ESI for:

## Tin(II) Cations Stabilized by Non-symmetric N,N´,O-chelating Ligands: Synthesis and Stability

Miroslav Novák, \* Jan Turek, \* Yaraslava Milasheuskaya, Miriam Syková, Jesse Stalmans, Zdeňka Růžičková, Klaus Jurkschat and Roman Jambor

## Table of contents:

| Crystallographic data for <b>1</b> (Table S1)                                                       | <b>S2</b>     |
|-----------------------------------------------------------------------------------------------------|---------------|
| Crystallographic data for 2 (Table S2)                                                              | <b>S3</b>     |
| Crystallographic data for <b>3</b> (Table S3)                                                       | <b>S4</b>     |
| Crystallographic data for 4 (Table S4)                                                              | <b>S5</b>     |
| Crystallographic data for 9 (Table S5)                                                              | <b>S6</b>     |
| Crystallographic data for 10 (Table S6)                                                             | <b>S7</b>     |
| Crystallographic data for <b>12</b> (Table S7)                                                      | <b>S8</b>     |
| Computational details                                                                               | <b>S9-S10</b> |
| Optimized geometries of the cationic part of the complexes $1 - 6$ (Figure S1)                      | <b>S11</b>    |
| Optimized geometries of $7 - 9$ (Figure S2)                                                         | <b>S12</b>    |
| Optimized geometries of $10 - 13$ (Figure S3)                                                       | <b>S13</b>    |
| Relevant NBOs involving Sn atom in 1, 7 and 10. (Figure S4)                                         | <b>S14</b>    |
| Gibbs free energy differences for the formation of $1 - 13$ (Table S8)                              | S15           |
| Computed % $V_{Bur}$ for the ligands $L^{1-6}$ in the cationic part of complexes $1 - 6$ (Table S9) | <b>S16</b>    |
| Energy decomposition analysis for $1 - 9$ (Table S10)                                               | <b>S17</b>    |
| Selected Wiberg bond indices and NPA atomic charges for $1 - 13$ (Table S11)                        | <b>S18</b>    |
| Selected NBO second-order perturbation energies for $1 - 13$ (Table S12)                            | <b>S19</b>    |
| Computed FIA for cationic complexes $1^+ - 6^+$ (Table S13)                                         | <b>S20</b>    |
| NMR spectra of studied compounds (Figures S5 – S73) S                                               | <b>21-S89</b> |
| References S                                                                                        | 90-S91        |

| Crystal data                       |                                      |  |
|------------------------------------|--------------------------------------|--|
| Chemical formula                   | $C_{30}H_{31}ClN_2OPSn \cdot Cl_3Sn$ |  |
| $M_{ m r}$                         | 845.72                               |  |
| Crystal system, space group        | Triclinic, <i>P</i> -1               |  |
| Temperature (K)                    | 150                                  |  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 8.6557 (5), 13.0223 (7), 16.2740 (8) |  |
| $\alpha, \beta, \gamma$ (°)        | 73.940 (2), 82.797 (2), 72.263 (2)   |  |
| $V(Å^3)$                           | 1677.28 (16)                         |  |
| Ζ                                  | 2                                    |  |
| Radiation type                     | Μο Κα                                |  |
| $\mu (mm^{-1})$                    | 1.88                                 |  |
| Crystal size (mm)                  | 0.59	imes 0.17	imes 0.12             |  |

| Data collection                                                                   |                                                                                         |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Diffractometer                                                                    | Bruker D8 - Venture                                                                     |
| Absorption correction                                                             | Multi-scan<br>SADABS2016/2 - Bruker AXS area detector scaling and absorption correction |
| $T_{\min}, T_{\max}$                                                              | 0.319, 0.746                                                                            |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 53897, 7715, 6699                                                                       |
| R <sub>int</sub>                                                                  | 0.045                                                                                   |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                                 | 0.651                                                                                   |

| Refinement                                                              |                               |
|-------------------------------------------------------------------------|-------------------------------|
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                     | 0.024, 0.058, 1.07            |
| No. of reflections                                                      | 7715                          |
| No. of parameters                                                       | 365                           |
| No. of restraints                                                       | 330                           |
| H-atom treatment                                                        | H-atom parameters constrained |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$ | 0.43, -0.86                   |

| Crystal data                       |                                                     |
|------------------------------------|-----------------------------------------------------|
| Chemical formula                   | $C_{31}H_{33}ClN_2OPSn \cdot Cl_3Sn \cdot CH_2Cl_2$ |
| $M_{ m r}$                         | 944.67                                              |
| Crystal system, space group        | Triclinic, P-1                                      |
| Temperature (K)                    | 150                                                 |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 12.0479 (6), 12.0989 (6), 13.7729 (7)               |
| α, β, γ (°)                        | 87.484 (2), 68.313 (2), 78.076 (2)                  |
| $V(\text{\AA}^3)$                  | 1824.10 (16)                                        |
| Ζ                                  | 2                                                   |
| Radiation type                     | Μο <i>Κ</i> α                                       |
| $\mu (mm^{-1})$                    | 1.88                                                |
| Crystal size (mm)                  | 0.40 	imes 0.37 	imes 0.12                          |

 Table S2. Crystallographic data for 2·CH<sub>2</sub>Cl<sub>2</sub>

| Data collection                                                                   |                                                                                            |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Diffractometer                                                                    | Bruker D8 - Venture                                                                        |
| Absorption correction                                                             | Multi-scan<br>SADABS2016/2 - Bruker AXS area detector scaling and<br>absorption correction |
| $T_{\min}, T_{\max}$                                                              | 0.563, 0.746                                                                               |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 57933, 8437, 7022                                                                          |
| R <sub>int</sub>                                                                  | 0.052                                                                                      |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                                 | 0.652                                                                                      |

| Refinement                                                     |                               |  |
|----------------------------------------------------------------|-------------------------------|--|
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                            | 0.027, 0.061, 1.06            |  |
| No. of reflections                                             | 8437                          |  |
| No. of parameters                                              | 402                           |  |
| No. of restraints                                              | 348                           |  |
| H-atom treatment                                               | H-atom parameters constrained |  |
| $\Delta \rho_{max}, \Delta \rho_{min} \ (e \ \text{\AA}^{-3})$ | 0.74, -0.84                   |  |

| Crystal data                       |                                       |  |
|------------------------------------|---------------------------------------|--|
| Chemical formula                   | $C_{26}H_{31}ClN_2O_2PSn\cdot Cl_3Sn$ |  |
| $M_{ m r}$                         | 813.68                                |  |
| Crystal system, space group        | Triclinic, <i>P</i> -1                |  |
| Temperature (K)                    | 150                                   |  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 8.8688 (11), 12.8162 (16), 15.329 (2) |  |
| $\alpha, \beta, \gamma$ (°)        | 76.435 (6), 85.256 (6), 73.499 (6)    |  |
| $V(Å^3)$                           | 1623.8 (4)                            |  |
| Ζ                                  | 2                                     |  |
| Radiation type                     | Μο Κα                                 |  |
| $\mu (mm^{-1})$                    | 1.94                                  |  |
| Crystal size (mm)                  | 0.59 	imes 0.23 	imes 0.04            |  |

| Table S3. | Crystallogra | phic data | for 3 |
|-----------|--------------|-----------|-------|
|-----------|--------------|-----------|-------|

| Data collection                                                                   |                                                                                         |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Diffractometer                                                                    | Bruker D8 - Venture                                                                     |
| Absorption correction                                                             | Multi-scan<br>SADABS2016/2 - Bruker AXS area detector scaling and absorption correction |
| $T_{\min}, T_{\max}$                                                              | 0.554, 0.746                                                                            |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 27085, 6239, 4883                                                                       |
| R <sub>int</sub>                                                                  | 0.068                                                                                   |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                                 | 0.617                                                                                   |

| Refinement                                                                   |                                      |
|------------------------------------------------------------------------------|--------------------------------------|
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.067, 0.159, 1.15                   |
| No. of reflections                                                           | 6239                                 |
| No. of parameters                                                            | 342                                  |
| No. of restraints                                                            | 312                                  |
| H-atom treatment                                                             | H-atom parameters constrained        |
|                                                                              | $w = 1/[\sigma^2(F_o^2) + 30.0796P]$ |
|                                                                              | where $P = (F_0^2 + 2F_c^2)/3$       |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \ (e \ \text{\AA}^{-3})$ | 1.30, -1.33                          |

| Crystal data                       |                                                     |
|------------------------------------|-----------------------------------------------------|
| Chemical formula                   | $C_{27}H_{33}ClN_2O_2PSn\cdot Cl_3Sn\cdot CH_2Cl_2$ |
| $M_{ m r}$                         | 912.63                                              |
| Crystal system, space group        | Triclinic, <i>P</i> -1                              |
| Temperature (K)                    | 150                                                 |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 8.6259 (4), 12.4009 (5), 17.2050 (8)                |
| α, β, γ (°)                        | 81.057 (2), 86.640 (2), 75.835 (2)                  |
| $V(\text{\AA}^3)$                  | 1762.34 (14)                                        |
| Ζ                                  | 2                                                   |
| Radiation type                     | Μο Κα                                               |
| $\mu (mm^{-1})$                    | 1.95                                                |
| Crystal size (mm)                  | 0.35 	imes 0.27 	imes 0.04                          |

| Table | S4.  | Crystallo | graphic | data | for 4 | ·CH <sub>2</sub> Cl <sub>2</sub> |
|-------|------|-----------|---------|------|-------|----------------------------------|
| Iunic | 0-10 | Crystano  | Siupine | uutu | 101 - |                                  |

| Data collection                                                                   |                                                                                         |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Diffractometer                                                                    | Bruker D8 - Venture                                                                     |
| Absorption correction                                                             | Multi-scan<br>SADABS2016/2 - Bruker AXS area detector scaling and absorption correction |
| $T_{\min}, T_{\max}$                                                              | 0.542, 0.747                                                                            |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 54631, 6208, 5317                                                                       |
| R <sub>int</sub>                                                                  | 0.250                                                                                   |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                                 | 0.594                                                                                   |

| Refinement                                                |                               |
|-----------------------------------------------------------|-------------------------------|
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                       | 0.052, 0.141, 1.06            |
| No. of reflections                                        | 6208                          |
| No. of parameters                                         | 376                           |
| No. of restraints                                         | 318                           |
| H-atom treatment                                          | H-atom parameters constrained |
| $\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$ | 1.98, -2.34                   |

| Crystal data                       |                                            |
|------------------------------------|--------------------------------------------|
| Chemical formula                   | $C_{26}H_{39}F_3N_2O_7PSSn \cdot CF_3O_3S$ |
| $M_{ m r}$                         | 922.47                                     |
| Crystal system, space group        | Orthorhombic, <i>Pbcn</i>                  |
| Temperature (K)                    | 150                                        |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 24.7026 (10), 16.5078 (6), 18.7687 (7)     |
| $V(\text{\AA}^3)$                  | 7653.6 (5)                                 |
| Ζ                                  | 8                                          |
| Radiation type                     | Μο Κα                                      |
| $\mu (mm^{-1})$                    | 0.90                                       |
| Crystal size (mm)                  | 0.35 	imes 0.22 	imes 0.18                 |

| Table S5. | Crystallographic | data for $9$ |
|-----------|------------------|--------------|
|-----------|------------------|--------------|

| Data collection                                                                   |                                                                                            |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Diffractometer                                                                    | Bruker D8 - Venture                                                                        |
| Absorption correction                                                             | Multi-scan<br>SADABS2016/2 - Bruker AXS area detector scaling and<br>absorption correction |
| $T_{\min}, T_{\max}$                                                              | 0.660, 0.746                                                                               |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 50179, 6731, 4755                                                                          |
| R <sub>int</sub>                                                                  | 0.117                                                                                      |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                                 | 0.595                                                                                      |

| Refinement                                                              |                                                                        |
|-------------------------------------------------------------------------|------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                     | 0.039, 0.089, 1.05                                                     |
| No. of reflections                                                      | 6731                                                                   |
| No. of parameters                                                       | 458                                                                    |
| No. of restraints                                                       | 398                                                                    |
| H-atom treatment                                                        | H atoms treated by a mixture of independent and constrained refinement |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$ | 0.50, -0.46                                                            |

| Crystal data                       |                                              |
|------------------------------------|----------------------------------------------|
| Chemical formula                   | $2(C_{24}H_{26}Cl_3N_2O_2PSn_2)\cdot C_7H_8$ |
| $M_{ m r}$                         | 1590.47                                      |
| Crystal system, space group        | Triclinic, P-1                               |
| Temperature (K)                    | 150                                          |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 13.2768 (4), 15.5938 (6), 15.9485 (6)        |
| $\alpha, \beta, \gamma$ (°)        | 85.119 (2), 79.741 (1), 77.525 (1)           |
| $V(\text{\AA}^3)$                  | 3168.7 (2)                                   |
| Ζ                                  | 2                                            |
| Radiation type                     | Μο <i>Κ</i> α                                |
| $\mu (mm^{-1})$                    | 1.91                                         |
| Crystal size (mm)                  | 0.39 	imes 0.26 	imes 0.16                   |

| Table S6. | Crystallog   | graphic data | for <b>10</b> .0. | 5C7H8      |
|-----------|--------------|--------------|-------------------|------------|
|           | 01 ) 0000000 | 5-000-000000 | 101 20 01         | 0 0 / 1 10 |

| Data collection                                                                   |                                                                                         |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Diffractometer                                                                    | Bruker D8 - Venture                                                                     |
| Absorption correction                                                             | Multi-scan<br>SADABS2016/2 - Bruker AXS area detector scaling and absorption correction |
| $T_{\min}, T_{\max}$                                                              | 0.505, 0.746                                                                            |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 112517, 14671, 12036                                                                    |
| R <sub>int</sub>                                                                  | 0.059                                                                                   |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                                 | 0.652                                                                                   |

| Refinement                                                     |                               |
|----------------------------------------------------------------|-------------------------------|
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                            | 0.026, 0.051, 1.05            |
| No. of reflections                                             | 14671                         |
| No. of parameters                                              | 685                           |
| No. of restraints                                              | 627                           |
| H-atom treatment                                               | H-atom parameters constrained |
| $\Delta \rho_{max}, \Delta \rho_{min} \ (e \ \text{\AA}^{-3})$ | 0.52, -0.59                   |

| Crystal data                       |                                             |
|------------------------------------|---------------------------------------------|
| Chemical formula                   | $C_{21}H_{28}Cl_3N_2O_3PSn_2\cdot CH_2Cl_2$ |
| $M_{ m r}$                         | 816.08                                      |
| Crystal system, space group        | Triclinic, <i>P</i> -1                      |
| Temperature (K)                    | 150                                         |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 8.9021 (5), 12.8588 (5), 13.7649 (5)        |
| $\alpha, \beta, \gamma$ (°)        | 91.567 (2), 97.803 (1), 108.514 (2)         |
| $V(Å^3)$                           | 1476.12 (12)                                |
| Ζ                                  | 2                                           |
| Radiation type                     | Μο Κα                                       |
| $\mu (mm^{-1})$                    | 2.23                                        |
| Crystal size (mm)                  | 0.41 	imes 0.15 	imes 0.05                  |

 Table S7. Crystallographic data for 12·CH<sub>2</sub>Cl<sub>2</sub>

 Crystal data

| Data collection                                                                   |                                                                                         |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Diffractometer                                                                    | Bruker D8 - Venture                                                                     |
| Absorption correction                                                             | Multi-scan<br>SADABS2016/2 - Bruker AXS area detector scaling and absorption correction |
| $T_{\min}, T_{\max}$                                                              | 0.541, 0.746                                                                            |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 47685, 6807, 5192                                                                       |
| R <sub>int</sub>                                                                  | 0.080                                                                                   |
| $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$                          | 0.652                                                                                   |

| Refinement                                                              |                               |
|-------------------------------------------------------------------------|-------------------------------|
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                     | 0.050, 0.144, 1.01            |
| No. of reflections                                                      | 6807                          |
| No. of parameters                                                       | 342                           |
| No. of restraints                                                       | 322                           |
| H-atom treatment                                                        | H-atom parameters constrained |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$ | 1.26, -2.19                   |

## **Computational details**

All calculations were carried out by using DFT as implemented in the Gaussian16 quantum chemistry program.<sup>[S1]</sup> Geometry optimizations were performed at the M06-2X<sup>[S2]</sup>/cc-pVDZ<sup>[S3]</sup> level of theory (cc-pVDZ-PP<sup>[S4]</sup> basis set including small-core relativistic pseudopotentials that account also for relativistic effects was used for Ga and Ge). The electronic energies of the optimized structures were re-evaluated by additional single-point calculations on each of the optimized geometries by using the triple- $\zeta$  quality cc-pVTZ(-PP) basis set.<sup>[S3,S4]</sup> Analytical vibrational frequencies within the harmonic approximation were computed with the cc-pVDZ(-PP) basis set to confirm a proper convergence to well-defined minima or saddle points on the potential energy surface. The Gibbs free energies G<sup>solv</sup>(cc-pVTZ) used to calculate the energy differences reported in this article were computed by using Equations (1) – (4)

$$G^{\text{solv}}(\text{cc-pVTZ}) = G(\text{cc-pVTZ}) + \text{SC}$$
(1)

$$G(cc-pVTZ) = E(cc-pVTZ) + TC$$
<sup>(2)</sup>

$$TC = G(cc-pVDZ) - E(cc-pVDZ)$$
(3)

$$SC = E^{solv}(cc-pVDZ) - E(cc-pVDZ)$$
(4)

in which E(x) is the self-consistent field electronic energy derived from the cc-pVDZ or cc-pVTZ basis sets, TC is the thermal correction to the energy calculated with the cc-pVDZ basis set, G(cc-pVDZ) is the free energy at 298.15 K for the double- $\zeta$  quality basis set, and SC is the solvent correction for  $E^{solv}(cc-pVDZ)$ , which is the self-consistent field energy in the implicit Solvation Model based on Density (SMD)<sup>[S5]</sup> using tetrahydrofuran ( $\varepsilon = 7.4257$ ) as solvent, calculated with the cc-pVDZ basis set.

The natural bond orbital (NBO) analysis<sup>[S6]</sup> and calculations of the Wiberg bond indices<sup>[S7]</sup> were performed using NBO 7.0 program<sup>[S8]</sup> package at the M06-2X<sup>[S2]</sup>/cc-pVTZ(-PP)<sup>[S3,S4]</sup> level of theory.

The Ziegler-Rauk energy decomposition analysis<sup>[S9]</sup> was carried out on the optimized structures at the ZORA<sup>[S10]</sup>/M06-2X<sup>[S2]</sup>/TZ2P<sup>[S11]</sup> level of theory using Amsterdam Modeling Suite (AMS2020; ADF engine).<sup>[S12]</sup> The interaction energy  $\Delta E_{int}$  between two fragments can be decomposed into physically meaningful terms within Kohn–Sham MO theory [Equation (5)],

$$\Delta E_{\rm int} = \Delta E_{\rm Pauli} + \Delta V_{\rm elst} + \Delta E_{\rm oi} \tag{5}$$

where  $\Delta E_{\text{Pauli}}$ ,  $\Delta V_{\text{elst}}$ , and  $\Delta E_{\text{oi}}$  are the Pauli repulsion, electrostatic interaction, and orbital interaction between fragments, respectively. The Pauli repulsion is the result of the steric repulsion between fragments, caused by the destabilizing interaction between electrons with identical spin.  $\Delta V_{\text{elst}}$  represents the quasi-classical electrostatic interaction between the unperturbed charge distributions of the two fragments. The  $\Delta E_{\text{oi}}$  term originates from orbital interactions, charge transfer, and polarization.

The web application SambVca  $2.1^{[S13]}$  was used to calculate the percentage buried volume (%  $V_{Bur}$ ), which quantifies the fraction of the first coordination sphere around the metal centre occupied by the ligand.

Fluoride ion affinities (FIAs) were calculated at the PW6B95-D3BJ<sup>[S14]</sup>/def2-QZVPP<sup>[S15]</sup> level of theory according to the procedure suggested by Greb using the TMS-system as an anchor point for the FIA computations *via* (pseudo-)isodesmic reactions.<sup>[S16]</sup>



Figure S1. Optimized geometries of the cationic part of the complexes 1 - 6 along with selected interatomic distances (in Å). Hydrogen atoms are omitted for clarity.



Figure S2. Optimized geometries of 7 - 9 along with selected interatomic distances (in Å). Hydrogen atoms are omitted for clarity.



Figure S3. Optimized geometries of 10 - 13 along with selected interatomic distances (in Å). Hydrogen atoms are omitted for clarity.



Figure S4. Relevant NBOs (isosurface 0.03 a.u.) involving Sn atom in 1, 7 and 10. NBO populations and orbital energies are also displayed.

|                                                                                                  | $\Delta G(\mathrm{DZ})^{[a]}$ | $\Delta G(\mathrm{TZ})^{[b]}$ | $\Delta G^{\rm solv}({\rm TZ})^{[c]}$ |
|--------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|---------------------------------------|
| $L^1 + 2 \operatorname{SnCl}_2 \rightarrow [L^1 \operatorname{SnCl}][\operatorname{SnCl}_3] (1)$ | 24.9                          | 22.5                          | -31.5                                 |
| $L^2 + 2 \operatorname{SnCl}_2 \rightarrow [L^2 \operatorname{SnCl}][\operatorname{SnCl}_3](2)$  | 24.1                          | 21.9                          | -31.5                                 |
| $L^3 + 2 \operatorname{SnCl}_2 \rightarrow [L^3 \operatorname{SnCl}][\operatorname{SnCl}_3] (3)$ | 26.0                          | 23.7                          | -29.8                                 |
| $L^4 + 2 \operatorname{SnCl}_2 \rightarrow [L^4 \operatorname{SnCl}][\operatorname{SnCl}_3]$ (4) | 23.6                          | 21.2                          | -31.4                                 |
| $L^5 + 2 \operatorname{SnCl}_2 \rightarrow [L^5 \operatorname{SnCl}][\operatorname{SnCl}_3](5)$  | 27.5                          | 24.7                          | -29.9                                 |
| $L^6 + 2 \operatorname{SnCl}_2 \rightarrow [L^6 \operatorname{SnCl}][\operatorname{SnCl}_3]$ (6) | 25.1                          | 22.4                          | -31.4                                 |
| $L^{1} + Sn(OTf)_{2} + H_{2}O \rightarrow [L^{1}Sn(H_{2}O)][OTf]_{2} (7)$                        | -33.8                         | -30.4                         | -27.8                                 |
| $L^4 + Sn(OTf)_2 + H_2O \rightarrow [L^4Sn(H_2O)][OTf]_2 (\textbf{8})$                           | -37.0                         | -33.1                         | -28.8                                 |
| $L^{6} + Sn(OTf)_{2} + H_{2}O \rightarrow [L^{6}Sn(H_{2}O)][OTf]_{2} (9)$                        | -38.1                         | -34.2                         | -29.8                                 |
| $[L^{3}SnCl][SnCl_{3}] (3) \rightarrow 10 + EtCl$                                                | -78.3                         | -85.0                         | -19.1                                 |
| $[L^4SnCl][SnCl_3] (4) \rightarrow 11 + EtCl$                                                    | -77.3                         | -84.1                         | -19.0                                 |
| $[L^{5}SnCl][SnCl_{3}] (5) \rightarrow 12 + iPrCl$                                               | -79.1                         | -85.6                         | -19.3                                 |
| $[L^6SnCl][SnCl_3] (6) \rightarrow 10 + iPrCl$                                                   | -78.5                         | -84.9                         | -19.4                                 |

**Table S8.** Gibbs free energy differences ( $\Delta G$ ; in kcal mol<sup>-1</sup>) for the formation of 1 - 13.

<sup>[a]</sup>Calculated at the M06-2X/cc-pVDZ-PP level of theory; <sup>[b]</sup>Calculated at the M06-2X /cc-pVTZ-PP level of theory; <sup>[c]</sup>Calculated at the M06-2X /cc-pVTZ-PP level of theory in THF.

**Table S9.** Computed %  $V_{Bur}$  for the ligands  $L^{1-6}$  in the cationic part of complexes 1 - 6.

|                 | 1+   | 2+   | 3+ | <b>4</b> + | <b>5</b> <sup>+</sup> | 6+   |
|-----------------|------|------|----|------------|-----------------------|------|
| $\% V_{ m Bur}$ | 41.5 | 43.7 | 42 | 43.5       | 42.5                  | 44.1 |

|                          | $\Delta E_{\rm int}$ | $\Delta E_{ m Pauli}$ | $\Delta E_{ m oi}$ | $\Delta V_{ m elstat}$ |
|--------------------------|----------------------|-----------------------|--------------------|------------------------|
| 1 <sup>+[b]</sup>        | -124.3               | 128.1                 | -104.6 (41)        | -147.8 (59)            |
| $2^{+[b]}$               | -125.9               | 130.9                 | -105.9 (41)        | -150.8 (59)            |
| <b>3</b> +[b]            | -119.5               | 125.9                 | -101.5 (41)        | -143.9 (59)            |
| <b>4</b> +[b]            | -123.0               | 130.7                 | -105.2 (41)        | -148.4 (59)            |
| <b>5</b> <sup>+[b]</sup> | -116.2               | 123.7                 | -99.7 (42)         | -140.1 (58)            |
| <b>6</b> <sup>+[b]</sup> | -119.3               | 128.6                 | -103.1 (42)        | -144.8 (58)            |
| <b>7</b> <sup>[c]</sup>  | -93.0                | 114.0                 | -77.8 (38)         | -129.2 (62)            |
| <b>8</b> <sup>[c]</sup>  | -94.3                | 115.1                 | -77.7 (37)         | -131.7 (63)            |
| <b>9</b> <sup>[c]</sup>  | -91.2                | 116.3                 | -76.7 (37)         | -130.8 (63)            |

**Table S10.** Energy decomposition analysis (EDA) for 1 - 9. (All energies are in kcal mol<sup>-1</sup>).<sup>[a]</sup>

<sup>[a]</sup>Values written in parentheses represent the relative contribution (in %) of the orbital interaction energy and the electrostatic energy with respect to the total stabilization component of the interaction energy; <sup>[b]</sup>[ $L^{1-6}$ ] and [SnCl]<sup>+</sup> fragments; <sup>[c]</sup>[ $L^{1,4,6}$ ] and [Sn(H<sub>2</sub>O)(OTf)<sub>2</sub>] fragments.

|                       | WBI <sub>O-Sn</sub>                                                               | WBI <sub>N(Im)-Sn</sub> | WBI <sub>N(Py)-Sn</sub> | WBI <sub>P-O</sub>                                    | $q_{ m Sn}$  | $q_{ m P}$ | $q_{ m O}$                                                                                                                    |
|-----------------------|-----------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------------------------------------|--------------|------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1+                    | 0.194                                                                             | 0.141                   | 0.159                   | 0.974                                                 | 1.39         | 1.94       | -1.18                                                                                                                         |
| 2+                    | 0.188                                                                             | 0.147                   | 0.156                   | 0.983                                                 | 1.38         | 1.94       | -1.18                                                                                                                         |
| <b>3</b> <sup>+</sup> | 0.174                                                                             | 0.147                   | 0.165                   | 1.022<br>0.775 <sup>[d]</sup>                         | 1.39         | 2.21       | -1.17<br>-0.83 <sup>[f]</sup>                                                                                                 |
| <b>4</b> <sup>+</sup> | 0.172                                                                             | 0.152                   | 0.161                   | 1.026<br>0.774 <sup>[d]</sup>                         | 1.39         | 2.21       | -1.17<br>-0.84 <sup>[f]</sup>                                                                                                 |
| <b>5</b> +            | 0.161                                                                             | 0.149                   | 0.166                   | 1.031<br>0.788 <sup>[e]</sup><br>0.803 <sup>[e]</sup> | 1.39         | 2.46       | -1.18<br>-0.84 <sup>[g]</sup><br>-0.84 <sup>[g]</sup>                                                                         |
| 6+                    | 0.159                                                                             | 0.153                   | 0.162                   | 1.035<br>0.784 <sup>[e]</sup><br>0.802 <sup>[e]</sup> | 1.39         | 2.45       | -1.18<br>-0.84 <sup>[g]</sup><br>-0.84 <sup>[g]</sup>                                                                         |
| 7                     | $\begin{array}{c} 0.163 \\ 0.127^{[a]} \\ 0.108^{[b]} \\ 0.116^{[b]} \end{array}$ | 0.071                   | 0.065                   | 0.953                                                 | 1.64         | 1.97       | -1.22<br>-1.03 <sup>[h]</sup><br>-1.10 <sup>[i]</sup><br>-1.06 <sup>[i]</sup>                                                 |
| 8                     | $\begin{array}{c} 0.157 \\ 0.130^{[a]} \\ 0.105^{[b]} \\ 0.115^{[b]} \end{array}$ | 0.076                   | 0.070                   | 0.989<br>0.765 <sup>[d]</sup>                         | 1.64         | 2.24       | $\begin{array}{c} -1.21 \\ -0.84^{[f]} \\ -1.04^{[h]} \\ -1.10^{[i]} \\ -1.05^{[i]} \end{array}$                              |
| 9                     | $\begin{array}{c} 0.147 \\ 0.124^{[a]} \\ 0.099^{[b]} \\ 0.117^{[b]} \end{array}$ | 0.076                   | 0.082                   | 1.002<br>0.750 <sup>[e]</sup><br>0.804 <sup>[e]</sup> | 1.64         | 2.48       | -1.21<br>-0.85 <sup>[g]</sup><br>-0.85 <sup>[g]</sup><br>-1.04 <sup>[h]</sup><br>-1.09 <sup>[i]</sup><br>-1.06 <sup>[i]</sup> |
| 10                    | 0.202<br>0.244 <sup>[c]</sup>                                                     | 0.118                   | 0.166                   | 0.953<br>0.912                                        | 1.40<br>1.28 | 2.23       | -1.20<br>-1.21                                                                                                                |
| 11                    | 0.201<br>0.245 <sup>[c]</sup>                                                     | 0.120                   | 0.166                   | 0.955<br>0.909                                        | 1.40<br>1.28 | 2.23       | -1.20<br>-1.21                                                                                                                |
| 12                    | 0.190<br>0.241 <sup>[c]</sup>                                                     | 0.118                   | 0.163                   | 0.961<br>0.942<br>0.745 <sup>[e]</sup>                | 1.40<br>1.29 | 2.47       | -1.21<br>-1.20<br>-0.84 <sup>[g]</sup>                                                                                        |
| 13                    | 0.188<br>0.243 <sup>[c]</sup>                                                     | 0.120                   | 0.163                   | 0.965<br>0.939<br>0.743 <sup>[e]</sup>                | 1.41<br>1.29 | 2.47       | -1.21<br>-1.20<br>-0.84 <sup>[g]</sup>                                                                                        |

**Table S11.** Selected Wiberg bond indices (WBI) and NPA atomic charges (q; in e) for 1 - 13.

 $\overset{[a]}{\longrightarrow} Sn \text{ bond; } \overset{[b]}{\longrightarrow} Sn \text{ bond; } \overset{[c]}{\longrightarrow} Sn Cl_2 \text{ bond; } \overset{[d]}{\longrightarrow} P-O^{OEt} \text{ bond; } \overset{[e]}{\longrightarrow} P-O^{OiPr} \text{ bond; } \overset{[f]}{\longrightarrow} O^{OEt} \text{ atom; } \overset{[a]}{\longrightarrow} O^{OIPr} \text{ bond; } \overset{[f]}{\longrightarrow} O^{OEt} \text{ atom; } \overset{[a]}{\longrightarrow} O^{OIPr} \text{ atom; } \overset{[a]}{\longrightarrow} O^{OIPr} \text{ bond; } \overset{[f]}{\longrightarrow} O^{OEt} \text{ atom; } \overset{[a]}{\longrightarrow} O^{OIPr} \text{ bond; } \overset{[f]}{\longrightarrow} O^{OEt} \text{ bond; } \overset{[f]}{\longrightarrow} O^{OIPr} \text{ bond; } \overset{[f]}{\longrightarrow} O^{OIPr$ 

| <i>E</i> <sup>(2)</sup> | O→Sn <sup>[a]</sup>                                                       | $N(Im) \rightarrow Sn^{[b]}$ | $N(Py) \rightarrow Sn^{[c]}$ | $O \rightarrow P^{[d]}$ |
|-------------------------|---------------------------------------------------------------------------|------------------------------|------------------------------|-------------------------|
| 1+                      | 62.6                                                                      | 31.7                         | 39.1                         | 52.3                    |
| 2+                      | 59.1                                                                      | 34.3                         | 39.1                         | 51.5                    |
| <b>3</b> <sup>+</sup>   | 58.6                                                                      | 34.2                         | 40.7                         | 58.5                    |
| <b>4</b> <sup>+</sup>   | 57.4                                                                      | 36.3                         | 40.2                         | 59.3                    |
| <b>5</b> <sup>+</sup>   | 52.8                                                                      | 34.9                         | 41.0                         | 63.3                    |
| <b>6</b> <sup>+</sup>   | 51.7                                                                      | 36.8                         | 40.4                         | 63.7                    |
| 7                       | 59.3<br>33.4 <sup>[e]</sup><br>35.9 <sup>[f]</sup><br>31.2 <sup>[f]</sup> | 14.8                         | 15.5                         | 48.9                    |
| 8                       | 57.0<br>35.2 <sup>[e]</sup><br>35.9 <sup>[f]</sup><br>30.2 <sup>[f]</sup> | 16.1                         | 16.9                         | 56.2                    |
| 9                       | 52.7<br>34.0 <sup>[e]</sup><br>36.1 <sup>[f]</sup><br>29.2 <sup>[f]</sup> | 16.2                         | 20.0                         | 60.6                    |
| 10                      | 70.1<br>81.3 <sup>[g]</sup>                                               | 26.2                         | 43.5                         | 50.9<br>46.3            |
| 11                      | 70.0<br>81.8 <sup>[g]</sup>                                               | 27.4                         | 44.0                         | 51.2<br>46.0            |
| 12                      | 66.7<br>82.4 <sup>[g]</sup>                                               | 26.3                         | 43.0                         | 54.7<br>50.2            |
| 13                      | 65.7<br>83.3 <sup>[g]</sup>                                               | 27.5                         | 43.3                         | 55.3<br>50.0            |

**Table S12.** Selected NBO second-order perturbation energies ( $E^{(2)}$ ; in kcal mol<sup>-1</sup>) for 1 – 13.

 $^{[a]}n_{O} \rightarrow \pi^{*}{}_{Sn} \text{ interaction; } {}^{[b]}n_{N(Imine)} \rightarrow \pi^{*}{}_{Sn}; {}^{[c]}n_{N(Pyridine)} \rightarrow \pi^{*}{}_{Sn}; {}^{[d]}n_{O} \rightarrow \sigma^{*}{}_{P-R} {}^{[e]}O^{H2O} \rightarrow Sn \text{ bond; } {}^{[f]}O^{OTf} \rightarrow Sn \text{ bond; } {}^{[g]}O \rightarrow SnCl_{2} \text{ bond.}$ 

**Table S13.** Computed FIA (in kJ mol<sup>-1</sup>) for cationic complexes  $1^+ - 6^+$  along with the FIA<br/>value of SbF5 as a reference.

|                    | 1+  | <b>2</b> <sup>+</sup> | <b>3</b> <sup>+</sup> | <b>4</b> <sup>+</sup> | <b>5</b> <sup>+</sup> | 6+  | SbF5 |
|--------------------|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----|------|
| FIA <sup>[a]</sup> | 536 | 535                   | 555                   | 546                   | 563                   | 551 | 496  |

<sup>[a]</sup>calculated at the M06-2X/cc-pVDZ-PP//PW6B95-D3BJ/def2-QZVPP level of theory.



**Figure S5.** <sup>1</sup>H NMR spectrum of L<sup>1</sup> in CDCl<sub>3</sub>









Ligand L2\_31P.esp







Ligand L3\_31P.esp















Figure S19. <sup>31</sup>P NMR spectrum of L<sup>5</sup> in CDCl<sub>3</sub>








Compound 1\_31P.esp









Compound 2\_31P.esp









Compound 3\_31P.esp









Compound 4\_31P.esp







Figure S38. <sup>1</sup>H NMR spectrum of 5 in CDCl<sub>3</sub>.

















Compound 7\_31P.esp







Compound 7\_19F.esp





Figure S50. <sup>1</sup>H NMR spectrum of 8 in THF-d8. (\* residual signal of THF)





Compound 8\_19F.esp



-79.32



Figure S54. <sup>1</sup>H NMR spectrum of 9 in CDCl<sub>3</sub>.



Figure S55. <sup>31</sup>P NMR spectrum of 9 in CDCl<sub>3</sub>.



Figure S56. <sup>119</sup>Sn NMR spectrum of 9 in CDCl<sub>3</sub>.






Compound 10\_31P.esp





Figure S61. <sup>119</sup>Sn NMR spectrum of 10 in CDCl<sub>3</sub>.











Figure S66. <sup>1</sup>H NMR spectrum of **12** in CDCl<sub>3</sub>.



Figure S67. <sup>13</sup>C NMR spectrum of **12** in CDCl<sub>3</sub>.



Figure S68. <sup>31</sup>P NMR spectrum of 12 in CDCl<sub>3</sub>.



Figure S69. <sup>119</sup>Sn NMR spectrum of **12** in CDCl<sub>3</sub>.



Figure S70. <sup>1</sup>H NMR spectrum of 13 in CDCl<sub>3</sub>.



Figure S71. <sup>13</sup>C NMR spectrum of 13 in CDCl<sub>3</sub>.



Figure S72. <sup>31</sup>P NMR spectrum of 13 in CDCl<sub>3</sub>.



Figure S73. <sup>119</sup>Sn NMR spectrum of 13 in CDCl<sub>3</sub>.

## References

- [S1] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [S2] Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215.
- [S3] (a) T. H. Dunning, J. Chem. Phys., 1989, 90, 1007; (b) D. E. Woon and T. H. Dunning, J. Chem. Phys., 1993, 98, 1358.
- [S4] (a) B. Metz, H. Stoll and M. Dolg, J. Chem. Phys., 2000, 113, 2563; (b) K. A. Peterson, J. Chem. Phys., 2003, 119, 11099.
- [S5] A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378.
- [S6] (a) J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211; (b) F. Weinhold, J. Comput. Chem., 2012, 33, 2363, and references therein; (c) C. R. Landis and F. Weinhold, in The Chemical Bond: Fundamental Aspects of Chemical Bonding, ed. G. Frenking and S. Shaik, Wiley-VCH, Weinheim, 2014, ch. 3, pp. 91-120.
- [S7] K. B. Wiberg, *Tetrahedron*, 1968, **24**, 1083.
- [S8] NBO 7.0, E. D. Glendening, J, K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2018.
- [S9] (a) T. Ziegler and A. Rauk, *Theor. Chim. Acta*, 1977, 46, 1; (b) T. Ziegler and A. Rauk, *Inorg. Chem.*, 1979, 18, 1558; (c) T. Ziegler and A. Rauk, *Inorg. Chem.*, 1979, 18, 1755; (d) F. M. Bickelhaupt and E. J. Baerends, in *Reviews in Computational Chemistry*, ed. K. B. Lipkowitz and D. B. Boyd, Wiley, New York, 2000, vol. 15, ch. 1, pp. 1-86.
- [S10] (a) E. van Lenthe, E. J. Baerends and J. G. Snijders, *J. Chem. Phys.*, 1993, 99, 4597;
  (b) E. van Lenthe, E. J. Baerends and J. G. Snijders, *J. Chem. Phys.*, 1994, 101, 9783;
  (c) E. van Lenthe, A. E. Ehlers and E. J. Baerends, *J. Chem. Phys.*, 1999, 110, 8943.
- [S11] (a) E. van Lenthe and E. J. Baerends, *J. Comput. Chem.*, 2003, 24, 1142; (b) D. P. Chong, E. van Lenthe, S. J. A. van Gisbergen and E. J. Baerends, *J. Comput. Chem.*, 2004, 25, 1030; (c) D. P. Chong, *Mol. Phys.*, 2005, 103, 749.
- [S12] (a) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, Chemistry with ADF, *J. Comput. Chem.*, 2001, 22, 931; (b) AMS/ADF 2020.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
- [S13] (a) A. Poater, B. Cosenza, A. Correa, S. Giudice, F. Ragone, V. Scarano and L. Cavallo, *Eur. J. Inorg. Chem.*, 2009, 1759; (b) L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano and L. Cavallo, *Nat. Chem.*, 2019, **11**, 872.
- [S14] Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 5656.
- [S15] (a) B. Metz, H. Stoll and M. Dolg, J. Chem. Phys., 2000, 113, 2563; (b) F. Weigend,
   F. Furche and R. Ahlrichs, J. Chem. Phys., 2003, 119, 12753; (c) F. Weigend and R.

Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297; (d) F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, 8, 1057.
[S16] P. Erdmann, J. Leitner, J. Schwarz and L. Greb, *ChemPhysChem*, 2020, 21, 987.