Supplementary information

Synthesis of a platinacycle: Determination of the structure and examination of the photophysical properties based on DFT calculations

Ken Motohara,^a Kazuhiro Kado,^a Taichi Sotani,^a Dayang Zhou,^b Takeyuki Suzuki,^b Hiromitsu Sogawa,^a Fumio Sanda^{*a}

^a Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan

^b Comprehensive Analysis Center, SANKEN, Osaka University, Ibaraki, Osaka 567-0047, Japan

* Corresponding Author: sanda@kansai-u.ac.jp

EXPERIMENTAL

Measurements

¹H and ¹³C NMR spectra were recorded on JEOL JNM-ECS400, JNM-ECZ400, JNM-ECA600 and BRUEKR AVANCE III 700 spectrometers. IR spectra were measured on a JASCO FT/IR-4100 spectrophotometer. Platinacycle **1** was purified with a Japan Analytical Industry preparative HPLC system equipped with JAIGEL-1H (exclusion limit 1,000) and JAIGEL-2H (exclusion limit 5,000). MALDI-TOF MS spectra were measured on BRUKER microflex LT mass spectrometer [matrix: dithranol, mass range: 1–2200; mode, linear (positive), laser power 60–80%]. Numberaverage molecular weight (M_n) and dispersity (D) values of polymers were determined with an SEC system (Shodex GPC KD-G × 2, Shodex TSK-GEL α -M C0053 × 2, JASCO CO-965, UV-2075 Plus, RI-930, PU-980, DG-980-50) using *N*,*N*-dimethylformamide (DMF) containing LiBr (10 mM) as an eluent calibrated by polystyrene standards at 40 °C. UV-vis absorption spectra were measured in a quartz cell (optical distance:1 cm) using a JASCO V-550 spectrometer. Photoluminescence spectra were measured on a HITACHI F-7000 spectrometer. XRD spectra were measured on a BRUKER D2 PHASER with Cu-K_{\mathbf{\mathbf{a}} radiation.

Materials

All reagents were commercially obtained from FUJIFILM Wako Pure Chemical Corporation, Tokyo Chemical Industry Co., Ltd., NACALAI TESQUE, INC., Sigma-Aldrich Japan, KANTO CHEMICAL CO., INC and WATANABE CHEMICAL INDUSTRIES, LTD., EIWEISS Chemical Corporation. The solvents used for synthesis under argon were dried over molecular sieves 4A 1/16, and degassed by argon bubbling. The other reagents were used as received without purification. **Synthesis of Dinuclear Platinacycle 1 and Mononuclear Non-Macrocyclic Pt Complex 1'.** They were synthesized according to Schemes S1–S5. The synthetic procedures are described below.

4,4'-Dioctyloxycarbonyl-2,2'-bipyridine.^{S1} The title compound was synthesized according to Scheme S1. 2,2'-Bipyridine-4,4'-dicarboxylic acid (4.50 g, 18.4 mmol) was fed into a reaction vessel. DMF (40.0 µL) and SOCl₂ (20.0 mL, 258 mmol) were fed into the vessel, and the resulting mixture was stirred at 76 °C under N₂ for 1 h. DMF and residual SOCl₂ were removed by evaporation under vacuum to obtain 2,2'-bipyridine-4,4'-dicarbonyl chloride as a brown residue. The reaction vessel was cooled to -76 °C, then a mixture of CH₂Cl₂ (150 mL), NEt₃ (10 mL), and 1-octanol (7.5 mL, 48.0 mmol) was fed to the vessel. The resulting mixture was stirred at room temperature under N₂ overnight. The solvents were removed by evaporation under vacuum, and CH₂Cl₂ was added to the residue. Solvent-insoluble amine salts were removed by filtration, and the filtrate was washed with satd. NaCl aq. The organic layer was separated from the aqueous layer, dried over anhydrous MgSO₄, and concentrated on a rotary evaporator. The residue was purified by silica gel column chromatography eluted with hexane/ethyl acetate = 5/2 (v/v) to obtain the title compound as a yellow solid (6.90 g, 14.7 mmol). Yield = 80%. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, J = 6.86 Hz, 6H, $-CH_3 \times 2$), 1.22–1.46 (m, 20H, $-(CH_2)_5CH_3 \times 2$), 1.80 (t, J = 11.4 Hz, 4H, $-OCH_2CH_2 - \times 2$), 4.36–4.40 (m, 4H, $-OCH_2 - \times 2$), 7.90 (d, J = 3.2 Hz, 2H, Ar), 8.86 (t, A = 3.2 Hz, 2H, Ar), 8. 8.2 Hz, 2H, Ar), 9.08 (s, 2H, Ar) ppm.

[4,4'-Dioctyloxycarbonyl-2,2'-bipyridine]PtCl₂ (2).^{S2} The title compound was synthesized according to Scheme S1. 4,4'-Dioctyloxycarbonyl-2,2'-bipyridine (1.97 g, 4.20 mmol) and *cis*-Pt(DMSO)₂Cl₂ (1.72 g, 4.20 mmol) were fed into a reaction vessel. EtOH (150 mL) was fed into

the vessel, and the resulting mixture was stirred at 65 °C under N₂ for 24 h. The solvent was removed by evaporation. The residue was purified by silica gel column chromatography eluted with CH₂Cl₂ to obtain **2** as an orange solid (2.70 g, 3.70 mmol). Yield = 88%. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, *J* = 11.9 Hz, 6H, -CH₃ × 2), 1.22–1.46 (m, 20H, -(CH₂)₅CH₃ × 2), 1.83 (t, *J* = 21.0 Hz, 4H, -OCH₂CH₂- × 2), 4.40 (t, *J* = 13.7 Hz, 4H, -OCH₂- × 2), 7.91 (d, *J* = 10.5 Hz, 2H, Ar), 8.50 (s, 2H, Ar), 9.40 (d, *J* = 12.5 Hz, 2H, Ar) ppm.

Scheme S1. Synthesis of Pt Complex 2

3,6-Diiodo-9-octylcarbazole.⁸³ The title compound was synthesized according to Scheme S2. A solution of 3,6-diiodocarbazole in DMSO (750 mmol, 20 mL, 15.0 mmol) was added to a solution of KOH (5.07 g, 90.0 mmol) in DMSO (20 mL), and the resulting mixture was stirred for 30 min. Then 1-bromooctane (2.85 mL, 16.0 mmol) was added to the mixture, and the resulting mixture was poured into water (300 mL) to precipitate a white solid. It was collected by filtration, and purified by recrystallization with hexane to obtain the title compound as a white solid (7.59 g, 14.3 mmol). Yield = 95%. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, *J* = 17.6 Hz, 3H, -CH₃), 1.22–1.29 (m, 10H, -(CH₂)₅CH₃), 1.76–1.85 (m, 2H, >NCH₂CH₂–), 4.22 (t, *J* = 14.6 Hz, 2H, >NCH₂–), 7.18 (d, *J* = 8.23 Hz, 2H, Ar), 7.77 (d, *J* = 9.61 Hz, 2H, Ar), 8.33 (s, 2H, Ar) ppm.

3,6-Bis((trimethylsilyl)ethynyl)-9-octylcarbazole.^{S3} The title compound was synthesized according to Scheme S2. 3,6-Diiodo-9-octylcarbazole (3.90 g, 7.34 mmol), Pd(PPh₃)Cl₂ (41.9 mg,

0.070 mmol), PPh₃ (18.0 mg, 0.070 mmol) and CuI (13.3 mg, 0.070 mmol) were dissolved in a mixture of THF (35 mL) and NEt₃ (35 mL). Trimethylsilylacetylene (2.1 mL, 14.85 mmol) was added to the mixture, and the resulting mixture was stirred at 50 °C for 48 h. The solvent was removed by evaporation to obtain a brown oil. It was dissolved in diethyl ether (200 mL), and the resulting solution was washed with satd. NH₄Cl aq. The organic layer was separated from the aqueous layer, dried over anhydrous MgSO₄, and concentrated on a rotary evaporator to obtain a brown oil. It was purified by silica gel column chromatography eluted with hexane/CH₂Cl₂ = 8/1 (v/v) to obtain the title compound as a yellow oil (1.52 g, 2.94 mmol). Yield = 40%. ¹H NMR (400 MHz, CDCl₃): δ 0.27 (s, 18H, -Si(CH₃)₃ × 2), 0.88 (t, *J* = 17.6 Hz, 3H, -CH₃), 1.22–1.29 (m, 10H, -(CH₂)₅CH₃), 1.76–1.85 (m, 2H, >NCH₂CH₂–), 4.22 (t, *J* = 14.6 Hz, 2H, >NCH₂–), 7.18 (d, *J* = 8.23 Hz, 2H, Ar), 7.77 (d, *J* = 9.61 Hz 2H, Ar), 8.33 (s, 2H, Ar) ppm.

3,6-Diethynyl-9-octylcarbazole (3).^{S4} The title compound was synthesized according to Scheme S2. 3,6-Bis((trimethylsilyl)ethynyl)-9-octyl-carbazole (0.670 g, 1.35 mmol) was fed into a reaction vessel. THF (10 mL) and KOH solution in MeOH (405 mM, 10 mL, 4.05 mmol) was added to the vessel, and the resulting mixture was stirred at room temperature for 2 h. The solvent was removed by evaporation. The residue was dissolved in CH₂Cl₂ (200 mL), and the resulting solution was washed with satd. NaCl aq. The organic layer was separated from the aqueous layer, dried over anhydrous MgSO₄, and concentrated on a rotary evaporator to obtain **3** as a yellow oil (0.42 g, 1.28 mmol). Yield = 95 %. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, *J* = 13.7 Hz, 3H, -CH₃), 1.22–1.31 (m, 10H, -(CH₂)₅CH₃), 1.80–1.86 (m, 2H, >NCH₂CH₂–), 3.08 (s, 2H, =CH × 2), 4.27 (t, *J* = 14.2 Hz, 2H, >NCH₂–), 7.32 (d, *J* = 8.23 Hz, 2H, Ar), 7.59 (d, *J* = 8.70 Hz, 2H, Ar), 8.22 (s, 2H, Ar) ppm.

Scheme S2. Synthesis of 3

3-Iodo-9-octylcarbazole.^{S5} The title compound was synthesized from 3-iodocarbazole, KOH and 1-bromooctane (Scheme S3) in a manner similar to 3,6-diiodo-9-octylcarbazole. The product was directly used in the next step without purification. Yield: 94%. ¹NMR (400 MHz, CDCl₃): δ 0.88 (t, J = 24.7 Hz, 3H, –CH₃), 1.22–1.44 (m, 10H, –(CH₂)₅CH₃), 1.80–1.86 (m, 2H, >NCH₂CH₂–), 4.57 (t, J = 14.6 Hz, 2H, >NCH₂–), 7.18 (d, J = 15.5 Hz, 1H, Ar), 7.22 (d, J = 8.23 Hz, 1H, Ar), 7.38 (d, J = 8.23 Hz, 1H, Ar), 7.50 (t, J = 5.95 Hz, 1H, Ar), 7.70 (d, J = 1.83 Hz, 1H, Ar), 8.05 (d, J = 8.70 Hz, 1H, Ar), 8.39 (s, 1H, Ar) ppm.

3-((Trimethylsilyl)ethynyl)-9-octylcarbazole.^{S6} The title compound was synthesized from 3iodo-9-octylcarbazole and trimethylsilylacetylene (Scheme S3) in a manner similar to 3,6bis((trimethylsilyl)ethynyl)-9-octylcarbazole. The product was purified by silica gel column chromatography eluted with hexane/CH₂Cl₂ = 5/1 (v/v) to give the title compound as a yellow oil. Yield = 77%. ¹H NMR (400 MHz, CDCl₃): δ 0.29 (s, 9H, -Si(CH₃)₃), 0.85 (t, *J* = 17.4 Hz, 3H, -CH₃), 1.23–1.36 (m, 10H, -(CH₂)₅CH₃), 1.82–1.89 (m, 2H, >NCH₂CH₂–), 4.28 (t, *J* = 14.8 Hz, 2H, >NCH₂–), 7.22 (d, *J* = 7.78 Hz, 1H, Ar), 7.31 (d, *J* = 8.23 Hz, 1H, Ar), 7.40 (d, *J* = 8.23 Hz, 1H, Ar), 7.46 (t, *J* = 8.23 Hz, 1H, Ar), 7.58 (d, *J* = 1.37 Hz, 1H, Ar), 8.07 (d, *J* = 15.1 Hz, 2H, Ar), 8.24 (s, 1H, Ar) ppm. **3-Ethynyl-9-octylcarbazole** (3').^{S6} The title compound was synthesized from 3-((trimethylsilyl)ethynyl)-9-octylcarbazole (Scheme S3) in a manner similar to **3**. The product was directly used in the next step without purification. Yield = 88%. ¹H NMR (400 MHz, CDCl₃): δ 0.85 (t, J = 13.7 Hz, 3H, -CH₃), 1.23–1.36 (m, 10H, -(CH₂)₅CH₃), 1.82–1.89 (m, 2H, >NCH₂CH₂--), 3.11 (s, 1H, =CH), 4.28 (t, J = 14.2 Hz, 2H, >NCH₂--), 7.22 (d, J = 7.78 Hz, 1H, Ar), 7.33 (d, J = 8.23 Hz, 1H, Ar), 7.40 (d, J = 8.23 Hz, 1H, Ar), 7.47 (t, J = 15.1 Hz, 1H, Ar), 7.60 (d, J = 8.69 Hz, 1H, Ar), 8.08 (d, J = 7.78 Hz, 1H, Ar), 8.26 (s, 1H, Ar) ppm.

Synthesis Platinacycle 1. The title complex was synthesized according to Scheme S4. Typical procedure: Compounds 2 (440 mg, 0.60 mmol) and 3 (230 mg, 0.60 mmol) were fed into a reaction vessel filled with argon. CH₂Cl₂ (400 mL) and *i*-Pr₂NH (200 mL) were fed into the vessel, and a solution of CuI in *i*-Pr₂NH was added. The resulting mixture was stirred under Ar atmosphere at room temperature overnight. The solvent was removed by evaporation to obtain a black solid. It was dissolved in CH₂Cl₂ (500 mL), and the resulting solution was washed with satd. NH₄Cl aq. The organic layer was separated from the aqueous layer, dried over anhydrous MgSO₄, and concentrated on a rotary evaporator to obtain a black solid. It was observed up to 300 °C. ¹H NMR (400 MHz, CDCl₃): δ 0.84–0.95 (m, 18H, –CH₃ × 6), 1.25–2.07 (m, 72H, –(CH₂)₆CH₃ × 6), 4.11–4.46 (m, 12H, >NCH₂– × 2, –OCH₂– × 4), 7.30–10.14 (m, 24H, Ar) ppm.The assignment is described

in Fig. 1. ¹³C NMR (175 MHz, CDCl₃): δ 13.9, 22.4, 25.4, 27.4, 28.1, 29.0, 31.7, 43.2, 66.5, 83.8, 103.5, 107.7, 118.7, 122.5, 122.6, 125.1, 126.5, 129.9, 138.8, 139.9, 151.5, 157.0, 163.2 ppm. IR(KBr): 2916, 2114, 1726, 1473, 1319, 1257, 1134, 1018, 953, 886, 813, 758, 708, 643, 582, 515 cm⁻¹. MALDI-TOF MS:*m/z* calcd for C₁₀₄H₁₂₇N₆O₈Pt₂ [M+H]⁺: 1977.90, found: 1978.45.

Synthesis of Mononuclear Non-Macrocyclic Platinum Complex 1'. The title complex was synthesized according to Scheme S5. Compounds 2 (478 mg, 0.650 mmol), 3' (395 mg, 1.30 mmol) and CuI (11.4 mg, 0.060 mmol) were fed into a reaction vessel filled with argon. CH₂Cl₂ (20 mL) and *i*-Pr₂NH (10 mL) were fed into the vessel, and the resulting mixture was stirred at room temperature overnight. The solvent was removed by evaporation. It was dissolved in CH₂Cl₂, and the resulting solution was washed with satd. NH₄Cl aq. The organic layer was separated, and dried over anhydrous MgSO₄ and concentrated on a rotary evaporator to obtain a black solid. It was purified by silica gel column chromatography eluted with hexane/CH₂Cl₂ = 1/5 (v/v) and then CH₂Cl₂ to obtain 1' as a black solid (247 mg, 0.195 mmol). Yield = 30%. Mp = 75–77 °C. ¹H NMR (400 MHz, CDCl₃): δ 0.86–0.90 (m, 12H, –CH₃ × 4), 1.25–1.43 (m, 40H, –(CH₂)₅CH₃ × 4), 1.61–1.63 (t, *J* = 6.40 Hz, 4H, –OCH₂CH₂– × 2), 1.86–1.89 (m, 4H, >CH₂CH₂– × 2), 4.09–4.12 (t, *J* = 10.3 Hz, 4H, >NCH₂– × 2), 4.26–4.29 (t, *J* = 14.6 Hz, 4H, –OCH₂– × 2), 7.17–7.21 (d, *J* = 15.9 Hz, 2H, Ar), 7.28–7.30 (d, *J* = 8.23 Hz, 2H, Ar), 7.34–7.37 (d, *J* = 8.23 Hz, 2H, Ar), 7.40–7.44 (t,

J = 15.1 Hz, 2H, Ar), 7.58–7.61 (dd, J = 10.1, 1.37 Hz, 2H, Ar), 8.01–8.03 (d, J = 6.86 Hz, 1.37 Hz, 2H, Ar), 8.01 (d, J = 7.76 Hz, 2H, Ar), 8.17 (s, 2H, Ar), 8.41 (s, 2H, Ar) 10.0 (d, J = 5.49 Hz, 2H, Ar) ppm. ¹³C NMR (175 MHz, CDCl₃): δ 14.1, 22.6, 25.8, 27.4, 28.4, 29.4, 31.8, 43.2, 66.8, 108.0, 108.5, 118.7, 120.6, 122.2, 122.4, 122.7, 123.9, 125.4, 127.0, 130.5, 138.9, 140.6, 156.6, 163.6 ppm. IR(KBr): 2925, 2853, 2360, 2113, 1726, 1596, 1463, 1315, 1258, 1137, 1054, 967, 883, 802, 761, 615, 572, 543, 511 cm⁻¹. MALDI-TOF MS (*m/z*) calcd for C₇₂H₈₉N₄O₄Pt [M+H]⁺; 1268.65, found:1269.12.

Scheme S5. Synthesis of 1'

Computations

All computational calculations were performed with the Gaussian 16 program,^{S7} ES64L-G16 Rev C.01, using the DFT method with ωB97X-D functional in conjunction with basis sets, 6-31G* for H, C, N, O, and LANL2DZ for Pt, running on the supercomputer systems, Academic Center for Computing and Media Studies, Kyoto University. The simulated UV–vis absorption spectrum was illustrated using GaussView 6. The MO shapes were illustrated using Avogadro^{S8} version 1.2.0.

Fig. S1 HMQC (600 MHz) spectrum of 1 measured in CDCl₃.

Fig. S2 HMBC (600 MHz) spectrum of 1 measured in CDCl₃.

Fig. S3 ¹H–¹H COSY (700 MHz) spectrum of 1 measured in CDCl₃.

Fig. S4 (A) ¹³C NMR and (B) DEPT 135 (175 MHz) spectra of 1 measured in CDCl₃.

Fig. S5 Chemical shifts of ¹H (blue) and ¹³C (red)-NMR spectra of 1 simulated by the DFT GIAO method [ω B97XD/6-31G* (C, H, N, O)-LANL2DZ (Pt)] using SCRF-IEFPCM (solvent CHCl₃).

Fig. S7 SEC trace of 1 eluted with LiBr (10 mM) solution in DMF calibrated by polystyrene standards at 40 $^{\circ}$ C (* ghost peak).

Fig. S8 (a) MALDI-TOF MS chart of **1** (exact mass of $[M+H]^+ = 1977.90$) measured by positive linear mode using dithranol as a matrix. (b) Expanded chart at a range of 1960–2005 *m/z*.

Fig. S9 ¹H NMR (400 MHz) spectrum of 1' measured in CDCl₃.

Fig. S10 13 C NMR (100 MHz) spectrum of 1' measured in CDCl₃.

-1

Fig. S11 IR spectrum of 1' measured by the KBr pellet method.

Fig. S12 (a) MALDI-TOF MS chart of 1' (exact mass = 1267.65) measured by positive linear mode using dithranol as a matrix. (b) Expanded chart at 1260-1278 m/z.

LUMO + 6: 1.420 eV

LUMO + 2: -0.661 eV

LUMO + 5: -0.311 eV

LUMO + 1: -1.500 eV

Fig. S13 Shapes and energy levels from LUMO + 7 to LUMO of 1-CH₃ according to the results obtained by the DFT calculations [ω B97XD/6-31G* (H, C, N, O)-LANL2DZ (Pt)].

HOMO - 5: -7.193 eV

HOMO – 2: –6.241 eV HOMO – 6: –7.305 eV HOMO – 3: –6.433 eV HOMO – 7: –7.326 eV

Fig. S14 Shapes and energy levels from HOMO to HOMO – 7 of **1-CH₃** according to the results obtained by the DFT calculations [ω B97XD/6-31G* (H, C, N, O)-LANL2DZ (Pt)].

Data of excitations obtained by the TD-DFT calculation of 1-CH₃

Excited state, spin multiplicity-symmetry, excitation energy (eV, nm), oscillator strength f (intensity of absorption), square spin eigen value, orbitals excited from \rightarrow to, coefficient of the wavefunction for each excitation. The texts in red are important data concerning the main absorption depicted in Fig. 5.

Correspondence of orbita	al numbers
286: LUMO + 7	282: LUMO + 3
285: LUMO + 6	281: LUMO + 2
284: LUMO + 5	280: LUMO + 1
283: LUMO + 4	279: LUMO
278: HOMO	274: HOMO – 4
277: HOMO – 1	273: HOMO – 5
276: HOMO – 2	272: HOMO – 6
275: HOMO – 3	271: HOMO – 7
Excited State 1: Singlet-A	2.1997 eV 563.65 nm $f = 0.0000 < S^{**2} = 0.000$
$268 \rightarrow 279$ 0.15064	, and the second s
$273 \rightarrow 280 -0.12078$	
$276 \rightarrow 280 -0.38944$	
$278 \rightarrow 279 \qquad 0.51709$	
Evolted State 2. Singlet A	2.22(2.3) 554.44 mm f = 0.0878 < 5**2 = 0.000
Exclude State 2: Singlet-A $268 \times 280 = 0.15456$	2.2302 eV 334.44 mm $j = 0.0878 < S^{-1}2 = 0.000$
$208 \rightarrow 280 \qquad 0.13430$	
$2/3 \rightarrow 2/9$ -0.12315	
$2/6 \rightarrow 2/9 -0.39594$	
$2/8 \rightarrow 280 \qquad 0.509/8$	
Excited State 3: Singlet-A	2.4841 eV 499.11 nm $f = 0.6019 < S^{**2} = 0.000$
$267 \rightarrow 279 \qquad 0.18411$	
$271 \rightarrow 280 \qquad 0.15414$	
$275 \rightarrow 280 \qquad 0.37053$	
$277 \rightarrow 279 \qquad 0.50859$	
$278 \rightarrow 281 \qquad 0.10416$	
Excited State 1: Singlet-A	25104 eV 402 13 nm f = 0.0032 < S**2>=0.000
$267 \rightarrow 280$ 0 18342	2.51)+ CV 4)2.15 IIII J 0.0052 (5 2) 0.000
$207 \rightarrow 200 \qquad 0.10342$ $271 \rightarrow 279 \qquad 0.15357$	
$271 7279 \qquad 0.15557$ $275 \rightarrow 279 \qquad 0.37564$	
$273 \rightarrow 280 \qquad 0.50077$	
$277 \rightarrow 280 \qquad 0.30077$ $278 \rightarrow 282 \qquad 0.11763$	
$2/0 \rightarrow 202 \qquad 0.11/03$	
Excited State 5: Singlet-A	2.8298 eV 438.13 nm $f = 0.0167 < S^{**2} = 0.000$
$272 \rightarrow 280 \qquad 0.46344$	
$273 \rightarrow 280 \qquad 0.10722$	

Excited State $272 \rightarrow 279$ $273 \rightarrow 279$ $274 \rightarrow 280$	6: Singlet-A 0.46679 0.10803 0.48042	2.8307 eV 438.00 nm $f = 0.0000 < S^{**}2 > = 0.000$
Excited State $265 \rightarrow 280$ $266 \rightarrow 279$	7: Singlet-A 0.48777 0.48917	$3.0120 \text{ eV} 411.63 \text{ nm} f = 0.0001 < S^{**}2 >= 0.000$
Excited State $265 \rightarrow 279$ $266 \rightarrow 280$	8: Singlet-A 0.48934 0.48757	3.0121 eV 411.62 nm $f = 0.0032 < S^{**}2 > = 0.000$
Excited State $268 \rightarrow 281$ $275 \rightarrow 284$ $276 \rightarrow 282$ $277 \rightarrow 279$ $277 \rightarrow 283$ $278 \rightarrow 281$	9: Singlet-A 0.11900 -0.11071 -0.35666 -0.10923 -0.14334 0.51153	3.3329 eV 372.00 nm <i>f</i> =0.3670 <s**2>=0.000</s**2>
Excited State $268 \rightarrow 282$ $275 \rightarrow 283$ $276 \rightarrow 281$ $277 \rightarrow 280$ $277 \rightarrow 284$ $278 \rightarrow 282$	10: Singlet-A 0.11660 -0.12154 -0.35298 -0.11793 -0.15785 0.50558	3.3493 eV 370.18 nm <i>f</i> = 0.0020 <s**2>=0.000</s**2>
Excited State $267 \rightarrow 281$ $271 \rightarrow 282$ $275 \rightarrow 282$ $276 \rightarrow 284$ $277 \rightarrow 281$ $278 \rightarrow 283$	11: Singlet-A 0.13985 0.11924 0.29330 0.23196 0.40854 -0.31076	3.3972 eV 364.96 nm <i>f</i> = 0.0000 <s**2>=0.000</s**2>
Excited State $267 \rightarrow 282$ $271 \rightarrow 281$ $275 \rightarrow 281$ $276 \rightarrow 283$ $277 \rightarrow 282$ $278 \rightarrow 284$	12: Singlet-A 0.13766 0.11748 0.28929 0.23637 0.40180 -0.31667	3.3992 eV 364.74 nm $f = 0.0480 < S^{**2} = 0.000$

 $274 \rightarrow 279$ 0.48517

Excited State 1 $269 \rightarrow 280$ $270 \rightarrow 279$ $272 \rightarrow 282$ $274 \rightarrow 281$ $276 \rightarrow 280$ $278 \rightarrow 279$ $278 \rightarrow 283$	13: Singlet-A -0.35087 0.38225 0.13371 0.13899 -0.23875 -0.28913 -0.10241	3.5445 eV	349.80 nm <i>f</i> = 0.0000	<s**2>=0.000</s**2>
Excited State 1 $269 \rightarrow 279$ $270 \rightarrow 280$ $272 \rightarrow 281$ $274 \rightarrow 282$ $276 \rightarrow 279$ $278 \rightarrow 280$ $278 \rightarrow 284$	14: Singlet-A -0.36282 0.37896 0.13862 0.14382 -0.21625 -0.27226 -0.14122	3.5478 eV	349.47 nm <i>f</i> = 0.0003	<s**2>=0.000</s**2>
Excited State 1 $268 \rightarrow 279$ $269 \rightarrow 280$ $270 \rightarrow 279$ $275 \rightarrow 282$ $276 \rightarrow 280$ $276 \rightarrow 284$ $277 \rightarrow 281$ $278 \rightarrow 279$ $278 \rightarrow 283$	15: Singlet-A -0.19571 -0.20260 0.13356 -0.13628 0.34079 0.15993 -0.15335 0.33050 -0.21728	3.6108 eV	343.37 nm <i>f</i> = 0.0000	<s**2>=0.000</s**2>
Excited State 1 $268 \rightarrow 280$ $269 \rightarrow 279$ $270 \rightarrow 280$ $272 \rightarrow 281$ $274 \rightarrow 282$ $276 \rightarrow 279$ $278 \rightarrow 280$	 16: Singlet-A -0.23320 -0.24801 0.16062 0.11581 0.12126 0.39885 0.38127 	3.6199 eV	342.51 nm <i>f</i> = 0.0003	<s**2>=0.000</s**2>
Excited State 1 $268 \rightarrow 279$ $269 \rightarrow 280$ $270 \rightarrow 279$ $275 \rightarrow 282$ $276 \rightarrow 280$ $276 \rightarrow 284$ $277 \rightarrow 281$ $278 \rightarrow 279$	17: Singlet-A -0.15382 -0.17357 0.12239 0.16666 0.17945 -0.25382 0.26673 0.14300	3.6322 eV	341.35 nm <i>f</i> = 0.0000	<s**2>=0.000</s**2>

 $278 \rightarrow 283$ 0.35857

Excited State 18: Singlet-A $267 \rightarrow 282$ 0.11643 $268 \rightarrow 284$ 0.10619 $275 \rightarrow 281$ 0.22289 $276 \rightarrow 283$ -0.28948 $277 \rightarrow 282$ 0.31372 $278 \rightarrow 284$ 0.40418	3.6397 eV 340.65 nm <i>f</i> = 0.1397 <s**2>=0.000</s**2>
Excited State 19: Singlet-A $267 \rightarrow 283$ 0.17844 $271 \rightarrow 284$ 0.14715 $275 \rightarrow 280$ 0.10411 $275 \rightarrow 284$ 0.34065 $277 \rightarrow 279$ -0.19132 $277 \rightarrow 283$ 0.46033 $278 \rightarrow 281$ 0.11975	3.7035 eV 334.78 nm <i>f</i> = 0.1238 <s**2>=0.000</s**2>
Excited State 20: Singlet-A $267 \rightarrow 284$ 0.17708 $271 \rightarrow 283$ 0.14616 $275 \rightarrow 283$ 0.33880 $276 \rightarrow 281$ -0.10569 $277 \rightarrow 280$ -0.20078 $277 \rightarrow 284$ 0.45801 $278 \rightarrow 282$ 0.13846	3.7139 eV 333.84 nm f = 0.0006 <s**2>=0.000</s**2>
Excited State 21: Singlet-A $267 \rightarrow 280$ 0.19502 $275 \rightarrow 279$ 0.45438 $275 \rightarrow 283$ -0.10817 $277 \rightarrow 280$ -0.41880 $277 \rightarrow 284$ -0.15788 $278 \rightarrow 282$ -0.10349	3.8032 eV 326.00 nm $f = 0.0008 < S^{**2} = 0.000$
Excited State 22: Singlet-A $267 \rightarrow 279$ 0.20243 $275 \rightarrow 280$ 0.45100 $275 \rightarrow 284$ -0.11215 $277 \rightarrow 279$ -0.41420 $277 \rightarrow 283$ -0.16421 $278 \rightarrow 281$ -0.10807	3.8110 eV 325.33 nm f = 0.0763 <s**2>=0.000</s**2>
Excited State 23: Singlet-A $269 \rightarrow 279$ 0.12842 $270 \rightarrow 280$ -0.16548	4.0483 eV 306.26 nm $f = 0.0004 < S^{**}2 > = 0.000$

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Excited State 24: Singlet-A $269 \rightarrow 280$ 0.13860 $270 \rightarrow 279$ -0.17996 $272 \rightarrow 282$ 0.37486 $273 \rightarrow 280$ 0.14600 $274 \rightarrow 281$ 0.38785 $276 \rightarrow 280$ -0.17421	4.0502 eV 306.12 nm f = 0.0001 <s**2>=0.000</s**2>
Excited State 25: Singlet-A $268 \rightarrow 280$ 0.11871 $269 \rightarrow 279$ 0.11841 $272 \rightarrow 281$ 0.20855 $273 \rightarrow 279$ -0.18100 $274 \rightarrow 282$ 0.21670 $277 \rightarrow 288$ 0.32601 $278 \rightarrow 289$ 0.36146	4.0883 eV 303.27 nm <i>f</i> = 0.0044 <s**2>=0.000</s**2>
Excited State 26: Singlet-A $271 \rightarrow 279$ 0.20136 $271 \rightarrow 287$ -0.11342 $273 \rightarrow 291$ 0.11361 $277 \rightarrow 289$ 0.39442 $278 \rightarrow 288$ 0.43789	4.0990 eV 302.47 nm f = 0.0006 <s**2>=0.000</s**2>
Excited State 27: Singlet-A $256 \rightarrow 280$ 0.12524 $260 \rightarrow 279$ -0.16056 $262 \rightarrow 279$ -0.12784 $263 \rightarrow 280$ -0.12784 $264 \rightarrow 280$ -0.12542 $268 \rightarrow 279$ -0.23535 $269 \rightarrow 280$ -0.12221 $272 \rightarrow 282$ -0.18064 $273 \rightarrow 280$ 0.26532 $274 \rightarrow 281$ -0.19147 $276 \rightarrow 280$ -0.26041 $277 \rightarrow 291$ -0.10704 $278 \rightarrow 287$ -0.17745	4.1212 eV 300.84 nm f = 0.0001 <s**2>=0.000</s**2>

Excited State 28: Singlet-A 4.1759 eV 296.91 nm $f = 0.1259 < S^{**2} = 0.000$

$256 \rightarrow 279$	-0.13651	
$258 \rightarrow 280$	0.10441	
$260 \rightarrow 280$	0.15909	
$262 \rightarrow 280$	0.11986	
$263 \rightarrow 279$	0.18706	
$264 \rightarrow 279$	0.13177	
$268 \rightarrow 280$	0.22388	
$273 \rightarrow 279$	-0.23763	
$276 \rightarrow 279$	0.26755	
$277 \rightarrow 288$	-0.23070	
$278 \rightarrow 289$	-0.25928	
Excited State	29: Singlet-A	4.2084 eV 294.61 nm $f = 0.0001 < S^{**2} = 0.000$
$269 \rightarrow 282$	0.12141	
$270 \rightarrow 281$	-0.11113	
$272 \rightarrow 284$	0.44869	
$273 \rightarrow 284$	0.10391	
$274 \rightarrow 283$	0.46596	
Excited State	30: Singlet-A	4.2087 eV 294.59 nm $f = 0.0000 < S^{**}2 \ge 0.000$
$269 \rightarrow 281$	0.12231	
$270 \rightarrow 282$	-0.11271	
$272 \rightarrow 283$	0.45090	
$273 \rightarrow 283$	0.10440	
$274 \rightarrow 284$	0.46798	
Excited State	31: Singlet-A	4.2522 eV 291.57 nm $f = 0.0737 < S^{**2} = 0.000$
$255 \rightarrow 280$	0.11899	
$257 \rightarrow 279$	0.15801	
$261 \rightarrow 279$	0.12692	
$263 \rightarrow 280$	-0.12061	
$264 \rightarrow 280$	0.17188	
$267 \rightarrow 279$	0.24589	
$271 \rightarrow 280$	0.43520	
$275 \rightarrow 280$	-0.31477	
Excited State	32: Singlet-A	4.2612 eV 290.96 nm $f = 0.0001 < S^{**}2 \ge 0.000$
$265 \rightarrow 282$	0.47791	
$266 \rightarrow 281$	0.47786	
Excited State	33: Singlet-A	4.2612 eV 290.96 nm $f = 0.0004 < S^{**}2 \ge 0.000$
$265 \rightarrow 281$	0.47767	
$266 \rightarrow 282$	0.47724	
Excited State	34: Singlet-A	4.2728 eV 290.17 nm $f = 0.0001 < S^{**2} = 0.000$
$255 \rightarrow 279$	0.11385	

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Excited State 35: Singlet-A $273 \rightarrow 280$ 0.17266 $276 \rightarrow 280$ -0.11220 $276 \rightarrow 290$ 0.21735 $277 \rightarrow 291$ 0.26162 $278 \rightarrow 279$ 0.10794 $278 \rightarrow 287$ 0.47105	4.2941 eV 288.73 nm <i>f</i> =0.0000 <s**2>=0.000</s**2>
Excited State 36: Singlet-A $268 \rightarrow 282$ -0.12004 $270 \rightarrow 282$ -0.10882 $276 \rightarrow 281$ 0.49960 $278 \rightarrow 282$ 0.42714	4.5003 eV 275.50 nm $f = 0.0004$ <s**2>=0.000</s**2>
Excited State 37: Singlet-A $268 \rightarrow 281$ -0.11999 $270 \rightarrow 281$ -0.10846 $276 \rightarrow 282$ 0.50209 $278 \rightarrow 281$ 0.42199	4.5015 eV 275.43 nm f=0.0515 <s**2>=0.000</s**2>
Excited State 38: Singlet-A $265 \rightarrow 284$ 0.48554 $266 \rightarrow 283$ 0.48546	4.5232 eV 274.11 nm $f = 0.0003 < S^{**2} = 0.000$
Excited State 39: Singlet-A $265 \rightarrow 283$ 0.48757 $266 \rightarrow 284$ 0.48735	4.5233 eV 274.10 nm $f = 0.0004 < S^{**}2 >= 0.000$
Excited State 40: Singlet-A $256 \rightarrow 279$ 0.12078 $258 \rightarrow 280$ -0.32166 $259 \rightarrow 279$ 0.41485 $260 \rightarrow 280$ 0.28685 $273 \rightarrow 279$ 0.12375 $277 \rightarrow 282$ 0.10600 $278 \rightarrow 284$ 0.11216	4.5362 eV 273.32 nm <i>f</i> =0.2984 <s**2>=0.000</s**2>

Fig. S15 Photoluminescence spectra of 1 measured in CH_2Cl_2 (c = 0.020 mM) excited at 520 nm under Air and N₂.

d

Fig. S16 XRD patterns of (a) 1 and (b) 1' with Cu-K $_{\alpha}$ radiation,

References

- S1) P. R. Florindo, D. M. Pereira, P. M. Borralho, P. J. Costa, M. F. M. Piedade, C. M. P. Rodrigues and A. C. Fernandes, *Dalton Trans.*, 2016, 45,11926–11930.
- S2) E. A. Glik, S. Kinayyigit, K. L. Ronayne, M. Towrie, I. V. Sazanovich, J. A. Weinstein and F. N.Castellano, *Inorg. Chem.*, 2008, 47, 6974–6983.
- S3) T. Zhao, Z. Liu, Y. Song W. Xu, D. Zhang and D. Zhu, J. Org. Chem., 2006, 71, 7422–7432.
- S4) Z. He, G. Lai, Z. Li, X. Yuan, Y. Shen and C. Wang, Chin. J. Chem., 2015, 33, 550-558.
- S5) Y. Takihana, M. Shiotsuki, F. Sanda and T. Masuda, Macromolecules, 2004, 37, 7578–7583.
- S6) M. Tabata, T. Fukushima, and Y. Sadahiro, *Macromolecules*, 2004, **37**, 4342–4350.
- S7) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Jr., Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- S8) M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, J. Cheminform., 2012, 4, 17.