Supplementary Materials

Di- and Trinuclear Sandwich Complexes of a Cross-conjugated Fulvene

Eiji Kudo, Yuki Oba, Koji Yamamoto, and Tetsuro Murahashi

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.

Table of Contents

Experimental Section	S3-14
General Consideration	S3
Synthesis of [Pd2(6,6-dimethylfulvene)2(CH3CN)2][BF4]2(2a)	S3
Synthesis of [Pd ₂ (6,6-diphenylfulvene) ₂ (CH ₃ CN) ₂][BF ₄] ₂ (2b)	S 6
Synthesis of Pd2(6,6-diphenylfulvene)2Cl2 (2b-Cl)	S9
Synthesis of $[Pd_3(6, 6-dimethylfulvene)_2(CH_3CN)_3][BF_4]_2(3a)$	S12
Synthesis of [Pd ₃ (6,6-diphenylfulvene) ₂ (CH ₃ CN) ₂][BF ₄] ₂ (3b)	S15
Synthesis of $[Pd_2(CH_3CN)_2(\mu$ -6,6-diphenylfulvene)	
$(\mu_3-6, 6-diphenylfulvene)Pd(CH_3CN)_2][BF_4]_2$ (4)	S18
Computational Details	S21-31
X-ray Crystallographic analyses	S32-39
References	S40-41

Experimental Section

General Consideration. All manipulations were conducted under a nitrogen atmosphere using standard Schlenk or dry-box technique. ¹H and ¹³C{¹H} NMR spectra were recorded on 400 MHz instruments (JEOL JNM-ECZ400S). The chemical shifts were referenced to the residual resonances of deuterated solvents. Elemental analyses were performed on a PerkinElmer 2400II series CHN analyzer. X-ray crystal data were collected by Rigaku RAXIS-RAPID imaging plate diffractometer. ESI-MS spectra were recorded on Bruker micrOTOF ESI-TOF. Unless specified, all reagents were purchased from commercial suppliers and used without purification. CH_2Cl_2 , CH_3NO_2 , CH_3CN , benzene, toluene, *n*-hexane, diethyl ether, CD_3NO_2 , and $CDCl_3$, were purified according to the standard procedures. $[Pd_2(CH_3CN)_6][BF_4]_2$ (1) ^[S1] and $Pd_2(dba)_3 \cdot CHCl_3^{[S2]}$ were prepared according to the literature.

Synthesis of $[Pd_2(6,6-dimethylfulvene)_2(CH_3CN)_2][BF_4]_2$ (2a): $[Pd_2(CH_3CN)_6][BF_4]_2$ (264.8 mg, 4.18 x 10⁻¹ mmol) and 6,6-dimethylfulvene (97.8 mg, 9.21 x 10⁻¹ mmol) were dissolved in CH₃NO₂ under N₂ atmosphere . After stirring for 10 min, the reaction mixture was filtered through Celite, and the Celite was washed with dichloromethane. The solution was concentrated, and precipitated with toluene. The solid was washed with toluene and Et₂O, and dried under reduced pressure to give complex **2a** as an orange solid (230.6 mg, 3.39 x 10⁻¹ mmol, 81% yield). ¹H NMR (400 MHz, CD₃NO₂, 25 °C): δ 7.10 (br, 4H, H₁), 6.43 (br, 4H, H₂), 2.48 (br, 4H, CH₃CN), 2.29 (s, 12H, H₅). ¹³C {¹H} NMR (101 MHz): δ 169.2 (C₄), 139.8 (C₃), 126.2 (CH₃CN), 102.3 (C₂), 94.3 (C₁), 25.1 (C₅), 3.2 (*C*H₃CN). HRMS-EI (m/z): [M]⁺ calcd for C₂₀H₂₆N₂Pd₂, 254.0084; found, 254.0129.

dimethylfulvene)2(CH3CN)2][BF4]2.

Synthesis of [Pd₂(6,6-diphenylfulvene)₂(CH₃CN)₂][BF₄]₂ (2b): [Pd₂(CH₃CN)₆][BF₄]₂ (50 mg, 7.9 x 10⁻² mmol) and 6,6-diphenylfulvene (36.0 mg, 1.56 x 10⁻¹ mmol) were dissolved in CH₃NO₂ and stirred for 10 min at room temperature. The reaction mixture was diluted by CH₂Cl₂, and then filtered. Addition of toluene to the solution afforded red microcrystal of complex 2b (47.3 mg, 5.09 x 10⁻² mmol, 64% yield). The single crystal of **2b** was obtained by recrystallization from benzene/CH₃NO₂ at room temperature. ¹H NMR (400 MHz, CD₃NO₂, 25 °C): δ 7.69, (t, *J* = 7.6 Hz, 4H, H₈), 7.46 (dd, *J* = 7.6, 7.6 Hz, 8H, H₇), 7.35 (d, *J* = 7.6 Hz, 8H, H₆), 6.96-6.94 (m, 4H, H₁), 6.65-6.63 (m, 4H, H₂), 2.27 (s, 6H, CH₃CN). ¹³C{¹H} NMR (101 MHz) δ 162.6 (C₄), 140.7 (C₅), 139.5 (C₃), 134.0 (C₆), 133.4 (C₈), 130.2 (C₇), 125.4 (CH₃CN), 102.3 (C₂), 97.6 (C₁), 2.9 (CH₃CN). Anal. Calcd. for C₄₀H₃₆B₂F₈N₂OPd₃: C, 50.72; H, 3.83 N, 2.96. Found: C, 50.64; H, 3.73 N, 2.84.

diphenylfulvene)₂(CH₃CN)₂][BF₄]₂, x = impurities.

Figure S4. ¹³C NMR spectrum of complex **2b**. $\circ = [Pd_2(6,6-diphenylfulvene)_2(CH_3CN)_2][BF_4]_2$.

Synthesis of Pd₂(6,6-diphenylfulvene)₂Cl₂ (2b-Cl): $[Pd_2(CH_3CN)_6][BF_4]_2$ (100 mg, 1.58 x 10⁻¹ mmol) and 6,6-diphenylfulvene (72.0 mg, 3.13 x 10⁻¹ mmol) were dissolved in CHCl₃/CH₃NO₂ and stirred for 10 min at room temperature. Following procedures were conducted under air. Brine (5 mL) was added to the solution, and then the reaction mixture was stirred for 5 min. The reaction mixture was extracted by CHCl₃. The combined organic layers were dried over Na₂SO₄ and filtered. The solvent was concentrated under reduced pressure to give complex **2b-Cl** (110.3 mg, 1.48 x 10⁻¹ mmol, 94 % yield) as a red solid. The single crystal suitable for X-ray diffraction analysis was obtained by recrystallization from cyclohexane/CH₂Cl₂ at room temperature. ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.54-7.40 (m, 4H, H₈), 7.37-7.21 (m, 16H, H₆ and H₇), 6.93-6.87 (m, 4H, H₁), 6.14-6.08 (m, 4H, H₂). ¹³C {¹H} NMR (101 MHz) δ 156.1 (C₄), 139.7 (C₅), 137.7 (C₃), 132.2 (C₆ or C₇), 130.8 (C₈), 129.6 (C₆ or C₇), 95.9 (C₂), 94.7 (C₁). Anal. Calcd. for C₃₆H₂₈Cl₂Pd₂·H₂O: C, 56.72; H, 3.97. Found: C, 56.53; H, 4.36.

Figure S5. ¹H NMR spectrum of complex **2b-Cl**. $\circ = Pd_2(6,6-diphenylfulvene)_2Cl_2$.

Figure S6. ¹³C NMR spectrum of complex **2b-Cl**. $\circ = Pd_2(6,6-diphenylfulvene)_2Cl_2$.

Synthesis of [Pd₃(6,6-dimethylfulvene)₂(CH₃CN)₃][BF₄]₂ (3a): To a nitromethane solution of complex 2a (300.8 mg, 4.42 x 10^{-1} mmol) was added Pd₂(dba)₃·CHCl₃ (237.9 mg, 2.30 x 10^{-1} mmol) and acetonitrile (50 µL, 9.57 x 10^{-1} mmol) in dichloromethane under N₂ atmosphere . After stirring overnight, the reaction mixture was filtered through Celite, and the Celite was washed with dichloromethane. The solution was concentrated, and precipitated with toluene. The solid was washed with toluene and Et₂O, and dried under reduced pressure to give complex 3a as a brown solid (294.3 mg, 3.55 x 10^{-1} mmol, 80% yield). ¹H NMR (400 MHz, CD₃NO₂, 25 °C): δ 5.95 (br, 4H, H₂), 5.73 (br, 4H, H₁), 2.41 (br, 6H, CH₃CN), 2.01 (s, 12H, H₅). ¹³C{¹H} NMR (101 MHz): δ 109.0 (C₃), 99.2 (C₄), 89.8 (C₂), 83.7 (C₁), 24.0 (C₅), 3.0 (CH₃CN). HRMS-EI (m/z): [M]⁺ calcd for C₂₂H₂₉N₃Pd₃, 327.4736; found, 327.4797.

dimethylfulvene)2(CH3CN)3][BF4]2.

Figure S8. ¹³C NMR spectrum of complex 3a. $\circ = [Pd_3(6,6-dimethylfulvene)_2(CH_3CN)_3][BF_4]_2.$

Synthesis of [Pd₃(6,6-diphenylfulvene)₂(CH₃CN)₂][BF₄]₂ (3b): [Pd₂(CH₃CN)₆][BF₄]₂ (100 mg, 1.58 x 10⁻¹ mmol) and 6,6-diphenylfulvene (72.0 mg, 3.13 x 10⁻¹ mmol) were dissolved in CH₂Cl₂/CH₃NO₂ under N₂ atmosphere . After stirring for 10 min, Pd₂(dba)₃·CHCl₃ (86.7 mg, 8.38 x 10⁻² mmol) was added to the reaction mixture, and then the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was filtered. Addition of Et₂O to the solution afforded precipitate. The solid was washed with Et₂O several times and dried under reduced pressure to give complex **3b** as a red solid (113.6 mg, 1.10 x 10⁻¹ mmol, 69% yield). The single crystal suitable for X-ray diffraction analysis was obtained by recrystallization from toluene/CH₃NO₂,CH₂Cl₂ at -20 °C. ¹H NMR (400 MHz, CD₃NO₂, 25 °C): δ 7.52-7.39 (m, 12H, H₇ and H₈), 7.16 (d, *J* = 7.6 Hz, 8H, H₆), 6.35-6.28 (m, 4H, H₂), 6.01-5.96 (m, 4H, H₁), 2.28 (s, CH₃CN, 6H). ¹³C {¹H} NMR (101 MHz) δ 135.7 (C₃), 134.0 (C₄), 132.8 (C₈), 131.1 (C₇), 130.4 (C₆), 125.1 (CH₃CN), 108.5 (C₃), 90.8 (C₂), 88.7 (C₁), 2.9 (CH₃CN). Anal. Caled. for C₄₀H₃₄B₂F₈N₂Pd₃: C, 46.39; H, 3.31 N, 2.71. Found: C, 46.45; H, 3.31 N, 2.84.

Figure S10. ¹³C NMR spectrum of complex **3b**. $\circ = [Pd_3(6,6-diphenylfulvene)_2(CH_3CN)_2][BF_4]_2$, x = impurities.

Synthesis of $[Pd_2(CH_3CN)_2(\mu-\eta^2;\eta^2-6,6-diphenylfulvene)(\mu_3-\eta^1;\eta^2;\eta^3-6,6-diphenylfulvene)Pd(CH_3CN)_2][BF_4]_2$ (4): Complex 3b was quantitatively converted to $[Pd_2(CH_3CN)_2(\mu-6,6-diphenylfulvene)(\mu_3-6,6-diphenylfulvene)Pd(CH_3CN)_2][BF_4]_2$ (4) in CD₃CN. The single crystal suitable for X-ray diffraction analysis was obtained by recrystallization from toluene/CH₃CN at -20 °C. ¹H NMR (400 MHz, CD₃CN, 25 °C): δ 7.56 (t, *J* = 7.2 Hz, 2H, H_8), 7.16 (dd, *J* = 7.2, 7.2 Hz, 4H, H_7), 7.40 (d, *J* = 7.2 Hz, 4H, H_6), 7.33 (brt, *J* = 8.0 Hz, 2H, H_{16}), 7.16 (d, *J* = 7.2 Hz, 4H, H_{14}), 7.08 (dd, *J* = 7.2, 8.0 Hz, 4H, H_{15}), 6.07-6.02 (m, 2H, H_9), 6.02-5.97 (m, 2H, H_{10}), 5.92-5.85 (m, 2H, H_2), 5.37-5.27 (m, 2H, H_1). ¹³C{¹H} NMR (101 MHz): δ 151.3 (C₁₂), 142.1 (C₁₁), 141.8 (C₅), 141.2 (C₁₃), 131.8, 131.0, 131.0, 129.6, 129.5, 129.5 (C₆₋₈ and C₁₄₋₁₆), 121.9 (C₃), 95.6 (C₉), 94.5(C₁₀), 89.3 (C₂), 86.0, (C₄), 70.1 (C₁). HRMS-EI (m/z): [M]²⁺ calcd for C₄₄H₄₀N₄Pd₃, 472.0186; found, 472.0193.

Figure S11. ¹H NMR spectrum of complex **4**. $\circ = [Pd_2(CH_3CN)_2(\mu-6,6-diphenylfulvene)(\mu_3-6,6-diphenylfulvene)Pd(CH_3CN)_2][BF_4]_2$, x = impurities.

Figure S12. ¹³C NMR spectrum of complex **4**. $\circ = [Pd_2(CH_3CN)_2(\mu-6,6-diphenylfulvene)(\mu_3-6,6-diphenylfulvene)Pd(CH_3CN)_2][BF_4]_2$, x = impurities.

Computational Details: All calculations were carried out with Gaussian09 program package (Revision D.01).^[S3] Geometrical optimization was performed with DFT method using the M06 functional.^[S4] Core electrons of Pd were replaced with Stuttgart-Dresden-Bonn relativistic effect core potentials (ECPs) and their valence electrons were represented by (8s7p6d)/[6s5p3d] basis set.^[S5] Usual 6-311G(d) basis sets were used for other atoms.^[S6] The optimized structures of $[Pd_3(\mu_3-dimethylfulvene)_2(HCN)_2]^{2+}$ (**2a'**), $[Pd_3(\mu_3-dimethylfulvene)_2(HCN)_3]^{2+}$ (**3a'**), and fulvene were depicted in Figures S13, S16, and S19, respectively. Cartesian coordinates of the optimized geometries of **2a'**, **3a'** and 6,6-dimethylfulvene were shown in Tables S1-S3. The selected molecular orbitals of **2a'**, **3a'** and 6,6-dimethylfulvene were shown in Figures S14, S17, and S20, respectively. Natural atomic orbital (NAO) population analyses were performed with NBO analysis version $3.1.^{[S7]}$ A summary of NAO population for each atom in **2a'**, **3a'** and 6,6-dimethylfulvene was shown in Figures S15, S18, and S21, respectively. Mayer bond indices (MBIs) were evaluated by the program BORDER.^[S8] A summary of selected bond lengths, MBIs, and NAO population analysis was shown in Figure S22.

J	Symbol	X	Y	Ζ	
	Pd	-1.2846876	0.0014480	-0.6445242	
	Ν	-3.4329541	0.0039352	-0.6232186	
	С	-1.1629849	2.2158643	-0.2641202	
	Н	-2.1774942	2.4801186	0.0135562	
	С	-0.7177984	2.0722553	-1.5820655	
	Н	-1.3342790	2.1195424	-2.4735437	
	С	0.7230310	2.0706822	-1.5819440	
	Н	1.3397741	2.1165009	-2.4733169	
	С	1.1683179	2.2133698	-0.2639384	
	Н	2.1833703	2.4753671	0.0138872	
	С	0.0027381	2.3436485	0.6091023	
	С	0.0028844	2.6010929	1.9511864	
	С	-1.2479939	2.7759058	2.7291545	
	Н	-1.2999219	3.8017916	3.1186075	
	Н	-1.2395831	2.1307278	3.6163517	
	Н	-2.1625285	2.5798457	2.1682166	
	С	1.2539326	2.7732318	2.7294524	
	Н	1.2451687	2.1256782	3.6149402	
	Н	1.3065022	3.7980031	3.1216998	
	Н	2.1683203	2.5780648	2.1679805	
	С	-4.5755517	0.0053548	-0.6857874	
	Pd	1.2851351	-0.0013994	-0.6438567	
	Ν	3.4334040	-0.0039841	-0.6218333	
	С	1.1632634	-2.2158661	-0.2632655	
	Н	2.1775740	-2.4800097	0.0152404	
	С	0.7191450	-2.0721773	-1.5815644	
	Н	1.3363309	-2.1194815	-2.4725550	
	С	-0.7216860	-2.0705617	-1.5825818	
	Н	-1.3377199	-2.1162972	-2.4744484	
	С	-1.1680389	-2.2132971	-0.2649421	
	Н	-2.1832860	-2.4754391	0.0120307	
	С	-0.0031358	-2.3436682	0.6090194	
	С	-0.0043582	-2.6012106	1.9510848	
	С	1.2458644	-2.7761725	2.7300672	
	Н	1.2971425	-3.8019369	3.1199185	
	Н	1.2369820	-2.1306867	3.6170399	
	Н	2.1609010	-2.5806121	2.1697801	
	С	-1.2560602	-2.7732426	2.7283290	
	Н	-1.2476966	-2.1261970	3.6141871	

Table S1. Cartesian coordinates (in Å) of the optimized geometry of $[Pd_2(\mu-dimethylfulvene)_2(HCN)_2]^{2+}$ (2a').

-3.7982170

-2.5773799

-0.0054085

3.1199553

2.1662712

-0.6841286

-1.3093532

-2.1699422

4.5760179

Н

H C

Figure S13. The optimized geometry of $[Pd(\mu-dimethylfulvene)_2(HCN)_2]^{2+}$ (2a').

Figure S14. The selected molecular orbitals of $[Pd(\mu-dimethylfulvene)_2(HCN)_2]^{2+}$ (2a').

			Natural F	Population		
Aton	n N	Natural o Charge	Core	Valence	Rydberg	Total
Pd	1	0.30598	35.97288	9.69710	0.02405	45.69402
Ν	2	-0.38595	1.99932	5.36004	0.02659	7.38595
С	3	-0.20242	1.99880	4.18114	0.02247	6.20242
н	4	0.25712	0.00000	0.74151	0.00137	0.74288
С	5	-0.19386	1.99891	4.17047	0.02448	6.19386
н	6	0.26311	0.00000	0.73612	0.00077	0.73689
С	7	-0.19411	1.99891	4.17072	0.02449	6.19411
н	8	0.26313	0.00000	0.73610	0.00077	0.73687
С	9	-0.20210	1.99880	4.18083	0.02247	6.20210
н	10	0.25708	0.00000	0.74155	0.00137	0.74292
С	11	-0.15438	1.99876	4.13338	0.02224	6.15438
С	12	0.23511	1.99885	3.75331	0.01273	5.76489
С	13	-0.61558	1.99916	4.60521	0.01120	6.61558
н	14	0.25449	0.00000	0.74409	0.00142	0.74551
н	15	0.23644	0.00000	0.76221	0.00135	0.76356
н	16	0.20935	0.00000	0.78983	0.00081	0.79065
С	17	-0.61553	1.99916	4.60517	0.01120	6.61553
н	18	0.23649	0.00000	0.76216	0.00135	0.76351
н	19	0.25440	0.00000	0.74418	0.00142	0.74560
н	20	0.20935	0.00000	0.78983	0.00081	0.79065
С	21	0.32393	1.99899	3.65872	0.01836	5.67607
Pd	22	0.30598	35.97288	9.69710	0.02405	45.69402
N	23	-0.38595	1.99932	5.36004	0.02659	7.38595
С	24	-0.20242	1.99880	4.18115	0.02247	6.20242
н	25	0.25712	0.00000	0.74151	0.00137	0.74288
С	26	-0.19385	1.99891	4.17046	0.02448	6.19385
н	27	0.26311	0.00000	0.73612	0.00077	0.73689
C	28	-0.19412	1.99891	4.17072	0.02449	6.19412
н	29	0.26313	0.00000	0.73610	0.00077	0.73687
C	30	-0.20209	1.99880	4.18082	0.02247	6.20209
н	31	0.25708	0.00000	0.74155	0.00137	0.74292
C	32	-0.15438	1.99876	4.13338	0.02224	6.15438
0	33	0.23511	1.99885	3.75331	0.01273	5.76489
C	34	-0.61558	1.99916	4.60521	0.01120	6.61558
н	35	0.25449	0.00000	0.74409	0.00142	0.74551
н	30	0.23644	0.00000	0.76221	0.00135	0.76356
н	37	0.20935	0.00000	0.78984	0.00081	0.79065
<u> </u>	38	-0.61553	1.99916	4.60517	0.01120	0.01553
	39	0.23649	0.00000	0.76216	0.00135	0.76351
	40	0.25440	0.00000	0.74410	0.00142	0.74560
	41	0.20935	1.00000	0.76963	0.00061	0.79065
ŭ	42	0.32393	0.00000	0.74157	0.01030	0.74205
н	40	0.25795	0.00000	0.74157	0.00040	0.74205
п =======		0.20190	0.00000	0.74107	0.00040	0.74200
Total	*	2 00000 1	11 92507	121 61049	0 46444	234 00000
					001111	

Figure S15. Summary of Natural Population Analysis of $[Pd(\mu\text{-dimethylfulvene})_2(HCN)_2]^{2+}~(\textbf{2a'}).$

Table	S2.	Cartesian	coordinates	(in	Å)	of	the	optimized	geometry	of	[Pd ₃ (µ ₃ -
dimeth	ylful	vene) ₂ (HCl	$N)_2]^{2+}$ (3a').								
	C		V			v		7			

Symbol	X	Y	Z
Pd	1.1896952	-1.2910453	0.0001932
Pd	-1.4141457	-0.0000231	-0.0000040
Ν	1.4578275	-3.4274161	0.0004488
Ν	-3.6041271	-0.0000271	-0.0000034
С	0.6806538	-1.1702249	-2.1184418
Н	0.3660010	-2.1722510	-2.3914611
С	2.0115230	-0.7152811	-2.1492659
Н	2.8882266	-1.3348479	-2.3016331
С	2.0114913	0.7146924	-2.1494691
Н	2.8881653	1.3342526	-2.3020398
С	0.6805976	1.1695797	-2.1187691
Н	0.3658875	2.1715012	-2.3921134
С	-0.2106509	-0.0003442	-2.1177862
С	-1.5955306	-0.0003893	-2.2967194
С	-2.3046593	-1.2683997	-2.6618750
Н	-2.2237839	-1.4302462	-3.7463931
Н	-3.3714485	-1.2100797	-2.4334614
Н	-1.9011013	-2.1536482	-2.1627011
С	-2.3046877	1.2675336	-2.6621679
Н	-3.3715275	1.2091295	-2.4340098
Н	-2.2235369	1.4293289	-3.7466698
Н	-1.9013373	2.1528499	-2.1629402
С	1.6892120	-4.5481165	0.0005349
С	-4.7499369	-0.0000735	0.0000137
Pd	1.1896443	1.2910833	-0.0001895
Ν	1.4576945	3.4274638	-0.0004446
С	0.6806122	1.1702447	2.1184449
Н	0.3659258	2.1722596	2.3914669
С	2.0114961	0.7153438	2.1492715
Н	2.8881799	1.3349386	2.3016380
С	2.0115098	-0.7146296	2.1494737
Н	2.8882031	-1.3341615	2.3020482
С	0.6806309	-1.1695601	2.1187721
Н	0.3659538	-2.1714928	2.3921135
С	-0.2106550	0.0003335	2.1177862
С	-1.5955360	0.0003343	2.2967123
С	-2.3047131	1.2683189	2.6618678
Н	-2.2238290	1.4301777	3.7463832
Н	-3.3715026	1.2099550	2.4334666
Н	-1.9011966	2.1535794	2.1626813
С	-2.3046491	-1.2676136	2.6621536
Н	-3.3714878	-1.2092507	2.4339812

Н	-2.2235105	-1.4293999	3.7466581
Н	-1.9012553	-2.1529168	2.1629377
С	1.6890427	4.5481716	-0.0005328
Н	1.9106968	-5.6006223	0.0005923
Н	1.9104941	5.6006843	-0.0005906
Н	-5.8254020	-0.0000886	0.0000324

Figure S16. The optimized geometry of $[Pd_3(\mu_3-dimethylfulvene)_2(HCN)_2]^{2+}$ (3a').

Figure S17. The selected molecular orbitals of $[Pd_3(\mu_3-dimethylfulvene)_2(HCN)_2]^{2+}$ (3a').

			Natural	Population		
		Natural				T. (.)
Ator	nN	lo Charge	e Core	Valence	Rydberg	Iotal
		0.24446	25.06422	0 77122	0.00000	45 75004
Pu	2	0.24110	35.96422	9.77132	0.02330	45.75004
Pu	2	0.20601	1 00022	9.70040	0.03155	40.79199
IN	3	-0.36536	1.99933	5.33000	0.02/17	7.30330
N	4	-0.38671	1.99938	5.36258	0.02475	7.38671
0	5	-0.21561	1.99874	4.19310	0.02377	6.21561
н	6	0.26165	0.00000	0.73705	0.00130	0.73835
С		-0.19385	1.99890	4.17070	0.02426	6.19385
н	8	0.26120	0.00000	0.73810	0.00070	0.73880
С	9	-0.19385	1.99890	4.17070	0.02426	6.19385
н	10	0.26121	0.00000	0.73809	0.00070	0.73879
С	11	-0.21562	1.99874	4.19311	0.02377	6.21562
н	12	0.26166	0.00000	0.73704	0.00130	0.73834
С	13	-0.10342	1.99865	4.07811	0.02666	6.10342
С	14	0.07646	1.99851	3.90421	0.02082	5.92354
С	15	-0.59524	1.99920	4.58266	0.01339	6.59524
н	16	0.24346	0.00000	0.75470	0.00184	0.75654
н	17	0.22216	0.00000	0.77686	0.00098	0.77784
н	18	0.21565	0.00000	0.78349	0.00086	0.78435
С	19	-0.59525	1.99920	4.58266	0.01339	6.59525
н	20	0.22216	0.00000	0.77686	0.00098	0.77784
н	21	0.24346	0.00000	0.75470	0.00184	0.75654
н	22	0.21566	0.00000	0.78348	0.00086	0.78434
С	23	0.31647	1.99898	3.66641	0.01814	5.68353
С	24	0.28659	1.99896	3.69629	0.01816	5.71341
Pd	25	0.24116	35.96422	9.77132	0.02330	45.75884
N	26	-0.36536	1.99933	5.33886	0.02717	7.36536
С	27	-0.21561	1.99874	4.19310	0.02377	6.21561
н	28	0.26165	0.00000	0.73705	0.00130	0.73835
С	29	-0.19385	1.99890	4.17070	0.02426	6.19385
Ĥ	30	0.26120	0.00000	0.73810	0.00070	0.73880
С	31	-0.19385	1.99890	4.17070	0.02426	6.19385
н	32	0.26121	0.00000	0.73809	0.00070	0.73879
C	33	-0 21562	1 99874	4 19311	0 02377	6 21562
Ĥ	34	0.26166	0.00000	0.73704	0.00130	0.73834
C	35	-0 10342	1 99865	4 07810	0.02666	6 10342
č	36	0 07646	1 99851	3 90421	0.02082	5 92354
č	37	-0 59524	1,99920	4.58266	0.01339	6 59524
Ĥ	38	0.24346	0.00000	0.75470	0.00184	0.75654
H	39	0 22216	0,0000	0 77686	0.00098	0 77784
H	40	0 21565	0 00000	0 78349	0.00086	0 78435
ċ	41	-0.59525	1 99920	4 58266	0.01339	6 59525
н	42	0.22216	0.00000	0 77686	0.00098	0 77784
- H	43	0 24346	0.00000	0 75470	0.00184	0 75654
Ĥ	44	0 21566	0,00000	0 78348	0.00086	0 78434
C.	45	0.31647	1,99898	3.66641	0.01814	5.68353
н	46	0 25486	0.00000	0 74466	0.00048	0 74514
H H	47	0 25486	0.00000	0 74467	0.00048	0 74514
н	48	0 25405	0.00000	0 74530	0.00065	0 74595
=====		========	==========	===========	========	=========
* Total	*	2.00000	151.87707	141.54631	0.57662	294.00000

Summary of Natural Population Analysis:

Figure S18. Summary of Natural Population Analysis of $[Pd_3(\mu_3-dimethylfulvene)_2(HCN)_2]^{2+}$ (3a').

Symbol	Х		Y	Z
С		0.9657455	1.1666746	-0.0000212
Н		0.6459850	2.2019359	-0.0000332
С		2.2417242	0.7290151	0.0000249
Н		3.1322141	1.3495437	0.0000701
С		2.2417241	-0.7290150	0.0000149
Н		3.1322139	-1.3495437	0.0000556
С		0.9657454	-1.1666745	-0.0000288
Н		0.6459848	-2.2019357	-0.0000403
С		0.0821347	0.0000001	-0.0000509
С	-	1.2684537	0.0000000	0.0000271
С	-	2.0822427	1.2495885	0.0000090
Н	-	2.7437160	1.2762986	0.8768598
Н	-	2.7435107	1.2763612	-0.8770022
Н	-	1.4833792	2.1614976	0.0001073
С	-	2.0822423	-1.2495886	0.0000170
Н	-	2.7436890	-1.2762597	-0.8768614
Н	-	2.7435367	-1.2764009	0.8770005
Н	-	1.4833783	-2.1614975	-0.0001083

Table S3. Cartesian coordinates (in Å) of the optimized geometry of 6,6-dimethylfulvene.

Figure S19. The optimized geometry of 6,6-dimethylfulvene.

Figure S20. The selected molecular orbitals of 6,6-dimethylfulvene.

Figure S21. Summary of Natural Population Analysis of 6,6-dimethylfulvene.

Figure S22. Summary of selected bond lengths, Mayer bond indices, and NBO charge of model complexes 2a' and 3a'.

X-ray Crystallographic analyses: A crystal of suitable dimensions was mounted on a CryoLoop (Hampton Research Corp.) with a layer of paraton-N oil and placed in a nitrogen stream at 123(3) K and 153(2) K. All measurements were performed on a R-AXIS RAPID imaging plate with graphite-monochromated Mo-K α (0.71075 Å) radiation. The structure was solved by direct method (SIR92,^[S9] SHELXS^[S10] or SHELXT^[S11]) and refined on F^2 by full-matrix least-squares methods; using SHELXL 2014/1, 2017/1 or 2018/3.^[S10] Non-hydrogen atoms were anisotropically refined. H-atoms were included in the refinement on calculated positions riding on their carrier atoms. The function minimized was $[\Sigma w(Fo^2 - Fc^2)^2] (w = 1 / [\sigma^2 (Fo^2) + (aP)^2 + bP]]$, where $P = (Max(Fo^2, 0) + 2Fc^2) / 3$ with $\sigma^2(Fo^2)$ from counting statistics. The function R1 and wR2 were $(\Sigma ||Fo| - |Fc||) / \Sigma |Fo|$ and $[\Sigma w(Fo^2 - Fc^2)^2 / \Sigma (wFo^4)]^{1/2}$, respectively. The ORTEP-3 program was used to draw the molecule.^[S12] Crystal data for the structures reported in this paper have been deposited in the Cambridge Crystallographic Database Centre: CCDC 2211535-2211539.

X-ray Crystallographic Data

Crystal data for **2b**: C₄₂H₄₀B₂F₈N₄O₄Pd₂, $M_r = 1051.20$, orthorhombic, space group *Pccn* (no. 56), a = 31.0364(17) Å, b = 14.3700(9) Å, c = 19.3410(12) Å, Z = 8, V = 8626.0(9) Å³, F(000) = 4208, Dc = 1.619 g cm⁻³, μ (MoK α) = 9.15 cm⁻¹, T = 153 K, 119367 reflections collected, 9874 unique (R_{int} = 0.1636), 560 variables refined with 4815 reflections with $I > 2\sigma$ (I) to R = 0.0743. CCDC 2211535.

Crystal data for **2b-Cl**: C₄₁H₃₆Cl₆Pd₂, M_r = 954.20, monoclinic, space group *C*2/*c* (no. 15), a = 29.5654(7) Å, b = 12.3888(3) Å, c = 23.0650(6) Å, $\beta = 113.2426(8)^{\circ}$, Z = 8, V = 7762.6(3) Å³, F(000) = 3808, Dc = 1.633 g cm⁻³, μ (MoK α) = 13.69 cm⁻¹, T = 123 K, 83792 reflections collected, 8863 unique (R_{int} = 0.0600), 415 variables refined with 7462 reflections with $I > 2\sigma$ (I) to R = 0.0325. CCDC 2211536.

Crystal data for **3a**: C₂₉H₃₇B₂F₈N₃Pd₃, $M_r = 920.43$, monoclinic, space group C2/c (no. 15), a = 17.7178(7) Å, b = 11.1501(5) Å, c = 18.1341(8) Å, $\beta = 112.6707(13)^\circ$, Z = 4, V = 3305.7(2) Å³, F(000) = 1808, Dc = 1.849 g cm⁻³, μ (MoK α) = 16.84 cm⁻¹, T = 123 K, 36990 reflections collected, 3785 unique (R_{int} = 0.0471), 242 variables refined with 2960 reflections with $I > 2\sigma$ (I) to R = 0.0507. CCDC 2211537.

Crystal data for **3b**: C_{44.5}H_{40.5}B₂F₈N₃O₂Pd₃, $M_r = 1142.12$, triclinic, space group *P*-1 (no. 2), a = 13.6501(7) Å, b = 13.9198(7) Å, c = 14.6715(6) Å, $\alpha = 116.090(4)^{\circ}$, $\beta = 97.842(3)^{\circ}$, $\gamma = 110.6135(15)^{\circ}$, Z = 2, V = 2198.2(2) Å³, F(000) = 1129, Dc = 1.726 g cm⁻³, μ (MoK α) = 12.89 cm⁻¹, T = 153 K, 52958 reflections collected, 10046 unique (R_{int} = 0.1261), 572 variables refined with 9349 reflections with $I > 2\sigma(I)$ to R = 0.0435. CCDC 2211538.

Crystal data for 4: C₄₆H₄₃B₂F₈N₅Pd₃, $M_r = 1158.67$, monoclinic, space group $P2_1/c$ (no. 14), a = 17.2396(6) Å, b = 18.0521(7) Å, c = 15.9775(7) Å, $\beta = 108.5900(12)^\circ$, Z = 4, V = 4712.9(3) Å³, F(000) = 2296, Dc = 1.633 g cm⁻³, μ (MoK α) = 12.02 cm⁻¹, T = 153 K, 69046 reflections collected, 10667 unique (R_{int} = 0.0752), 554 variables refined with 7513 reflections with $I > 2\sigma$ (I) to R = 0.0560. CCDC 2211539.

Figure S23. ORTEP of complex 2b

Table 54. Select	ed Dolid Distances (F	(ucg.)		
Pd1–Pd2	2.4992(8)	C1–C2	1.382(10)	
Pd1–N1	2.093(7)	C2–C3	1.439(11)	
Pd2–N2	2.102(6)	C3–C4	1.380(10)	
Pd1–C1	2.185(7)	C4–C5	1.475(10)	
Pd1–C2	2.361(7)	C5–C1	1.487(10)	
Pd1-C19	2.231(7)	C5–C6	1.377(10)	
Pd1-C20	2.193(6)	C19–C20	1.375(10)	
Pd2–C3	2.222(7)	C20–C21	1.447(11)	
Pd2–C4	2.230(7)	C21–C22	1.404(10)	
Pd2-C21	2.346(7)	C22–C23	1.480(10)	
Pd2-C22	2.181(7)	C23–C19	1.477(10)	
		C23–C24	1.355(10)	
		N1-Pd1-Pd2	169.1(2)	
		N2-Pd2-Pd1	168.2(2)	

Table S4. Selected Bond Distances (Å) and Angles (deg.)

Figure S24. ORTEP of complex 2b-Cl

ond Distances (A) and	Angles (deg.)	
2.5261(3)	C1–C2	1.392(4)
2.3809(7)	С2-С3	1.452(4)
2.3883(7)	С3-С4	1.400(4)
2.198(2)	C4–C5	1.471(3)
2.309(2)	C5-C1	1.476(3)
2.202(3)	С5-С6	1.368(3)
2.237(3)	C19–C20	1.398(4)
2.247(2)	C20–C21	1.456(4)
2.188(3)	C21–C22	1.387(4)
2.273(3)	C22–C23	1.473(4)
2.221(3)	C23–C19	1.477(4)
	C23–C24	1.368(4)
	Cl1-Pd1-Pd2	173.39(2)
	Cl2-Pd2-Pd1	175.77(2)
	2.5261(3) 2.3809(7) 2.3883(7) 2.198(2) 2.309(2) 2.202(3) 2.237(3) 2.247(2) 2.188(3) 2.273(3) 2.221(3)	2.5261(3) C1–C2 2.3809(7) C2–C3 2.3883(7) C3–C4 2.198(2) C4–C5 2.309(2) C5–C1 2.202(3) C5–C6 2.237(3) C19–C20 2.247(2) C20–C21 2.188(3) C21–C22 2.273(3) C23–C19 C23–C24 C11–Pd1–Pd2 C12–Pd2–Pd1 C12–Pd2–Pd1

Table 55. Sciected Dolld Distances (A) and Angles (deg.)
--

Figure S25. ORTEP of complex 3a

|--|

Tuble So: Selected I	Bolid Distances (11)		
Pd1-Pd1*	2.5058(6)	C1–C2	1.406(7)
Pd1–Pd2	2.8694(5)	C2–C3	1.438(6)
Pd1–N1	2.096(4)	С3–С4	1.406(7)
Pd2–N2	2.087(6)	C4–C5	1.482(5)
Pd1-C1	2.156(4)	C5–C1	1.471(6)
Pd1-C2	2.314(4)	C5–C6	1.404(6)
Pd1-C3*	2.322(4)	N1-Pd1-Pd1*	172.74(11)
Pd1-C4*	2.152(4)	N2-Pd2-Pd1	154.110(8)
Pd2–C5	2.383(4)	Pd1-Pd2-Pd1*	51.780(15)
Pd2–C6	2.269(4)	Pd2-Pd1-Pd1*	64.111(8)
Pd2-C5*	2.383(4)		
Pd2-C6*	2.269(4)		

Figure S26. ORTEP of complex 3b

	Table S7.	Selected Bond Distances ((Å)	
--	-----------	---------------------------	-----	--

Pd1–Pd2	2.5010(3)	C1–C2	1.403(5)
Pd1–Pd3	2.8128(3)	C2–C3	1.444(5)
Pd2–Pd3	2.8691(3)	C3–C4	1.404(5)
Pd1–N1	2.092(3)	C4–C5	1.482(4)
Pd2–N2	2.089(3)	C5–C1	1.469(5)
Pd1–C1	2.171(3)	C5–C6	1.407(4)
Pd1–C2	2.359(3)	C6–C7	1.475(4)
Pd1-C19	2.187(3)	C19–C20	1.409(5)
Pd1-C20	2.253(3)	C20–C21	1.439(5)
Pd2–C3	2.273(3)	C21–C22	1.393(5)
Pd2–C4	2.137(3)	C22–C23	1.481(4)
Pd2-C21	2.291(3)	C23–C19	1.488(4)
Pd2-C22	2.171(3)	C23–C24	1.405(4)
Pd3–C5	2.545(3)	N1-Pd1-Pd2	177.64(9)
Pd3–C6	2.194(3)	N2-Pd2-Pd1	176.78(9)
Pd3–C7	2.354(3)	Pd1-Pd2-Pd3	62.732(9)
Pd3-C23	2.251(3)	Pd2-Pd3-Pd1	52.218(8)
Pd3-C24	2.223(3)	Pd3-Pd1-Pd2	65.050(9)

Figure S27. ORTEP of complex 4

Table S8. Selected Bond Distances (Å)				
Pd1–Pd2	2.5409(6)	C1–C2	1.471(7)	
Pd1–N1	2.099(5)	С2-С3	1.412(7)	
Pd2-N2	2.093(5)	С3-С4	1.431(7)	
Pd3-N3	2.100(5)	C4–C5	1.458(7)	
Pd3-N4	2.087(5)	C5-C1	1.430(7)	
Pd1-C2	2.138(5)	С5-С6	1.438(7)	
Pd1-C3	2.525(5)	C19–C20	1.380(8)	
Pd1-C19	2.242(5)	C20–C21	1.458(9)	
Pd1-C20	2.229(5)	C21–C22	1.381(8)	
Pd2-C3	2.437(5)	C22–C23	1.471(8)	
Pd2-C4	2.129(5)	C23–C19	1.479(8)	
Pd2-C21	2.308(5)	C23–C24	1.368(7)	
Pd2-C22	2.192(5)	N1-Pd1-Pd2	172.03(15)	
Pd3-C1	2.186(5)	N2-Pd2-Pd1	169.89(13)	
Pd3-C5	2.154(5)			
Pd3-C6	2.142(4)			

References

- [S1] T. Murahashi, T. Nagai, T. Okuno, T. Matsutani, H. Kurosawa, *Chem. Commun.***2000**, 1689.
- [S2] T. Ukai, H. Kawazura, Y. Ishii, J. K. Bonnet, J. A. Ibers, J. Organomet. Chem.
 1974, 65, 253.
- [S3] Gaussian09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- [S4] Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* **2008**, *120*, 215.
- [S5] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, *Theor. Chim. Acta* 1990, 77, 123.
- [S6] (a) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, *J. Chem. Phys.* 1980, 72, 650. (b) A. D. McLean, G. S. Chandler, *J. Chem. Phys.* 1980, 72, 5639.

- [S7] NBO, version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold.
- [S8] BORDER, version 1.0, I. Mayer, Chemical Research Center, Hungarian Academy of Sciences, Budapest, 2005.
- [S9] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27, 435.
- [S10] (a) G. M. Sheldrick, *Acta Crystallogr.* 2008, *A64*, 112. (b) G. M. Sheldrick, *Acta Crystallogr.* 2015, *C71*, 3.
- [S11] G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3.
- [S12] L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.