Plots of the frequency-dependent in-phase (χ' , a) and out-of-phase (χ'' , b) ac susceptibility from 2.0 K to 8.0 K for **6** under 0 Oe dc field.

Figure S23. Cole–Cole plots for **4** from 2.0 K to 35.0 K using the ac susceptibility data under a zero applied dc field.

Figure S24. Cole–Cole plots for **4a** from 2.0 K to 8.0 K using the ac susceptibility data under a zero applied dc field.

Figure S25. Cole–Cole plots for **5** from 2.0 K to 8.0 K using the ac susceptibility data under a zero applied dc field.

Figure S26. Cole–Cole plots for **6** from 2.0 K to 8.0 K using the ac susceptibility data under a zero applied dc field.

Figure S27. Cole–Cole diagrams with red solid lines as Debye fits for 2.

Figure S28. Cole–Cole diagrams with red solid lines as Debye fits for 3.

Figure S29. Fitting of frequency dependence of the relaxation time under 0 Oe dc field for **2** (the red line represents the simulation from the Orbach process (a). The red line represents the simulation from the Orbach process, the Raman process, and the QTM process (b)).

Figure S30. Fitting of frequency dependence of the relaxation time under 0 Oe dc

field for **3** (the red line represents the simulation from the Orbach process (a). The red line represents the simulation from the Orbach process, the Raman process, and the QTM process (b)).

4. Relaxation fitting parameters of 2 and 3

The magnetic susceptibility data of **2** and **3** under a zero dc field were described by the modified Debye functions:

$$\chi'(\omega) = \chi_{\rm S} + (\chi_{\rm T} - \chi_{\rm S}) \frac{1 + (\omega\tau)^{1-\alpha} \sin(\frac{\pi}{2}\alpha)}{1 + 2(\omega\tau)^{1-\alpha} \sin(\frac{\pi}{2}\alpha) + (\omega\tau)^{(2-2\alpha)}}$$

$$\chi''(\omega) = (\chi_{\rm T} - \chi_{\rm S}) \frac{(\omega\tau)^{1-\alpha} \cos(\frac{\pi}{2}\alpha)}{1 + 2(\omega\tau)^{1-\alpha} \sin(\frac{\pi}{2}\alpha) + (\omega\tau)^{(2-2\alpha)}}$$

$$\chi''_{\omega=\tau^{-1}} = (\chi_{\rm T} - \chi_{\rm S}) \frac{\cos(\frac{\pi}{2}\alpha)}{2 + 2\sin(\frac{\pi}{2}\alpha)} = \frac{1}{2} (\chi_{\rm T} - \chi_{\rm S}) \tan\frac{\pi}{4} (1 - \alpha)$$

Table S4 Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data for **2** under a zero applied dc field.

Т	$\Delta \chi_1 \text{ (cm}^3 \text{mol}^{-1}\text{)}$	$\Delta \chi_2 \text{ (cm}^3 \text{mol}^{-1}\text{)}$	$\tau(s)$	α	Residual
2.0	0.720264E+00	0.651339E+01	0.399029E-03	0.131169E+00	0.831747E-01
3.0	0.565641E+00	0.457546E+01	0.425420E-03	0.123630E+00	0.283793E-01
4.0	0.351179E+00	0.321591E+01	0.352051E-03	0.129200E+00	0.223842E-01
5.0	0.279196E+00	0.256151E+01	0.327433E-03	0.125259E+00	0.148787E-01
6.0	0.233578E+00	0.212681E+01	0.301291E-03	0.117513E+00	0.104716E-01
7.0	0.198718E+00	0.181870E+01	0.271869E-03	0.107300E+00	0.725481E-02
8.0	0.171400E+00	0.158815E+01	0.239727E-03	0.929873E-01	0.501424E-02
8.3	0.163352E+00	0.153005E+01	0.229269E-03	0.884977E-01	0.436559E-02
8.6	0.155149E+00	0.147589E+01	0.218529E-03	0.839370E-01	0.387075E-02
9.0	0.142441E+00	0.140970E+01	0.203494E-03	0.781917E-01	0.311331E-02
9.3	0.132623E+00	0.136393E+01	0.191874E-03	0.740541E-01	0.265255E-02
9.6	0.122698E+00	0.132082E+01	0.180171E-03	0.697443E-01	0.220855E-02
9.9	0.114929E+00	0.128000E+01	0.168851E-03	0.644825E-01	0.189030E-02
10.2	0.102510E+00	0.124219E+01	0.156716E-03	0.609271E-01	0.148668E-02
10.5	0.937629E-01	0.120645E+01	0.145365E-03	0.557031E-01	0.122852E-02
10.8	0.811590E-01	0.117268E+01	0.133506E-03	0.520722E-01	0.979095E-03

11.1	0.686396E-01	0.114024E+01	0.122002E-03	0.476475E-01	0.790583E-03
11.5	0.461175E-01	0.110081E+01	0.106432E-03	0.442918E-01	0.573836E-03
11.8	0.197048E-01	0.106947E+01	0.934018E-04	0.416611E-01	0.451245E-03
12.2	0.824562E-05	0.104010E+01	0.820472E-04	0.369523E-01	0.338787E-03
12.5	0.170333E-04	0.101207E+01	0.735142E-04	0.279024E-01	0.300853E-03
13.0	0.399060E-04	0.973205E+00	0.615987E-04	0.154149E-01	0.283357E-03
13.5	0.184015E-03	0.936956E+00	0.513077E-04	0.659685E-03	0.249133E-03
14.0	0.381467E-15	0.904341E+00	0.414814E-04	0.840393E-03	0.313150E-03
14.5	0.743667E-27	0.873988E+00	0.333437E-04	0.880874E-03	0.406560E-03
15.0	0.342583E-26	0.845579E+00	0.269959E-04	0.362394E-12	0.454920E-03
16.0	0.363326E-26	0.794745E+00	0.182537E-04	0.527102E-12	0.448304E-03
17.0	0.368928E-26	0.749050E+00	0.133781E-04	0.809549E-12	0.477896E-03

Table S5 Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data for 3under a zero applied dc field.

Т	$\Delta \chi_1 \text{ (cm}^3 \text{mol}^{-1}\text{)}$	$\Delta \chi_2 (\mathrm{cm}^3\mathrm{mol}^{-1})$	$\tau(s)$	α	Residual
2.0	0.428704E+00	0.685635E+01	0.184866E-02	0.152917E+00	0.319732E+00
3.0	0.317708E+00	0.526941E+01	0.180804E-02	0.149731E+00	0.183227E+00
4.0	0.228177E+00	0.345440E+01	0.135615E-02	0.144159E+00	0.725343E-01
4.5	0.205991E+00	0.306722E+01	0.124376E-02	0.138392E+00	0.538761E-01
5.0	0.187729E+00	0.275576E+01	0.113343E-02	0.131245E+00	0.399342E-01
5.5	0.172183E+00	0.250103E+01	0.102614E-02	0.123182E+00	0.294102E-01
6.0	0.158557E+00	0.228926E+01	0.922380E-03	0.114730E+00	0.213619E-01
6.5	0.146339E+00	0.210969E+01	0.822705E-03	0.106089E+00	0.153356E-01
6.8	0.139394E+00	0.201479E+01	0.765139E-03	0.101121E+00	0.123048E-01
7.1	0.132676E+00	0.192856E+01	0.710178E-03	0.964143E-01	0.999783E-02
7.4	0.126882E+00	0.184944E+01	0.657647E-03	0.915861E-01	0.812206E-02
7.7	0.121745E+00	0.177622E+01	0.607228E-03	0.867710E-01	0.671546E-02
8.0	0.117198E+00	0.170878E+01	0.559515E-03	0.822556E-01	0.548492E-02
8.3	0.113186E+00	0.164608E+01	0.513930E-03	0.778933E-01	0.450543E-02
8.6	0.109597E+00	0.158813E+01	0.470683E-03	0.739194E-01	0.371441E-02
8.9	0.107141E+00	0.153395E+01	0.429529E-03	0.702284E-01	0.307819E-02
9.2	0.104471E+00	0.148333E+01	0.389850E-03	0.671518E-01	0.251915E-02
9.5	0.103191E+00	0.143659E+01	0.352132E-03	0.645784E-01	0.200025E-02
9.8	0.103037E+00	0.139189E+01	0.315695E-03	0.619033E-01	0.177422E-02
10.1	0.103682E+00	0.135053E+01	0.280730E-03	0.598122E-01	0.147618E-02
10.4	0.105468E+00	0.131166E+01	0.247252E-03	0.585174E-01	0.118864E-02
10.7	0.110808E+00	0.127464E+01	0.215873E-03	0.567659E-01	0.104480E-02
11.0	0.117343E+00	0.123982E+01	0.186464E-03	0.552513E-01	0.856482E-03
11.3	0.127842E+00	0.120662E+01	0.159732E-03	0.532719E-01	0.718128E-03
11.6	0.138174E+00	0.117529E+01	0.135046E-03	0.518116E-01	0.628180E-03
11.9	0.147869E+00	0.114569E+01	0.112838E-03	0.509334E-01	0.479482E-03
12.2	0.156143E+00	0.111745E+01	0.930475E-04	0.502283E-01	0.404931E-03

12.5	0.158213E+00	0.109052E+01	0.754524E-04	0.499730E-01	0.310396E-03
13.0	0.126060E+00	0.104887E+01	0.497286E-04	0.523226E-01	0.185403E-03
13.5	0.215981E-11	0.101022E+01	0.288732E-04	0.541410E-01	0.139207E-03
14.0	0.329664E-11	0.910246E+00	0.970678E-05	0.335225E-15	0.171006E-03
15.0	0.595189E-11	0.856111E+00	0.419926E-05	0.457149E-15	0.312791E-03
16.0	0.595213E-11	0.856111E+00	0.419926E-05	0.685686E-15	0.312791E-03

Theoretical methods and computational details:

Multiconfigurational *ab initio* calculations, including spin-orbit coupling (SOC), were performed on the experimental structures of the complexes here to explore their SMM propertiesy. This type of calculation includes two steps:¹ 1) a set of spin eigenstates, are obtained by the state-averaged (SA) CASSCF method;² 2) the lowlying SOC states, i.e., Kramers doublets (KD) herein, are obtained by state interaction which is the diagonalization of the SOC matrix in the space spanned by the spin eigenstates from the first step. In the CASSCF step, the active space consisted of 9 electrons in 7 orbitals and all the spin eigenstates of 21 sextets were included. Due to the hardware limitation, other highly excited quartets and doublets were not considered. The step of state interaction were performed by the RASSI-SO module ³ with the SOC integrals from the AMFI method.⁴ The ANO-RCC basis sets,⁵⁻⁷ including VTZP for Dy and Lu, VDZ for C and H as well as VDZP for other atoms, were used. All the calculations were carried out with the MOLCAS@UU, a version of MOLCAS 8.010,11 which is freely distributed for academic users. The SINGLE ANISO module^{8,9} developed by Chibotaru and et al, was used to obtain the g-tensors, transition magnetic moments and other parameters characterizing the magnetic anisotropy.

(d)

(e) (f) Figure S31. The *ab initio* magnetic easy axes of the two Dy^{III} of 1 (a), 2 (b), 4 (c), 4a (d), 5 (e) and 6 (f).

Table S6 Calculated energy levels (cm⁻¹), g (g_x, g_y, g_z) tensors of the lowest eight KDs of individual Dy^{III} fragments of complexes **1-6** using CASSCF/RASSI-SO with MOLCAS 8.2.

1-a	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
	4.027E-	4.674E-	3.789E-	1.679E	1.045E	1.082E	1.979E-	1.315E-
g _X	01	01	02	+00	+00	+00	02	04
	4.217E	3.713E	7.729E-	4.312E	6.078E	6.794E	1.118E-	8.580E-
$g_{\rm Y}$	+00	+00	01	+00	+00	+00	01	04
	1.606E	1.552E	1.661E	1.116E	7.204E	1.247E	1.721E	1.994E
gz	+01	+01	+01	+01	+00	+01	+01	+01
~	4.236E	3.742E	7.738E-	4.627E	6.167E	6.879E	1.136E-	8.681E-
g _{XY}	+00	+00	01	+00	+00	+00	01	04
E(KD)	0.000E	1.669E	1.547E	1.631E	1.776E	1.949E	2.512E	6.740E
cm ⁻¹	+00	+01	+02	+02	+02	+02	+02	+02
1-b	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
	1.146E-	1.184E-	1.368E	2.585E	3.123E	3.613E-	5.339E-	1.606E-
gx	01	01	+00	+00	+00	01	02	04
	4.333E-	3.207E-	2.071E	4.570E	5.328E	6.392E-	1.008E	1.313E-
g _Y	01	01	+00	+00	+00	01	+00	03
	1.957E	1.932E	1.678E	1.179E	1.171E	1.747E	1.618E	1.994E
gz	+01	+01	+01	+01	+01	+01	+01	+01
g _{XY}	4.482E-	3.418E-	2.482E	5.250E	6.176E	7.342E-	1.009E	1.323E-

	01	01	+00	+00	+00	01	+00	03
E(KD)	0.000E	3.984E	1.487E	1.693E	1.866E	2.309E	2.537E	6.712E
cm ⁻¹	+00	+01	+02	+02	+02	+02	+02	+02
2-a	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
_	3.349E-	7.197E-	1.028E	7.751E	2.894E-	1.075E	1.546E-	1.151E-
g _X	02	01	+00	+00	01	+00	01	02
	5.822E-	1.465E	1.309E	4.648E	1.758E	1.813E	3.554E-	2.678E-
$g_{\rm Y}$	02	+00	+00	+00	+00	+00	01	02
	1.960E	1.748E	1.150E	8.323E	1.347E	1.571E	1.874E	1.972E
gz	+01	+01	+01	+00	+01	+01	+01	+01
	6.717E-	1.632E	1.664E	9.038E	1.781E	2.107E	3.875E-	2.915E-
g _{XY}	02	+00	+00	+00	+00	+00	01	02
E(KD)	0.000E	8.694E	1.341E	1.606E	2.011E	2.461E	3.207E	4.460E
cm ⁻¹	+00	+01	+02	+02	+02	+02	+02	+02
2-b	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
	3.348E-	7.202E-	1.027E	7.755E	2.906E-	1.073E	1.543E-	1.140E-
g _X	02	01	+00	+00	01	+00	01	02
~	5.823E-	1.465E	1.310E	4.647E	1.758E	1.811E	3.542E-	2.674E-
gy	02	+00	+00	+00	+00	+00	01	02
~	1.959E	1.749E	1.151E	8.323E	1.348E	1.569E	1.873E	1.973E
gz	+01	+01	+01	+00	+01	+01	+01	+01
a	6.717E-	1.633E	1.664E	9.040E	1.781E	2.105E	3.863E-	2.907E-
gxy	02	+00	+00	+00	+00	+00	01	02
E(KD)	0.000E	8.694E	1.341E	1.606E	2.011E	2.461E	3.207E	4.460E
cm ⁻¹	+00	+01	+02	+02	+02	+02	+02	+02
3- a	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
	4.999E-	8.130E-	4.048E	1.964E	3.136E-	1.215E-	2.003E-	4.642E-
SX	03	01	+00	+00	01	01	02	03
σv	1.208E-	1.550E	5.479E	2.297E	9.201E-	1.497E-	8.880E-	9.270E-
SY	02	+00	+00	+00	01	01	02	03
σ7	1.953E	1.540E	1.065E	9.700E	1.340E	1.744E	1.928E	1.984E
52	+01	+01	+01	+00	+01	+01	+01	+01
$\sigma_{\rm VV}$	1.308E-	1.751E	6.812E	3.022E	9.721E-	1.928E-	9.103E-	1.037E-
5.1	02	+00	+00	+00	01	01	02	02
E(KD)	0.000E	1.229E	1.616E	1.897E	2.292E	2.805E	3.422E	4.741E
cm ⁻¹	+00	+02	+02	+02	+02	+02	+02	+02
3-b	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
σ_{v}	1.576E-	1.453E	2.584E	2.073E	2.501E-	9.984E-	1.140E-	2.640E-
	02	+00	+00	+00	01	01	01	02
$\sigma_{\rm V}$	1.994E-	5.405E	6.971E	4.410E	3.089E	1.697E	4.238E-	7.670E-
51	02	+00	+00	+00	+00	+00	01	02
σ ₇	1.956E	1.296E	9.306E	1.034E	1.335E	1.724E	1.889E	1.959E
52	+01	+01	+00	+01	+01	+01	+01	+01

	2.541E-	5.597E	7.434E	4.873E	3.100E	1.968E	4.389E-	8.112E-
g _{XY}	02	+00	+00	+00	+00	+00	01	02
E(KD)	0.000E	1.345E	1.544E	1.852E	2.408E	2.834E	3.648E	4.491E
cm ⁻¹	+00	+02	+02	+02	+02	+02	+02	+02
4-a	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
	1.333E-	8.927E-	1.947E-	2.489E	2.457E	2.080E-	1.572E-	1.911E-
gx	02	01	01	+00	+00	02	01	02
	2.338E-	1.209E	1.474E	3.953E	6.051E	7.566E-	5.334E-	3.897E-
$g_{\rm Y}$	02	+00	+00	+00	+00	01	01	02
	1.935E	1.459E	1.068E	1.498E	1.127E	1.727E	1.834E	1.986E
gz	+01	+01	+01	+01	+01	+01	+01	+01
~	2.691E-	1.503E	1.487E	4.671E	6.531E	7.569E-	5.560E-	4.340E-
gxy	02	+00	+00	+00	+00	01	01	02
E(KD)	0.000E	1.176E	1.620E	1.880E	2.034E	2.865E	3.168E	4.566E
cm ⁻¹	+00	+02	+02	+02	+02	+02	+02	+02
4-b	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
~	1.215E-	8.263E-	3.543E-	2.873E	2.073E	6.248E-	1.595E-	1.878E-
gx	02	01	01	+00	+00	03	01	02
~	2.147E-	1.147E	1.560E	4.179E	5.453E	7.635E-	5.484E-	3.832E-
$g_{\rm Y}$	02	+00	+00	+00	+00	01	01	02
	1.936E	1.467E	1.085E	1.444E	1.150E	1.726E	1.835E	1.985E
gz	+01	+01	+01	+01	+01	+01	+01	+01
~	2.467E-	1.414E	1.599E	5.071E	5.834E	7.635E-	5.711E-	4.267E-
gxy	02	+00	+00	+00	+00	01	01	02
E(KD)	0.000E	1.197E	1.654E	1.944E	2.080E	2.906E	3.209E	4.610E
cm ⁻¹	+00	+02	+02	+02	+02	+02	+02	+02
4a-a	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
~	3.063E-	1.072E	4.353E-	3.775E	3.185E-	9.729E-	2.278E-	2.940E-
gx	02	+00	01	+00	01	01	01	02
~	3.509E-	1.364E	2.235E	4.820E	2.883E	1.222E	4.865E-	7.565E-
gy	02	+00	+00	+00	+00	+00	01	02
a	1.952E	1.581E	1.119E	1.029E	1.243E	1.795E	1.886E	1.973E
gz	+01	+01	+01	+01	+01	+01	+01	+01
a	4.657E-	1.735E	2.277E	6.123E	2.901E	1.562E	5.372E-	8.116E-
gxy	02	+00	+00	+00	+00	+00	01	02
E(KD)	0.000E	1.153E	1.568E	1.855E	2.218E	2.715E	3.573E	4.867E
cm ⁻¹	+00	+02	+02	+02	+02	+02	+02	+02
4a-b	KD ₀	KD_1	KD ₂	KD ₃	KD_4	KD ₅	KD ₆	KD ₇
a	4.323E-	1.093E	4.090E	1.977E-	1.067E	1.101E	1.704E-	8.889E-
gx	02	+00	+00	01	+00	+00	01	02
~	8.943E-	3.217E	5.357E	2.568E	2.544E	3.596E	2.544E-	3.789E-
g _Y	02	+00	+00	+00	+00	+00	01	01
gz	1.944E	1.529E	9.210E	1.223E	1.204E	1.417E	1.820E	1.865E

	+01	+01	+00	+01	+01	+01	+01	+01
g _{XY}	9.934E-	3.398E	6.740E	2.576E	2.759E	3.761E	3.062E-	3.892E-
	02	+00	+00	+00	+00	+00	01	01
E(KD)	0.000E	9.773E	1.391E	1.701E	2.130E	2.465E	4.130E	4.563E
cm ⁻¹	+00	+01	+02	+02	+02	+02	+02	+02
5-a	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
g _x	3.207E-	4.853E-	2.904E	4.486E	2.523E-	2.127E-	2.949E-	5.097E-
	02	01	+00	+00	01	01	02	03
	6.408E-	1.339E	3.326E	5.530E	7.544E-	3.469E-	5.792E-	1.543E-
$g_{\rm Y}$	02	+00	+00	+00	01	01	02	02
-	1.954E	1.777E	1.272E	9.764E	1.439E	1.677E	1.926E	1.975E
gz	+01	+01	+01	+00	+01	+01	+01	+01
~	7.165E-	1.425E	4.415E	7.121E	7.955E-	4.069E-	6.500E-	1.625E-
g _{XY}	02	+00	+00	+00	01	01	02	02
E(KD)	0.000E	8.327E	1.207E	1.523E	1.920E	2.462E	3.138E	4.045E
cm ⁻¹	+00	+01	+02	+02	+02	+02	+02	+02
5-b	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
-	3.203E-	4.851E-	2.902E	4.484E	2.525E-	2.124E-	2.969E-	4.998E-
gx	02	01	+00	+00	01	01	02	03
~	6.410E-	1.340E	3.327E	5.531E	7.542E-	3.462E-	5.824E-	1.542E-
gy	02	+00	+00	+00	01	01	02	02
~	1.953E	1.778E	1.274E	9.765E	1.439E	1.676E	1.925E	1.975E
gz	+01	+01	+01	+00	+01	+01	+01	+01
~	7.165E-	1.425E	4.414E	7.121E	7.954E-	4.062E-	6.537E-	1.621E-
gxy	02	+00	+00	+00	01	01	02	02
E(KD)	0.000E	8.326E	1.207E	1.523E	1.920E	2.462E	3.138E	4.045E
cm ⁻¹	+00	+01	+02	+02	+02	+02	+02	+02
6-a	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
(7	4.753E-	4.829E-	3.385E	1.506E	1.806E-	9.011E-	1.731E-	8.953E-
gx	03	01	+00	+00	01	01	01	02
σ	4.506E-	1.865E	4.847E	5.175E	1.824E	2.065E	4.928E-	6.331E-
gy	02	+00	+00	+00	+00	+00	01	01
σ _π	1.944E	1.711E	9.652E	1.124E	1.390E	1.585E	1.762E	1.807E
SZ	+01	+01	+00	+01	+01	+01	+01	+01
g _{XY}	4.531E-	1.926E	5.912E	5.389E	1.833E	2.253E	5.223E-	6.394E-
	02	+00	+00	+00	+00	+00	01	01
E(KD)	0.000E	7.281E	1.203E	1.483E	1.887E	2.320E	3.861E	4.185E
cm ⁻¹	+00	+01	+02	+02	+02	+02	+02	+02
6-b	KD ₀	KD ₁	KD ₂	KD ₃	KD ₄	KD ₅	KD ₆	KD ₇
g _X	2.880E-	9.654E-	9.289E-	3.698E	1.236E	5.092E-	7.397E-	3.549E-
	02	01	01	+00	+00	01	01	01
o	5.044E-	2.624E	4.400E	5.429E	2.667E	8.448E-	5.763E	6.468E
g _Y	02	+00	+00	+00	+00	01	+00	+00

	1.956E	1.710E	1.202E	1.011E	1.495E	1.814E	1.273E	1.332E
gz	+01	+01	+01	+01	+01	+01	+01	+01
~	5.808E-	2.796E	4.497E	6.569E	2.940E	9.864E-	5.810E	6.477E
g _{XY}	02	+00	+00	+00	+00	01	+00	+00
E(KD)	0.000E	1.167E	1.491E	1.822E	2.454E	3.123E	4.257E	4.461E
cm ⁻¹	+00	+02	+02	+02	+02	+02	+02	+02

Table S7 Angle θ with Respect to the *ab initio* Magnetic Easy Axis (in °), Distance R to Central Dy³⁺ (in Å), Atomic Charge Q (in e) of the Atoms in the First Sphere of **1**.

1-Dy ^{III} -a	θ	R	Q	1-Dy ^{III} -b	θ	R	Q
0	34.3	2.347	-0.691	0	33.9	2.361	-0.682
0	35.4	2.362	-0.679	0	34.8	2.352	-0.700
0	37.7	2.337	-0.665	0	39.3	2.317	-0.672
0	39.7	2.321	-0.692	0	39.6	2.329	-0.665
0	72.1	2.315	-0.689	0	72.4	2.355	-0.657
0	73.5	2.399	-0.666	0	73.0	2.327	-0.684
0	74.2	2.330	-0.703	0	74.6	2.338	-0.671
0	76.1	2.342	-0.653	0	74.6	2.393	-0.682

Table S8 Angle θ with Respect to the *ab initio* Magnetic Easy Axis (in °), Distance R to Central Dy³⁺ (in Å), Atomic Charge Q (in e) of the Atoms in the First Sphere of **3**.

3-Dy ^{III} -a	θ	R	Q	3-Dy ^{III} -b	θ	R	Q
0	17.4	2.333	-0.716	0	23.1	2.332	-0.669
0	29.7	2.335	-0.704	0	24.6	2.298	-0.696
0	42.5	2.311	-0.693	0	47.9	2.303	-0.695
0	59.9	2.352	-0.688	0	50.7	2.363	-0.714
0	75.7	2.307	-0.711	0	81.9	2.329	-0.699
0	79.4	2.316	-0.690	0	83.2	2.313	-0.699
Ν	83.6	2.569	-0.352	0	86.3	2.539	-0.345
Ν	87.6	2.534	-0.345	0	87.1	2.543	-0.346

References:

(1) J. Luzon, R. Sessoli, Dalton Trans., 2012, 41, 13556-13567.

(2) B. O. Roos, P. R. Taylor, P. E. M. Siegbahn, Chem. Phys., 1980, 48, 157-173.

(3) P. Malmqvist, B. O. Roos, B. Schimmelpfennig, Chem. Phys. Lett., 2002, 357, 230-240.

(4) B. A. Hess, C. M. Marian, U.Wahlgren, O. Gropen, Chem. Phys. Lett., 1996, 251, 365–371.

(5) B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, P. Widmark, *J. Phys. Chem. A.*, 2004, **108**, 2851–2858.

(6) B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, P. Widmark, J. Phys. Chem. A.,

2005, 109, 6575–6579.

(7) B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, P. Widmark, A. C. Borin, J. Phys. Chem. A., 2008, **112**, 11431–11435.

(8) L. F. Chibotaru, L. Ungur, J. Chem. Phys., 2012, 137, 064112.

(9) L. F. Chibotaru, Adv. Chem. Phys., 2013, 153, 397-519.

(10) F. Aquilante, L. De Vico, N. Ferre, G. Ghigo, P. A. Malmqvist, P. Neogrady, T.

B. Pedersen, M. Pitonak, M. Reiher, B. O. Roos, L. Serrano-Andres, M. Urban, V. Veryazov, R. Lindh, *Molcas 7: The next generation*. 2010, **31**, 224–247.

(11) F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. D.

Vico, I. F. Galvan, N. Ferre, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C.

E. Hoyer, G. L. Manni, H. Lischka, D. Ma, P. A. Malmqvist, T. Muller, A. Nenov,

M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta,

I. Schapiro, J. Segarra-Marti, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S.

Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, J. Comput. Chem., 2016, 37, 506-541.