Electronic Supplementary Information (ESI) for:

Double solvent synthesis of ultrafine Pt nanoparticles supported on halloysite nanotubes for chemoselective cinnamaldehyde hydrogenation

Rongqian Cui,^a Jiaqi Zhou,^a Dan Wang,^a Yafei Zhao,^a Xu Xiang,^b Huishan Shang ^{*a} and Bing Zhang ^{*a}

^aSchool of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China

^bState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China

*Corresponding Author. E-mail address: shanghs@zzu.edu.cn; zhangb@zzu.edu.cn

The conversion and selectivity¹ were calculated from Eqs. (1–5), which are:

Conversion of CMA= reacted CMA/CMA (in)(1)Selectivity of CMO = CMO (in)/reacted CMA(2)Selectivity of HCMA = HCMA (in)/reacted CMA(3)Selectivity of HCMO = HCMO (in)/reacted CMA(4)Reaction rate (h⁻¹) =
$$\frac{nCMA}{nPt} \times$$
 conversion/time (h)(5)

where n_{CMA} represents the moles of CMA in the mixture, and n_{Pt} is the moles of Pt used in the reaction.

Fig. S1 SEM image of Pt/HNTs

Fig. S2 The XRD patterns of Pt/HNTs and after four recycle

Fig. S3 SEM image of the recycled Pt/HNTs.

Fig. S4 XPS spectra of the Pt/HNTs catalysts after the fourth use.

T (AC)		Selectivity (%)					
Temperature (°C)	Conversion (%)	СМО	НСМА	НСМО			
50	32.7	81.4	9.6	9.0			
60	51.7	87.8	8.1	4.1			
70	69.2	88.4	6.0	5.6			
80	94.1	95.1	2.5	2.4			
90	93.9	85.3	5.0	9.7			

Table S1. Influence of temperature on hydrogenation of CMA over 3.8 wt% Pt/HNTs.

Reaction conditions: 5 mmol substrate, reaction time = 2 h, H_2 = 2 MPa, 12.5 mL ethanol, stirring speed = 800 rpm. Selectivity is reported at the level of conversion in the table.

".	Conversion (%)	Selectivity (%)					
Reaction Time (h)		СМО	НСМА	НСМО			
0.5	44.4	88.5	8.1	3.4			
1.0	61.8	89.5	6.8	3.7			
1.5	79.6	91.9	4.8	3.3			
2.0	94.1	95.1	2.5	2.4			
2.5	91.8	75.0	4.7	20.3			

Table S2. Influence of reaction time on hydrogenation of CMA over 3.8 wt% Pt/HNTs.

Reaction conditions: 5 mmol substrate, temperature = 80 °C, H_2 = 2 MPa, 12.5 mL ethanol, stirring speed = 800 rpm. Selectivity is reported at the level of conversion in the table.

		Selectivity (%)				
$H_2(MPa)$	Conversion (%)					
		СМО	HCMA	НСМО		
0.5	46.8	86.1	10.0	3.9		
1.0	73.3	86.4	8.3	5.3		
1.5	74.1	88.0	7.2	4.8		
2.0	94.1	95.1	2.5	2.4		
2.5	94.5	82.6	5.9	11.5		

Table S3. Influence of H₂ pressure on hydrogenation of CMA over 3.8 wt% Pt/HNTs.

Reaction conditions: 5 mmol substrate, temperature = 80 °C, reaction time = 2 h, 12.5 mL ethanol, stirring speed = 800 rpm. Selectivity is reported at the level of conversion in the table.

$\mathbf{D}_{\mathbf{f}}(\mathbf{x}\mathbf{y}\mathbf{t}0/0)$	C_{equation} (0/)	Selectivity (%)				
Ft (W170)	Conversion (76)	СМО	НСМА	НСМО		
1.5	44.7	84.6	10.7	4.7		
2.3	57.3	87.3	8.4	4.3		
3.0	63.0	87.9	7.5	4.6		
3.8	94.1	95.1	2.5	2.4		
4.6	93.0	93.0	3.7	3.3		

Table S4. Effect of percentage metal loading on hydrogenation of CMA.

Reaction conditions: 5 mmol substrate, temperature = 80 °C, reaction time = 2 h, H_2 = 2 MPa, 12.5 mL ethanol, stirring speed = 800 rpm. Selectivity is reported at the level of conversion in the table.

	C - I			Selectivity (%)				
Solvents		Conversion (%)	СМО	HCMA	НСМО	yield (%)		
	Cyclohexane	45.0	68.0	18.7	13.3	30.6		
	Isopropanol	56.7	78.7	11.5	9.8	44.6		
	Methanol	78.8	90.9	5.7	3.4	71.7		
	Ethanol	94.1	95.1	2.5	2.4	89.5		

Table S5. Influence of solvents on hydrogenation of CMA over 3.8 wt% Pt/HNTs.

Reaction conditions: 5 mmol substrate, temperature = 80 °C, H_2 = 2 MPa, reaction time = 2 h, stirring speed = 800 rpm. Selectivity is reported at the level of conversion in the table, yield=conversion (%) × selectivity (%).

Deevele times	CMA Conversion (%)	Selectivity (%)			
Recycle times		СМО	HCMA	НСМО	
1	94.1	95.1	2.5	2.4	
2	92.8	95.8	1.8	2.4	
3	91.0	95.4	2.7	1.9	
4	89.3	94.0	3.0	3.0	
5	87.2	91.0	5.6	3.4	
6	81.0	87.6	7.5	4.9	

Table S6. Recycle times on hydrogenation of CMA over 3.8 wt% Pt/HNTs.

Reaction conditions: 5 mmol substrate, temperature = 80 °C, reaction time = 2 h, H_2 = 2 MPa, 12.5 mL ethanol, stirring speed = 800 rpm. Selectivity is reported at the level of conversion in the table.

Catalyst	Solvents	Pt (wt%)	Tem. (°C)	P _{H2} (MPa)	T (h)	Conv. (%)	Sel. (%)	Ref.
Pt/HNTs	ethanol	3.8	80	2	2	94.1	95.1	This work
Pt@UiO- 66-NH ₂	methanol	10.7	25	4	44	98.7	91.7	2
Pt/CeO ₂	ethanol	3.5	70	2	6	81.9	27.6	3
Pt@CeO ₂	ethanol	2.9	70	2	6	63.4	69.5	3
Pt@Y	isopropanol	0.6	130	3	13	100	91.0	4
Pt/U-720	methanol	2.0	50	4	3	90.9	89.1	5
Pt/MOF- NH ₂	isopropanol	2.9	60	1	3	72.3	78.9	6
Pt@S-1	isopropanol	0.22	60	1	4	99.8	98.7	7
Pt/S-1	isopropanol	0.17	60	1	4	99.9	0.1	7
Pt@S-1- is	isopropanol	0.26	60	1	4	43.9	31.9	7
Pt30/Al ₂ O ₃	ethanol	0.99	60	2	8	85.0	47.0	8
Pt/PCT_1	ethanol	1.6	80	0.2	3	46.5	42.9	9
Pt/PCT_2	ethanol	1.6	80	0.2	3	97.8	51.9	9
(Pt- enriched cage)@Ce O_2 core@shell	ethanol	19.2	60	1	5	95.0	87.0	10

Table S7. Catalytic results reported recently for hydrogenation of CMA to CMO on supported Pt catalysts.

References

- R. Li, W. Yao, Y. Jin, W. Jia, X. Chen, J. Chen, J. Zheng, Y. Hu, D. Han and J. Zhao, *Chem. Eng. J.*, 2018, **351**, 995-1005.
- Z. Guo, C. Xiao, R. V. Maligal-Ganesh, L. Zhou, T. W. Goh, X. Li, D. Tesfagaber,
 A. Thiel and W. Huang, ACS Catal., 2014, 4, 1340-1348.
- L. Wang, R. Han, Y. Ma, M. S. Duyar, W. Liu and J. Liu, *J. Phys. Chem. C*, 2021, 125, 22603-22610.
- 4 X. Deng, B. Qin, R. Liu, X. Qin, W. Dai, G. Wu, N. Guan, D. Ma and L. Li, J. *Am. Chem. Soc.*, 2021, **143**, 20898-20906.
- 5 R. Geng, H. Jia, Y. Xie, D. Pan, F. Yu and B. Fan, *Microporous Mesoporous Mater.*, 2022, **338**, 111968.
- M. Zahid, A. Ismail, M. Sohail and Y. Zhu, J. Colloid Interface Sci., 2022, 628, 141-152.
- 7 C. Liu, P. Zhu, J. Wang, H. Liu and X. Zhang, *Chem. Eng. J.* 2022, 446, 137064.
- 8 Q. Hu, S. Wang, Z. Gao, Y. Li, Q. Zhang, Q. Xiang, and Y. Qin, *Appl. Catal. B*, 2017, **218**, 591-599.
- Z. Gu, L. Chen, X. Li, L. Chen, Y. Zhang and C. Duan, *Chem. Sci.*, 2019, 10, 2111
 2117.
- 10 S. Song, X. Liu, J. Li, J. Pan, F. Wang, Y. Xing, X. Wang, X. Liu and H. Zhang, *Adv. Mater.*, 2017, **29**, 1700495.