Constructing of Bi₂WO₆ with double active sites of tunable metallic Bi and oxygen vacancy for photocatalytic oxidation of cyclohexane to cyclohexanone

Jun-Lei Wang,^a Kuan Wang,^{*a} Zhen-Hong He,^a Tong Sun,^a Run-Jing You^a, Jian-Gang Chen,^b Weitao Wang,^a Yang Yang,^a Zhao-Tie Liu^{*a,b}

^aKey Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China

^bSchool of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China

Corresponding Author

*E-mail: <u>wangkuan@sust.edu.cn</u> (K. Wang), <u>ztliu@snnu.edu.cn</u> (Z.-T. Liu).

The possible mechanisms of the $OV-Bi/Bi_2WO_6$ for the photothermal oxidation of cyclohexane are summarized as follows.

$$\operatorname{Bi}_{2}\operatorname{WO}_{6} + hv \to \operatorname{Bi}_{2}\operatorname{WO}_{6}(h^{+} + e^{-})$$
(1)

$$O_2 + e^- \rightarrow O_2^- \tag{2}$$

$$\cdot O_2^- + 2H^+ + e^- \rightarrow H_2O_2 \rightarrow 2 \cdot OH$$
(3)

$$C_6H_{12} + h^+ \rightarrow C_6H_{11} + H^+$$
(4)

$$C_6H_{11} \cdot + O_2 \rightarrow C_6H_{11}OO \cdot$$
(5)

$$2C_6H_{11}OO \to C_6H_{10}O + C_6H_{11}OH + O_2$$
 (6)

$$C_6H_{11}OO \cdot + e^- + H^+ \rightarrow C_6H_{10}O + H_2O$$
 (7)

$$C_6H_{11}OH + 2h^+ \rightarrow C_6H_{10}O + 2H^+$$
 (8)

$$C_6H_{11}OH + 2 \cdot OH \rightarrow C_6H_{11}O + 2H_2O \tag{9}$$

$$C_6H_{11} \cdot + \cdot O_2^- \rightarrow C_6H_{11}O + OH^-$$
(10)

$$C_6H_{12} + O_2 \rightarrow C_6H_{11}OOH \tag{11}$$

$$C_6H_{11}OOH \rightarrow C_6H_{11}O + OH$$
 (12)

$$C_6H_{11}O + C_6H_{12} \rightarrow C_6H_{11}OH + C_6H_{11}$$
 (13)

$$C_6H_{12} + \cdot OH \rightarrow C_6H_{11} \cdot + H_2O \tag{14}$$

$$C_6H_{11} + O_2 \rightarrow C_6H_{11}OO$$
 (15)

$$C_6H_{11} \cdot + \cdot OH \to C_6H_{11}OH \tag{16}$$

Fig. S1. The wavelength image of the Hg lamp

Fig. S2. XRD patterns of OV-Bi/Bi2WO6 in EG and EG+DMF

Fig. S3. The survey spectrum of OV-Bi/Bi_2WO_6-140, OV-Bi/Bi_2WO_6-160, and OV-Bi/Bi_2WO_6-190.

Fig. S4. TEM and HRTEM of (a, d) OV-Bi/Bi $_2$ WO $_6$ -150, (b, e) OV-Bi/Bi $_2$ WO $_6$ -170, (c, f,) OV-Bi/Bi $_2$ WO $_6$ -180.

Fig. S5. The color of $OV-Bi/Bi_2WO_6$

Fig. S6. VB-XPS spectra of samples of OV-Bi/Bi₂WO₆

Fig. S7. XRD patterns of used and fresh $\mathrm{OV}\text{-}\mathrm{Bi}/\mathrm{Bi}_2\mathrm{WO}_6\text{-}160$ sample.

Fig. S8. TEM images of used and fresh $\mathrm{OV}\text{-}\mathrm{Bi}/\mathrm{Bi}_2\mathrm{WO}_6\text{-}160$ sample.

Catalysts	Reaction condition	Oxidant	CHA-one		
			Amounts/µmol	Sel./%	Kei.
TiO ₂ /rGO _{0.5}	20 mg cat., 5 mL CHA, 2000 W Xe Lamp (λ>300 nm), 12 h	1 atm O ₂	40.1	83.0	[S1]
<i>h</i> -BN/TiO ₂	50 mg cat., 3 mL CHA, 300 W Xe Lamp (λ>300 nm), 12 h		43.9	85.4	[S2]
In ₂ O ₃ /N-TiO ₂	50 mg cat., 3 mL CHA, 300 W Xe Lamp (λ>300 nm), 12 h	1 atm O ₂	46.3	89.7	[S3]
N-TiO ₂ -3	50 mg cat., 10 mL CHA, 10 mL CCl ₄ , 300 W Xe Lamp (λ>420 nm), 5 h	0.1 MPa O ₂	112.4	100	[S4]
AFO/SBA	30 mg cat., 1.5 mL CHA, 18.5 mL CAN, solar simulator, 24 h	1 atm O ₂	70	51	[S5]
BiVO ₄	50 mg cat., 4 mM CHA, 5 mL CAN, 20 W W-Br lamp, 8 h	1 atm O ₂	72.6	72.6	[S6]
BiOI-10	25 mg cat., $24.975 mL$ CHA, $0.025 mL$ H ₂ O, 400 W metal halides-lamp, 3 h	1 atm air	3.1	98.75	[S7]
BiOI	25 mg cat., 24.975 mL CHA, 0.025 mL H_2O , 400 W metal halides-lamp, 3 h	1 atm air	20.2	99.3	[S8]
OV-BiOCl-P	50 mg cat., 3 mL CHA, 500 W Hg lamp, 10 h	1 atm air	228.1	81.1	[S9]
OV-Bi/BiOCl-160	50 mg cat., 3 mL CHA, 500 W Hg lamp, 10 h	1 atm air	128.9	93.6	This work

Table S1 Photocatalytic activities comparison of reported for the photocatalytic oxidation of CHA

Samples	$\mathbf{\tau}_{1}\left(\mathrm{ns}\right)$	A ₁ (%)	$\mathbf{\tau}_2(\mathrm{ns})$	A ₂ (%)	$\mathbf{\tau}_{a}\left(ns ight)$
OV-Bi/Bi2WO6-140	0.7407	75.24	5.0545	24.76	3.73
OV-Bi/Bi ₂ WO ₆ -160	0.8569	59.76	4.7606	40.24	3.94
OV-Bi/Bi ₂ WO ₆ -190	0.9918	92.34	5.5807	7.66	2.45

Table S2 Fluorescence emission lifetime and relevant percentage data fitted by a biexponential function

The decay curves could be well-fitted by a biexponential function:

$$I_{(t)} = I_0 + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$$
(1)

where A_1 and A_2 represent the excited state emission decay amplitudes, I_0 is a constant about the baseline offset, τ_1 refers to the fast decay of trap-mediated nonradiative recombination, and τ_2 is the slow decay correlated to radiative recombination [S10,S11].

The average lifetime is calculated from the following equation:

$$\tau_a = (A_1 \tau_1^2 + A_2 \tau_2^2) / (A_1 \tau_1 + A_2 \tau_2)$$
(2)

References

- [S1]. Y. Shiraishi, S. Shiota, H. Hirakawa, S. Tanaka, S. Ichikawa, T. Hirai, Titanium dioxide/reduced graphene oxide hybrid photocatalysts for efficient and selective partial oxidation of cyclohexane, ACS Catal. 7 (2017) 293-300.
- [S2]. K. Wang, B. Xue, J. Wang, Z. He, X. Zhang, S. Li, W. Wang, Y. Yang, Z. Liu, Efficient and selective oxidation of cyclohexane to cyclohexanone over flake hexagonal boron nitride/titanium dioxide hybrid photocatalysts, Mol. Catal. 505 (2021) 111530.
- [S3]. K. Wang, B. Xue, J.Wang, Z.-H. He, S.-S. Li, D.Wang, W.-T. Wang, Y. Yang, and Z.-T. Liu, Construction of Indium Oxide/N-Doped Titanium Dioxide Hybrid Photocatalysts for Efficient and Selective Oxidation of Cyclohexane to Cyclohexanone, J Phys. Chem. C, 125(36) (2021) 19791-19801.
- [S4]. G. Xu, Y. Zhang, D. Peng, D. Sheng, Y. Tian, D. Ma, Y. Zhang, Nitrogen-doped mixed-phase TiO₂ with controllable phase junction as superior visible-light photocatalyst for selective oxidation of cyclohexane, Appl. Surf. Sci. 536 (2021) 147953.
- [S5]. Y. Ide, S. Tominaka, Y. Yoneno, K. Komaguchi, T. Takei, H. Nishida, N. Tsunoji, A. Machida, T. Sano, Condensed ferric dimers for green photocatalytic synthesis of nylon precursors, Chem. Sci. 10 (2019) 6604-6611.
- [S6]. L. Xiang, J. Fan, W. Zhong, L. Mao, K. You, D. Yin, Heteroatom-induced bandreconstruction of metal vanadates for photocatalytic cyclohexane oxidation towards KA-oil selectivity, Appl. Catal. A Gen. 575 (2019) 120-131.
- [S7]. D. Contreras, V. Melin, K. Márquez, G. Pérez-González, H. Mansilla, G. Pecchi, A. Henríquez, Selective oxidation of cyclohexane to cyclohexanol by bioi under visible light: Role of the ratio (110)/(001) facet, Appl. Catal. B Environ. 251 (2019) 17-24.
- [S8]. A. Henríquez, H. Mansilla, A. Martínez-de la Cruz, J. Freer, D. Contreras, Selective oxofunctionalization of cyclohexane over titanium dioxide-based and bismuth oxyhalide (BiOX, X=Cl⁻, Br⁻, I⁻) photocatalysts by visible light

irradiation, Appl. Catal. B Environ. 206 (2017) 252-262.

- [S9]. J. Wang, K. Wang, Z.-H. He, R.-R. Zhang, P. Guo, W. Wang, Y. Yang, Z.-T. Liu, Constructing of ultrathin Bi₂WO₆/BiOCl nanosheets with oxygen vacancies for photocatalytic oxidation of cyclohexane with air in solvent-free, Appl. Surf. Sci. 584 (2022): 152606.
- [S10] S. Meng, C. Chen, X. Gu, H. Wu, Q. Meng, J. Zhang, S. Chen, X. Fu, D. Liu, W. Lei, Efficient photocatalytic H₂ evolution, CO₂ reduction and N₂ fixation coupled with organic synthesis by cocatalyst and vacancies engineering, Appl. Catal. B Environ. 285 (2021) 119789.
- [S11] Y. Yang, Z. Zeng, G. Zeng, D. Huang, R. Xiao, C. Zhang, C. Zhou, W. Xiong, W. Wang, M. Cheng, W. Xue, H. Guo, X. Tang and D. He, Ti₃C₂ mxene/porous g-C₃N₄ interfacial Schottky junction for boosting spatial charge separation in photocatalytic H₂O₂ production, Appl. Catal. B Environ. 258 (2019) 117956.