## Rational design of C<sub>3</sub>N/C<sub>3</sub>B p-n heterostructure as a promising

## anode material in Li-ion batteries

Manqi You<sup>1</sup>, Gencai Guo<sup>1,2\*</sup>, Siwei Luo<sup>1</sup>, Jianxin Zhong<sup>1\*</sup> <sup>1</sup> Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China. <sup>2</sup> Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Guangdong 528311, China.



Fig. S1. (a) Energy as a function of  $C_3B$  moving relative to  $C_3N$  of  $C_3N/C_3B$  along with X and Y directions. (b)The most stable structure in which  $C_3B$ 's relatively moving ratio is 0.



Fig. S2. Top and side views of the Li adsorption sites on the  $C_3B$  and  $C_3N$  monolayer (Li/ $C_3B$ , Li/ $C_3N$ ).  $H_C$  and  $H_B$  sites are on the  $C_3B$ , and  $H_C$ ' and  $T_N$  sites are on the  $C_3N$ .



Fig. S3. The adsorption energy of Li adsorbs on C<sub>3</sub>N/C<sub>3</sub>B heterostructure.



Fig. S4. Top and side views of the maximum possible Li storage in  $C_3N/C_3B$  heterostructure.



Fig.S5 Calculated voltage that depending on the Li concentration of  $Li_xC_3N/C_3B$  systems.



Fig. S6 Front view of migration path and energy barrier of Li diffusion (a) on the outside of  $C_3N$  of the  $C_3N/C_3B$  heterostructure (Li/C<sub>3</sub>N/C<sub>3</sub>B); (b) on the outside of  $C_3B$  of the  $C_3N/C_3B$  heterostructure (C<sub>3</sub>N/C<sub>3</sub>B/Li); (c) on the interlayer of  $C_3N/C_3B$  heterostructure (C<sub>3</sub>N/C<sub>3</sub>B).

Table S1 The charge value of carbon ( $Q_C$ ), nitrogen ( $Q_N$ ), boron ( $Q_B$ ), and Li ( $Q_{Li}$ ) atoms at different Li concentrations in  $C_3N/C_3B$  heterostructure.

| Li<br>concentration<br>(x) in<br>C <sub>3</sub> N/C <sub>3</sub> B | Q <sub>C (C3N)</sub> | Q <sub>C (C3B)</sub> | Q <sub>N</sub> | Q <sub>B</sub> | $Q_{\mathrm{Li}}$ |
|--------------------------------------------------------------------|----------------------|----------------------|----------------|----------------|-------------------|
| 0.00                                                               | 86.79                | 112.10               | 48.77          | 8.34           | 0.00              |
| 0.75                                                               | 89.01                | 114.51               | 48.73          | 8.77           | 0.98              |

| 1.50 | 91.35 | 115.66 | 49.06 | 9.56  | 2.36  |
|------|-------|--------|-------|-------|-------|
| 2.25 | 94.42 | 116.01 | 49.15 | 9.99  | 4.43  |
| 3.00 | 94.51 | 119.88 | 49.04 | 10.62 | 5.93  |
| 3.50 | 96.05 | 117.71 | 48.75 | 10.67 | 10.82 |