Electronic Supporting Information

AgPd nanocages sandwiched between MXene nanosheet and PDA layer for photothermally improved catalytic activity and antibacterial properties

Jie Jin, *a Shanshan Wu, Jing Wang, Yunqi Xu, Shouhu Xuan, and Qunling

Fang*b

^a School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 23 0601, PR China

^b School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China

^c CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, PR China

*Corresponding author: Asso. Prof. Jie Jin E-mail: jinjie@ahjzu.edu.cn

Asso. Prof. Qunling Fang E-mail: fql.good@hfut.edu.cn

Fig. S1 (a-c) Histogram of AgPd nanocage size distribution of the MXene@AgPd/PDA-N (N=1~3) nanosheet.

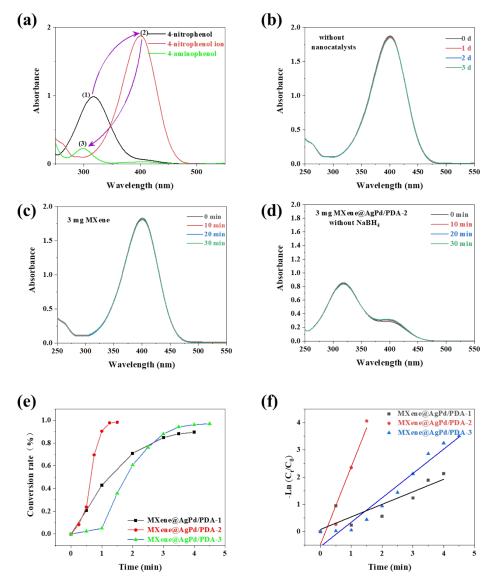


Fig. S2 (a) Absorption peak changes of the reduction of 4-nitrophenol to 4aminophenol: Schematic diagram of position change of maximum absorption peak. (b) With reducing agent, without catalyst. (c) With reducing agent and 3 mg MXene. (d) Without reducing agent, with catalyst. (e) The relationship between the conversion rate and time of different silver-palladium molar ratios. (f) Linear relationship between Ln (C_t/C_0) and reaction time of different silver-palladium molar ratios.

Table. S1 The weight percentage of Ag and Pd elements in MXene@AgPd/PDA-2 by ICP-MS.

	Ag (wt%)	Pd (wt%)
MXene@AgPd/PDA-2	7.53	7.53