Supporting Information

Self-supporting NiMo-Fe-P nanowire arrays as bifunctional catalysts for efficient overall water splitting

Xiangyang Zhou, ^a Tingting Yang, ^a Youju Zi, ^a Ting Li, ^a Juan Yang, ^a and Jingjing Tang *^a

^aSchool of Metallurgy and Environment, Central South University, Changsha 410083, China; orcid.org/0000-0002-6383-469X; E-mail address: tangjj@csu.edu. cn.

Fig. S1. Color change of nickel foam.

Fig. S2. SEM images of NiMo.

Fig. S3. SEM images and EDS of (a) NiMo-Fe-1; (b) NiMo-Fe-2; (c) NiMo-Fe-3.

Fig. S4. SEM images of (a) NiMo-P; (b) NiMo-Fe-1-P; (c) NiMo-Fe-3-P.

Fig. S5. XPS survey spectra analysis of NiMo-Fe-2-P.

Fig. S6. LSV curves of (a) OER and (b) HER.

Fig. S7. CV curves of different samples with various scan rates (OER).

Fig. S8. C_{dl} comparison of different samples (OER).

Fig. S9. CV curves of different samples with various scan rates (HER).

Fig. S10. C_{dl} comparison of different samples (HER).

Fig. S11. Morphology and element distribution of NiMo-Fe-2-P.

Fig. S12. Morphology and element distribution of NiMo-Fe-2-P after OER test.

Fig. S13. Morphology and element distribution of NiMo-Fe-2-P after HER test.

Fig. S14. XPS high-resolution spectrum before and after HER/OER of NiMo-Fe-2-P.

Fig. S15. XRD pattern before and after HER/OER of NiMo-Fe-2-P.

Samples	Loading mass (mg cm ⁻²)
NiMo	2.52
NiMo-P	3.48
NiMo-Fe-1	2.2
NiMo-Fe-2	2.18
NiMo-Fe-3	2.16
NiMo-Fe-1-P	3.45
NiMo-Fe-2-P	3.42
NiMo-Fe-3-P	3.4
Pt/C	3.42
IrO ₂	3.42

Table. S1. Summary of the loading amounts of the as-prepared samples on the NF.

	Ni	Mo	Fe	Р	0
NiMo-Fe-2-P	34.6	8.8	1.5	16.4	38.7
After OER	33.7	0.5	0.4	1.6	63.8
After HER	35.2	6.7	1.2	10.1	46.9

Table. S2. Relative element content (at%) of as-prepared NiMo-Fe-2-P, after OER NiMo-Fe-2-PP and after HER NiMo-Fe-2-P quantified by EDS.

Material	Electrolyte	HER ŋ10	OER η10	Overall water splitting η10	Ref
	(KOH)	(mV)	(mV)	(V)	
NiMo-Fe-2-P	1.0 M	73.1	215.2	1.526	This work
CoSAs-MoS ₂ /TiN NRs	1.0 M	131.9	340.6	1.58	[1]
Co(OH) ₂ /NiMo CA@CC	1.0 M	30	267	1.52	[2]
NiFeOP	1.0 M	153	217	1.57	[3]
VCoCO _x @NF	1.0 M	63	240	1.54	[4]
CoMnP/Ni ₂ P/NF	1.0 M	108	209	1.54	[5]
Ni-Fe-P-Ni ₃ S ₂ /NF	1.0 M	69	219	1.5	[6]
NiCoZnP/NC	1.0 M	74	228	1.54	[7]
Co-Ni ₃ S ₂	1.0 M	80	228	1.54	[8]
POM@ZnCoS/NF	1.0 M	170	200	1.56	[9]
NiCoFeMnCrP	1.0 M	220	270	1.55	[10]
Co/CoO@NC@CC	1.0 M	152	284	1.66	[11]
CuO@CoZn-LDH	1.0 M	124	194	1.55	[12]
Ni@CoO@CoMOFC	1.0 M	138	247	1.61	[13]
Cu ₃ P-Cu ₂ O/NPC	1.0 M	138	286	1.57	[14]
CoFe PBA@CoP	1.0 M	100	171	1.542	[15]

Table. S3. Comparison of OER/HER/overall water splitting performance of NiMo-Fe-2-P with

 recently reported catalysts.

Reference

(1) Doan, T. L. L.; Nguyen, D. C.; Prabhakaran, S.; Kim, D. H.; Tran, D. T.; Kim, N. H.; Lee, J. H. Single-atom Co-decorated MoS₂ nanosheets assembled on metal nitride nanorod arrays as an efficient bifunctional electrocatalyst for pH-universal water splitting. Adv. Funct. Mater. 2021, 31, 2100233.

(2) Zhang, Q.; Xiao, W.; Guo, W. H.; Yang, Y. X.; Lei, J. L.; Luo, H. Q.; Li, N. B. Macroporous array induced multiscale modulation at the surface/interface of Co(OH)₂/NiMo self-supporting electrode for effective overall water splitting. Adv. Funct. Mater. **2021**, 31, 2102117.

(3) Xie, Y.; Zhao, B.; Tang, K.; Qin, W.; Tan, C.; Yao, J.; Li, Y.; Jiang, L.; Wang, X.; Sun, Y.
In-situ phase transition induced nanoheterostructure for overall water splitting. Chem. Eng. J.
2021, 409, 128156.

(4) Meena, A.; Thangavel, P.; Nissimagoudar, A. S.; Singh, A. N.; Jana, A.; Jeong, D. S.; Im, H.; Kim, K. S. Bifunctional oxovanadate doped cobalt carbonate for high-efficient overall water splitting in alkaline-anion-exchange-membrane water-electrolyzer. Chem. Eng. J. 2022, 430, 132623.

(5) Liu, M.; Sun, Z.; Li, S.; Nie, X.; Liu, Y.; Wang, E.; Zhao, Z. Hierarchical superhydrophilic/superaerophobic CoMnP/Ni₂P nanosheet-based microplate arrays for enhanced overall water splitting. J. Mater. Chem. A **2021**, *9*, 22129-22139.

(6) Li, Z.; Wang, K.; Tan, X.; Liu, X.; Wang, G.; Xie, G.; Jiang, L. Defect-enriched multistage skeleton morphology Ni-Fe-P-Ni₃S₂ heterogeneous catalyst on Ni foam for efficient overall water splitting. Chem. Eng. J. **2021**, 424, 130390.

(7) Chen, B.; Kim, D.; Zhang, Z.; Lee, M.; Yong, K. MOF-derived NiCoZnP nanoclusters anchored on hierarchical N-doped carbon nanosheets array as bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. **2021**, 422, 130533.

(8) Jin, C.; Zhai, P.; Wei, Y.; Chen, Q.; Wang, X.; Yang, W.; Xiao, J.; He, Q.; Liu, Q.; Gong, Y. Ni(OH)₂ templated synthesis of ultrathin Ni₃S₂ nanosheets as bifunctional electrocatalyst for overall water splitting. Small **2021**, 17, 2102097.

(9) Gautam, J.; Liu, Y.; Gu, J.; Ma, Z.; Zha, J.; Dahal, B.; Zhang, L. N.; Chishti, A. N.; Ni, L.; Diao, G. Fabrication of polyoxometalate anchored zinc cobalt sulfide nanowires as a remarkable bifunctional electrocatalyst for overall water splitting. Adv. Funct. Mater. **2021**, 31, 2106147.

(10) Lai, D.; Kang, Q.; Gao, F.; Lu, Q. High-entropy effect of a metal phosphide on enhanced overall water splitting performance. J. Mater. Chem. A **2021**, 9, 17913-17922.

(11) Dai, K.; Zhang, N.; Zhang, L.; Yin, L.; Zhao, Y.; Zhang, B. Self-supported Co/CoO anchored on N-doped carbon composite as bifunctional electrocatalyst for efficient overall water splitting. Chem. Eng. J. **2021**, 414, 128804.

(12) Yin, L.; Du, X.; Di, C.; Wang, M.; Su, K.; Li, Z. In-situ transformation obtained defect-rich porous hollow CuO@ CoZn-LDH nanoarrays as self-supported electrode for highly efficient overall water splitting. Chem. Eng. J. **2021**, 414, 128809.

(13) Wang, Y.; Wang, A.; Xue, Z.; Wang, L.; Li, X.; Wang, G. Ultrathin metal–organic
framework nanosheet arrays and derived self-supported electrodes for overall water splitting. J.
Mater. Chem. A 2021, 9, 22597-22602.

(14) Zhu, J.; Jiang, E.; Wang, X.; Pan, Z.; Xu, X.; Ma, S.; Shen, P. K.; Pan, L.; Eguchi, M.;
 Nanjundan, A. K. Gram-Scale production of Cu₃P-Cu₂O Janus nanoparticles into nitrogen and

phosphorous doped porous carbon framework as bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. **2022**, 427, 130946.

(15) Quan, L.; Li, S.; Zhao, Z.; Liu, J.; Ran, Y.; Cui, J.; Lin, W.; Yu, X.; Wang, L.; Zhang, Y.
Hierarchically assembling CoFe prussian blue analogue nanocubes on CoP nanosheets as highly
efficient electrocatalysts for overall water splitting. Small Methods 2021, 5, 2100125.