Supporting Information for

From M₆ to M₁₂, M₁₉ and M₃₈ molecular alloy carbonyl nanoclusters: selective growth of atomically precise heterometallic nanoclusters

Cristiana Cesari,^a Beatrice Berti,^a Marco Bortoluzzi,^b Cristina Femoni,^a Tiziana Funaioli,^c Federico Maria Vivaldi,^c Maria Carmela Iapalucci,^a and Stefano Zacchini^{*a}

^a Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4 - 40136 Bologna, Italy. E-mail: <u>stefano.zacchini@unibo.it</u>

^b Dipartimento di Scienze Molecolari e Nanosistemi, Ca' Foscari University of Venice, Via Torino 155 – 30175 Mestre (Ve), Italy.

^c Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13 - 56124, Pisa, Italy.

	Page/s
IR spectra	S2-S9
Molecular structures	S10-S12
X-Ray crystallographic study	S13-S21
Supplementary IR-SEC and CV figures	S22-S24
ORTEP drawings	S25-S29
Cartesian coordinates, energy values and computed frequencies	S30-S47
References	S48

IR spectrum (v_{CO} region) recorded in thf of [NBu₄]₂[Ni₆(CO)₁₂].

Figure S2

IR spectrum (v_{CO} region) recorded in thf of [NBu₄]₂[Ni₉(CO)₁₈].

Figure S3 ectrum (y_{CO} region) recorded in thf of [NBu₄]₂[H₂Ni₁₂(CC

Figure S4

IR spectrum (v_{CO} region) recorded in thf of [NBu₄]₂[Pt₆(CO)₁₂].

Figure S5

IR spectrum (v_{CO} region) recorded in thf of [NBu₄]₂[Pt₉(CO)₁₈].

Figure S6 IR spectrum (v_{CO} region) recorded in thf of [NBu₄]₂[Pt₁₂(CO)₂₄].

Figure S7 IR spectrum (v_{CO} region) recorded in thf of $[NBu_4]_2[Pt_{6-x}Ni_x(CO)_{12}]$ (x = 4.20).

Figure S8

IR spectrum (v_{CO} region) recorded in thf of a mixture of $[NBu_4]_2[Pt_9(CO)_{18}] + [NBu_4]_2[Ni_9(CO)_{18}]$ (1:1 molar ratio).

Figure S10

IR spectrum (v_{CO} region) recorded in thf of a mixture of [NBu₄]₂[Pt₉(CO)₁₈] +

[NBu₄]₂[H₂Ni₁₂(CO)₂₁] (1:1 molar ratio).

Figure S12

IR spectra (v_{CO} region) recorded in thf of a mixture of (A) $[Pt_{6-x}Ni_x(CO)_{12}]^{2-}$ (x = 3) and (B-E) after the addition of increasing amounts of HBF₄·Et₂O.

IR spectra (v_{CO} region) recorded in thf of a mixture of (A) $[Pt_{6-x}Ni_x(CO)_{12}]^{2-}$ (x = 4) and (B-E) after the addition of increasing amounts of HBF₄·Et₂O.

Figure S14

IR spectrum (v_{CO} region) recorded in CH₃CN of a mixture of $[NBu_4]_2[Pt_6(CO)_{12}] +$

 $[NBu_4]_2[Ni_6(CO)_{12}]$ (1:2 molar ratio) after heating at 85 °C for 90 minutes.

IR spectrum (v_{CO} region) recorded in CH₃CN of a mixture of [NBu₄]₂[Pt₉(CO)₁₈] + [NBu₄]₂[Ni₆(CO)₁₂] (1:1.16 molar ratio) after heating at 85 °C for 90 minutes.

Figure S16

IR spectrum (v_{CO} region) recorded in thf of [NEt₄]₄[Pt_{12-x}Ni_x(CO)₂₁] (x = 2.90).

Molecular structure of $[Pt_{12-x}Ni_x(CO)_{21}]^{4-}$ (x = 3.72) (purple, Pt; yellow, Ni \approx 21-32% and Pt \approx 68-79%; orange, Ni \approx 68-73% and Pt \approx 27-32%; red, O; grey, C).

Figure S18

Molecular structure of $[Pt_{12-x}Ni_x(CO)_{21}]^{4-}$ (x = 5.82) (purple, Pt; yellow, Ni \approx 49-58% and Pt \approx 42-51%; orange, Ni \approx 84-90% and Pt \approx 10-16%; red, O; grey, C).

Molecular structure of $[Pt_{12-x}Ni_x(CO)_{21}]^{4-}$ (x = 6.45) (purple, Pt; yellow, Ni \approx 25-96% and Pt \approx 4-75%; orange, Ni \approx 81-92% and Pt \approx 8-19%; red, O; grey, C).

Figure S20

Molecular structure of $[Pt_{19-x}Ni_x(CO)_{22}]^{4-}$ (x = 2.23) (purple, Pt; yellow, Ni \approx 7-41% and Pt \approx 59-93%; red, O; grey, C).

Molecular structure of $[Pt_{19-x}Ni_x(CO)_{22}]^{4-}$ (x = 3.11) (purple, Pt; yellow, Ni \approx 27-35% and Pt \approx 65-73%; red, O; grey, C).

X-ray Crystallographic Study

Crystal data and collection details for the structures deposited with CCDC, that is $[NBu_4]_4[Pt_{6-x}Ni_x(CO)_{12}]$ (x = 4.20), $[NEt_4]_4[Pt_{12-x}Ni_x(CO)_{21}]$ (x = 3.72), $[NBu_4]_4[Pt_{12-x}Ni_x(CO)_{21}] \cdot 2CH_3COCH_3$ (x = 5.82), $[NEt_4]_4[Pt_{19-x}Ni_x(CO)_{22}] \cdot 2CH_3COCH_3$ (x = 2.23), $[NBu_4]_4[Pt_{19-x}Ni_x(CO)_{22}] \cdot 2CH_3CN$ (x = 3.11), $[NMe_4]_5[HPt_{14+x}Ni_{24-x}(CO)_{44}] \cdot 3CH_3COCH_3$ (x = 0.70) are reported in Table S5.

The structures of $[NMe_4]_4[Pt_{12-x}Ni_x(CO)_{21}]\cdot 2CH_3CN$ (x = 6.25), $[NEt_4]_4[Pt_{12-x}Ni_x(CO)_{21}]\cdot 1.79CH_3CN$ (x = 6.45), $[NBu_4]_4[Pt_{19-x}Ni_x(CO)_{22}]\cdot 2CH_3CN$ (x = 5.26) were of low quality and poorly diffracting. The resulting structures allowed to determine the overall geometry composition and connectivity of the clusters. These compared very well with related homometallic and heterometallic carbonyl clusters. Their cif files were included as Supplementary Material (cifSI.cif), but they were not deposited with CCDC. Their crystal data and collection details are reported in Table S6.

The diffraction experiments were carried out on a Bruker APEX II diffractometer equipped with a PHOTON2 detector using Mo–K α radiation. Data were corrected for Lorentz polarization and absorption effects (empirical absorption correction SADABS).¹ Structures were solved by direct methods and refined by full-matrix least-squares based on all data using $F^{2,2}$ Hydrogen atoms were fixed at calculated positions and refined by a riding model. All non-hydrogen atoms were refined with anisotropic displacement parameters, unless otherwise stated.

Structures deposited with CCDC

 $[NBu_4]_4[Pt_{6-x}Ni_x(CO)_{12}]$ (x = 4.20): The asymmetric unit of the unit cell contains half of a cluster anion (located on an inversion centre) and one $[NBu_4]^+$ cation (located on a general position). The positions occupied by M(1), M(2) and M(3) are disordered Pt/Ni. These have been refined applying dummy atoms constraints (EADP and EXYZ lines in SHLEXL) resulting in the following refined occupancy factors: M(1) = 0.368(2) Pt and 0.632(2) Ni; M(2) = 0.356(2) Pt and 0.644(2) Ni; M(3) = 0.182(2) Pt and 0.818(2) Ni.

[NEt₄]₄[Pt_{12-x}Ni_x(CO)₂₁] (x = 3.72): The asymmetric unit of the unit cell contains half of a cluster anion (located on 2) and two [NEt₄]⁺ cations (located on general positions). The positions occupied by M(3), M(4), M(5), M(6) and M(7) are disordered Pt/Ni. These have been refined applying dummy atoms constraints (EADP and EXYZ lines in SHLEXL) resulting in the following refined occupancy factors: M(3) = 0.794(4) Pt and 0.206(4) Ni; M(4) = 0.730(4) Pt and 0.270(4) Ni; M(5) = 0.682(4) Pt and 0.318(4) Ni; M(6) = 0.325(5) Pt and 0.675(5) Ni; M(7) = 0.272(4) Pt and 0.728(4) Ni. The two [NEt₄]⁺ cations are disordered and, therefore, they have been split into two positions and refined anisotropically employing one occupancy factor per disordered group. The [NEt₄]⁺ cations have been restrained to have similar thermal parameters (SIMU line in SHELXL, s.u. 0.02) and similar geometries (SAME line in SHELXL, s.u. 0.04). Restraints to bond distances were applied as follow (s.u. 0.02): 1.47 Å for C–N and 1.53 Å for C–C in [NEt₄]⁺.

[NBu₄]₄[Pt_{12-x}Ni_x(CO)₂₁]·2CH₃COCH₃ (x = 5.82): The asymmetric unit of the unit cell contains half of a cluster anion (located on 2), two [NBu₄]⁺ cations and one CH₃COCH₃ molecule (located on general positions). The positions occupied by M(3), M(4), M(5), M(6) and M(7) are disordered Pt/Ni. These have been refined applying dummy atoms constraints (EADP and EXYZ lines in SHLEXL) resulting in the following refined occupancy factors: M(3) = 0.508(7) Pt and 0.492(7) Ni; M(4) = 0.449(7) Pt and 0.551(7) Ni; M(5) = 0.424(7) Pt and 0.576(7) Ni; M(6) = 0.158(6) Pt and 0.842(6) Ni; M(7) = 0.104(9) Pt and 0.896(9) Ni. The [NBu₄]⁺ cations and CH₃COCH₃ molecule have been restrained to have similar thermal parameters (SIMU line in SHELXL, s.u. 0.01). Restraints to bond distances were applied as follow (s.u. 0.02): 1.47 Å for C–N and 1.53 Å for C–C in [NBu₄]⁺; 1.21 Å for C–O and 1.51 Å for C–C in CH₃COCH₃.

[NEt₄]₄[Pt_{19-x}Ni_x(CO)₂₂]·2CH₃COCH₃ ($\mathbf{x} = 2.23$): The asymmetric unit of the unit cell contains half of a cluster anion (located on 2),two [NEt₄]⁺ cations and one CH₃COCH₃ molecule (located on general positions). The positions occupied by M(6), M(7), M(8), M(9) and M(10) are disordered Pt/Ni. These have been refined applying dummy atoms constraints (EADP and EXYZ lines in SHLEXL) resulting in the following refined occupancy factors: M(6) = 0.930(9) Pt and 0.070(9) Ni; M(7) = 0.828(9) Pt and 0.172(9) Ni; M(8) = 0.748(9) Pt and 0.252(9) Ni; M(9) = 0.786(9) Pt and 0.214(9) Ni; M(10) = 0.594(9) Pt and 0.404(9) Ni. One [NEt₄]⁺ cation is disordered and, therefore, it has been split into two positions and refined anisotropically employing one occupancy factor per disordered group. The [NEt₄]⁺ cations have been restrained to have similar thermal parameters (SIMU line in SHELXL, s.u. 0.02). Restraints to bond distances were applied as follow (s.u. 0.02): 1.47 Å for C–N and 1.53 Å for C–C in [NBu₄]⁺; 1.21 Å for C–O and 1.51 Å for C–C in CH₃COCH₃.

[NBu₄]₄[Pt_{19-x}Ni_x(CO)₂₂]·2CH₃CN (x = 3.11): The asymmetric unit of the unit cell contains one fourth of a cluster anion (located on a site of symmetry *mm*2), two halves of [NBu₄]⁺ cations (located on *m*), and one half of a CH₃CN molecule (located on *m*). The positions occupied by M(6), M(7) and M(8) are disordered Pt/Ni. These have been refined applying dummy atoms constraints (EADP and EXYZ lines in SHLEXL) resulting in the following refined occupancy factors: M(6) = 0.73(2) Pt and 0.27(2) Ni; M(7) = 0.646(14) Pt and 0.354(14) Ni; M(8) = 0.683(14) Pt and 0.317(15) Ni. The unit cell contains an additional total potential solvent accessible void of 335 Å³ (*ca*. 5.7% of the Cell Volume), which is likely to be occupied by further highly disordered CH₃CN molecules. These voids have been treated using the SQUEEZE routine of PLATON.³ Similar *U*

restraints have been applied to all C, O and N atoms (SIMU line in SHELXL, s.u. 0.01). Restraints to bond distances were applied as follow (s.u. 0.02): 1.47 Å for C–N and 1.53 Å for C–C in $[NBu_4]^+$; 1.14 Å for C–N and 1.49 Å for C–C in CH₃CN.

[NMe₄]₅[HPt_{14+x}Ni_{24-x}(CO)₄₄]·3CH₃COCH₃ ($\mathbf{x} = 0.70$): The asymmetric unit of the unit cell contains one sixth of a cluster anion (located on $\overline{3}$), one third of a [NMe₄]⁺ cation (located on $\overline{3}$), and one [NMe₄]⁺ cation and one CH₃COCH₃ molecule. The latter cation and solvent molecules are disordered on the same general position and display 0.5 occupancy factor each. The position occupied by M(7) is disordered Pt/Ni. This has been refined applying dummy atoms constraints (EADP and EXYZ lines in SHLEXL) resulting in the following refined occupancy factor: M(4) = 0.116(3) Pt and 0.884(3) Ni. Restraints to bond distances were applied as follow (s.u. 0.02): 1.47 Å for C–N in [NMe₄]⁺.

Structures not deposited with CCDC

[NMe₄]₄[Pt_{12-x}Ni_x(CO)₂₁]·2CH₃CN (x = 6.25): The asymmetric unit of the unit cell contains half of a cluster anion (located on 2), two [NMe₄]⁺ cations and one CH₃CN molecule (located on general positions). The positions occupied by M(3), M(4), M(5), M(6) and M(7) are disordered Pt/Ni. These have been refined applying dummy atoms constraints (EADP and EXYZ lines in SHLEXL) resulting in the following refined occupancy factors: M(3) = 0.474(5) Pt and 0.526(5) Ni; M(4) = 0.372(4) Pt and 0.628(4) Ni; M(5) = 0.327(4) Pt and 0.673(4) Ni; M(6) = 0.147(5) Pt and 0.853(5) Ni; M(7) = 0.131(4) Pt and 0.869(4) Ni. The CO ligands has been restrained to isotropic behaviour (ISOR line in SHELXL, s.u. 0.005). One [NMe₄]⁺ cation is disordered and, therefore, it has been split into two positions and refined anisotropically employing one occupancy factor per disordered group. The [NMe₄]⁺ cations have been restrained to have similar thermal parameters (SIMU line in SHELXL, s.u. 0.02) and similar geometries (SAME line in SHELXL, s.u. 0.04).

[NEt₄]₄[Pt_{12-x}Ni_x(CO)₂₁]·1.78CH₃CN (x = 6.45): The asymmetric unit of the unit cell contains one cluster anion, four [NEt₄]⁺ cations and two CH₃CN molecules (located on general positions). The positions occupied by M(4), M(5), M(6), M(7), M(8), M(9), M(10), M(11) and M(12) are disordered Pt/Ni. These have been refined applying dummy atoms constraints (EADP and EXYZ lines in SHLEXL) resulting in the following refined occupancy factors: M(4) = 0.754(12) Pt and 0.246(12) Ni; M(5) = 0.696(12) Pt and 0.304(12) Ni; M(6) = 0.513(12) Pt and 0.487(12) Ni; M(7) = 0.073(11) Pt and 0.927(11) Ni; M(8) = 0.040(11) Pt and 0.960(11) Ni; M(9) = 0.046(11) Pt and 0.954(12) Ni; M(10) = 0.082(12) Pt and 0.918(12) Ni; M(11) = 0.192(12) Pt and 0.808(12) Ni; M(12) = 0.160(12) Pt and 0.840(12) Ni. All the C, O and N atoms have been restrained to isotropic behaviour (ISOR line in SHELXL, s.u. 0.01). The [NEt₄]⁺ cations have been restrained to have

similar geometries (SAME line in SHELXL, s.u. 0.04). One $[NEt_4]^+$ cation is disordered and, therefore, it has been split into two positions and refined anisotropically employing one occupancy factor per disordered group. The disorder model involves also one CH₃CN molecule which, therefore, possesses a partial occupation factor, that is 0.790(3). Restraints to bond distances were applied as follow (s.u. 0.02): 1.47 Å for C–N and 1.53 Å for C–C in $[NEt_4]^+$; 1.14 Å for C–N and 1.49 Å for C–C in CH₃CN.

[NBu₄]₄[Pt_{19-x}Ni_x(CO)₂₂]·2CH₃CN (x = 5.26): The asymmetric unit of the unit cell contains one fourth of a cluster anion (located on a site of symmetry *mm***2), two halves of [NBu_4]^+ cations (located on** *m***), and one half of a CH₃CN molecule (located on** *m***). The positions occupied by M(6), M(7) and M(8) are disordered Pt/Ni. These have been refined applying dummy atoms constraints (EADP and EXYZ lines in SHLEXL) resulting in the following refined occupancy factors: M(6) = 0.533(13) Pt and 0.467(13) Ni; M(7) = 0.421(8) Pt and 0.5793(84) Ni; M(8) = 0.496(9) Pt and 0.504(9) Ni. The crystals appeared to be non-merohedrally twinned. The TwinRotMat routine of PLATON.³ was used to determine the twinning matrices and to write the reflection data file (.hkl) containing the twin components. Refinement was performed using the instruction HKLF 5 in SHELXL and two BASF parameters, which refined as 0.250(8) and 0.165(7). The CO ligands has been restrained to have similar thermal parameters (SIMU line in SHELXL, s.u. 0.01) and to isotropic behaviour (ISOR line in SHELXL, s.u. 0.01). Similar** *U* **restraints have been applied to the [NBu₄]⁺ cations (SIMU line in SHELXL, s.u. 0.001). The [NBu₄]⁺ cations have been refined as rigid group (AFIX 6 line in SHELXL).**

Table S5

Crystal data and experimental details for $[NBu_4]_4[Pt_{6-x}Ni_x(CO)_{12}]$ (x = 4.20), $[NEt_4]_4[Pt_{12-x}Ni_x(CO)_{21}]$ (x = 3.72), $[NBu_4]_4[Pt_{12-x}Ni_x(CO)_{21}]$ ·2CH₃COCH₃ (x = 5.82), $[NEt_4]_4[Pt_{19-x}Ni_x(CO)_{22}]$ ·2CH₃COCH₃ (x = 2.23), $[NBu_4]_4[Pt_{19-x}Ni_x(CO)_{22}]$ ·2CH₃CN (x = 3.11),

 $[NMe_4]_5[HPt_{14+x}Ni_{24-x}(CO)_{44}]$ • 3CH₃COCH₃ (x = 0.70). These structures have been deposited with CCDC.

	$[NBu_4]_4[Pt_{6-x}Ni_x(CO)_{12}]$ (x =	$[NEt_4]_4[Pt_{12-x}Ni_x(CO)_{21}]$ (x =	[NBu ₄] ₄ [Pt _{12-x} Ni _x (CO) ₂₁]·
	4.20)	3.72)	2CH ₃ COCH ₃ (x = 5.82)
Formula	$C_{44}H_{72}N_2Ni_{4.20}O_{12}Pt_{1.80}$	$C_{53}H_{80}N_4Ni_{3.72}O_{21}Pt_{8.28}$	$C_{91}H_{156}N_4Ni_{5.82}O_{23}Pt_{6.18}$
Fw	1418.78	2942.95	3221.88
Т, К	100(2)	100(2)	100(2)
λ, Å	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Orthorhombic
Space Group	PĪ	<i>C</i> 2/ <i>c</i>	Pbcn
a, Å	11.0302(12)	21.4147(14)	17.409(5)
b, Å	11.8415(14)	13.4345(8)	25.656(7)
c, Å	11.9367(14)	24.8815(15)	24.249(6)
α, °	89.874(4)	90	90
β, °	64.953(4)	109.099(2)	90
γ, °	70.960(4)	90	90
Cell Volume, Å ³	1318.3(3)	6764.3(7)	10830(5)
Z	1	4	4
D_c , g cm ⁻³	1.787	2.890	1.976
μ , mm ⁻¹	6.282	18.128	9.001
F(000)	704	5376	6236
Crystal size, mm	0.18×0.16×0.12	0.18×0.16×0.12	0.18×0.16×0.13
θ limits, °	1.907–27.000	1.732–25.998	1.414-25.050
_	$-14 \le h \le 14$	$-26 \le h \le 26$	$-20 \le h \le 20$
Index ranges	$-15 \le k \le 15$	$-16 \le k \le 16$	$-30 \le k \le 30$
	-15 ≤ 1 ≤ 15	$-30 \le 1 \le 30$	$-28 \le l \le 28$
Reflections collected	24906	43980	79829
Independent reflections	5738 [R _{int} = 0.0834]	6602 [R _{int} = 0.0539]	9569 [$R_{int} = 0.1330$]
Completeness to θ max	99.9%	99.4%	99.7%
Data / restraints / parameters	5738 / 0 / 296	6602 / 244 / 389	9569/ 302 / 593

Goodness on fit on F ²	1.017	1.237	1.125
$R_1 (I > 2\sigma(I))$	0.0332	0.0498	0.0967
wR_2 (all data)	0.0762	0.0962	0.2643
Largest diff. peak and hole, e $Å^{-3}$	1.153 / -0.870	1.727 / -2.928	3.952 / -2.626

	$[NEt_4]_4[Pt_{19-x}Ni_x(CO)_{22}]$	$[NBu_4]_4[Pt_{19-x}Ni_x(CO)_{22}]$	[NMe ₄] ₅ [HPt _{14+x} Ni _{24-x} (CO) ₂₂]·
	$2CH_3COCH_3 (x = 2.23)$	$2CH_3CN (x = 3.11)$	$3CH_3COCH_3 (x = 0.70)$
Formula	$C_{60}H_{92}N_4Ni_{2.23}O_{24}Pt_{16.77}$	$C_{90}H_{150}N_6Ni_{3.11}O_{22}Pt_{15.89}$	$C_{73}H_{78}N_5Ni_{23,20}O_{47}Pt_{14,70}$
Fw	4656.29	4950.72	6012.97
Т, К	100(2)	100(2)	100(2)
λ, Å	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Orthorhombic	Trigonal
Space Group	C2/c	Pmmn	RĪ
a, Å	25.210(2)	17.067(4)	16.2307(19)
b, Å	13.3089(11)	20.438(5)	16.2307(19)
c, Å	26.112(2)	16.797(4)	36.437(5)
α, °	90	90	90
β, °	105.662(3)	90	90
γ, °	90	90	120
Cell Volume, Å ³	8435.7(12)	5859(2)	8313(2)
Z	4	2	3
$D_c, g cm^{-3}$	3.666	2.806	3.603
μ , mm ⁻¹	28.236	19.429	22.395
F(000)	8170	4469	8178
Crystal size, mm	0.19×0.15×0.11	0.18×0.16×0.12	0.16×0.15×0.13
θ limits, °	1.745-25.099	1.971-25.000	1.677–25.994
	$-29 \le h \le 29$	$-20 \le h \le 20$	$-20 \le h \le 20$
Index ranges	$-15 \le k \le 15$	$-24 \le k \le 24$	$-20 \le k \le 20$
	$-31 \le 1 \le 31$	$-19 \le l \le 19$	$-44 \le l \le 44$
Reflections	47303	52011	41806
collected	47505	52511	41800
Independent	7357 [$\mathbf{R}_{\perp} = 0.0825$]	5476 [$\mathbf{R}_{1,2} = 0.0887$]	$3617 [\mathbf{R}_{\perp} = 0.1759]$
reflections	$1557 [R_{int} = 0.0025]$	$5470 [R_{int} = 0.0007]$	$5017 [R_{int} - 0.1757]$
Completeness to θ	99.2%	99.2%	99.9%
max			
Data / restraints /	7357 / 382 / 561	5467/ 85 / 202	3617 / 55 / 238
parameters			

Goodness on fit on F ²	1.174	1.128	1.050
$R_1 (I > 2\sigma(I))$	0.0878	0.1507	0.0446
wR_2 (all data)	0.2307	0.4267	0.1287
Largest diff. peak and hole, e $Å^{-3}$	4.233 / -2.786	5.642 / -2.750	3.175 / -2.525

Table S6

Crystal data and experimental details for $[NMe_4]_4[Pt_{12-x}Ni_x(CO)_{21}] \cdot 2CH_3CN (x = 6.25),$ $[NEt_4]_4[Pt_{12-x}Ni_x(CO)_{21}] \cdot 1.79CH_3CN (x = 6.45), [NBu_4]_4[Pt_{19-x}Ni_x(CO)_{22}] \cdot 2CH_3CN (x = 5.26).$

	$[NMe_4]_4[Pt_{12}]_xNi_x(CO)_{21}] \cdot 2CH_3CN (x = 6.25)$	[NEt ₄] ₄ [Pt _{12-x} Ni _x (CO) ₂₁]· 1.79CH ₃ CN (x = 6.45)	$[NBu_{4}]_{4}[Pt_{19-x}Ni_{x}(CO)_{22}]$ $2CH_{3}CN (x = 5.26)$
Formula	C ₄₁ H ₅₄ N ₆ Ni _{6.25} O ₂₁ Pt _{5.75}	$C_{56.58}H_{85.37}N_{5.79}Ni_{6.45}O_{21}Pt_{5.56}$	$C_{90}H_{150}N_6Ni_{5.26}O_{22}Pt_{13.73}$
Fw	2455.60	2644.80	4656.82
Т, К	100(2)	100(2)	100(2)
λ, Å	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Orthorhombic
Space Group	C2/c	ΡĪ	Pmmn
a, Å	19.316(3)	13.2466(19)	17.121(5)
b, Å	13.933(2)	14.556(2)	20.403(6)
c, Å	21.955(3)	18.866(3)	16.642(6)
α, °	90	91.855(4)	90
β, °	103.199(4)	92.379(4)	90
γ, °	90	91.164(4)	90
Cell Volume, Å ³	5752.6(16)	3631.7(9)	5814(3)
Z	4	2	2
D_c , g cm ⁻³	2.835	2.419	2.660
μ , mm ⁻¹	15.991	12.350	17.339
F(000)	4534	2494	4254
Crystal size, mm	0.15×0.13×0.12	0.16×0.13×0.11	0.16×0.13×0.12
θ limits, °	1.819–24.999	1.539–24.997	1.706–25.011
	$-22 \le h \le 22$	$-15 \leq h \leq 15$	$-20 \le h \le 20$
Index ranges	$-16 \le k \le 16$	$-17 \le k \le 17$	$-24 \le k \le 24$
	$-26 \le l \le 26$	$-22 \le 1 \le 22$	$-19 \le 1 \le 19$
Reflections collected	28086	40409	30201
Independent reflections	4997 [R _{int} = 0.0893]	12476 [$R_{int} = 0.1260$]	5418 [$R_{int} = 0.1469$]
Completeness to θ max	98.7%	97.4%	99.2%
Data / restraints / parameters	4997 / 400 / 386	12476 / 1101 / 919	5418/ 154 / 210
Goodness on fit	1.073	1.081	1.356

These structures have not been deposited with CCDC.

on F ²			
$R_1 \left(I > 2\sigma(I) \right)$	0.0706	0.1570	0.1433
wR_2 (all data)	0.1796	0.4208	0.4018
Largest diff. peak and hole, e $Å^{-3}$	2.659 / -2.176	4.155 / -1.561	7.162 / -6.474

IR spectral changes of a CH₃CN solution of $[Pt_{19}(CO)_{22}]^{4-}$ recorded in an OTTLE cell during the progressive increase of the potential from -0.4 to +0.2 V vs Ag pseudo-reference electrode (scan rate 1 mV sec⁻¹). $[N^nBu_4][PF_6]$ (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and supporting electrolyte have been subtracted.

IR spectral changes of a CH₃CN solution of [Pt₁₉(CO)₂₂]^{4–} recorded in an OTTLE cell a) during the progressive decrease of the potential from –0.7 to –2.5V *vs* Ag pseudo-reference electrode (scan rate 2 mV sec⁻¹); b) before (red line) and after (black line) the cyclic voltammetry between –0.7 and –2.5V (*vs* Ag pseudo reference electrode, scan rate 2 mV sec⁻¹).[NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and supporting electrolyte have been subtracted.

CV response of $[Pt_{19-x}Ni_x(CO)_{22}]^{4-}$ (x= 3.11) at a GC (blue line) and at a Pt (red line) electrodes in CH₃CN solution of $[N^nBu_4][PF_6]$ (0.1 mol dm⁻³) supporting electrolyte. Scan rate: 0.1 V s⁻¹.

ORTEP drawing of the cluster anion of $[NBu_4]_4[Pt_{6-x}Ni_x(CO)_{12}]$ (x = 4.20). Thermal ellipsoids are at the 50% probability level (orange, disordered Pt/Ni; red, O; black, C). CCDC 2217067

Figure S26

ORTEP drawing of the cluster anion of $[NEt_4]_4[Pt_{12-x}Ni_x(CO)_{21}]$ (x = 3.72). Thermal ellipsoids are at the 50% probability level (purple, Pt; orange, disordered Pt/Ni; red, O; black, C). CCDC 2217068

ORTEP drawing of the cluster anion of $[NBu_4]_4[Pt_{12-x}Ni_x(CO)_{21}] \cdot 2CH_3COCH_3$ (x = 5.82). Thermal ellipsoids are at the 50% probability level (purple, Pt; orange, disordered Pt/Ni; red, O; black, C). CCDC 2217069

Figure S28

ORTEP drawing of the cluster anion of $[NEt_4]_4[Pt_{19-x}Ni_x(CO)_{22}]\cdot 2CH_3COCH_3$ (x = 2.23). Thermal ellipsoids are at the 50% probability level (purple, Pt; orange, disordered Pt/Ni; red, O; black, C).

CCDC 2217072

ORTEP drawing of the cluster anion of $[NBu_4]_4[Pt_{19-x}Ni_x(CO)_{22}] \cdot 2CH_3CN$ (x = 3.11). Thermal ellipsoids are at the 50% probability level (purple, Pt; orange, disordered Pt/Ni; red, O; black, C). CCDC 2217073

Figure S30

ORTEP drawing of the cluster anion of [NMe₄]₅[HPt_{14+x}Ni_{24-x}(CO)₄₄]·3CH₃COCH₃ (x = 0.70). Thermal ellipsoids are at the 50% probability level (purple, Pt; green, Ni; yellow, disordered Pt/Ni; red, O; black, C). CCDC 2217076

ORTEP drawing of the cluster anion of $[NMe_4]_4[Pt_{12-x}Ni_x(CO)_{21}] \cdot 2CH_3CN$ (x = 6.25). Thermal ellipsoids are at the 50% probability level (purple, Pt; orange, disordered Pt/Ni; red, O; black, C).

Figure S32

ORTEP drawing of the cluster anion of $[NEt_4]_4[Pt_{12-x}Ni_x(CO)_{21}] \cdot 1.79CH_3CN$ (x = 6.45). Thermal ellipsoids are at the 50% probability level (purple, Pt; orange, disordered Pt/Ni; red, O; black, C). No CCDC

ORTEP drawing of the cluster anion of $[NBu_4]_4[Pt_{19-x}Ni_x(CO)_{22}] \cdot 2CH_3CN$ (x = 5.26). Thermal ellipsoids are at the 50% probability level (purple, Pt; orange, disordered Pt/Ni; red, O; black, C).

Cartesian coordinates, energy values and computed frequencies

$[PtNi_{11}(CO)_{21}]^{4-} isA \ (E = -19076.480479556431 \ a.u., \ G^{298K} = -19076.38614915 \ a.u.)$

54						Computed	l frequenci	es (cm ⁻¹)	
PtN1	0.007702467	0.022005620	1 524720402	1.	12.46	61.	222.04	121.	525 01
INI NG	0.007703407	0.033993620	-1.524729403	1:	15.40	01: 62:	255.94	121:	527.01
Ni	-1.337423337	-2 315129106	1 470857261	2.	25.07	63.	243.02	122.	539.06
Pt	1 245348273	-2 552500306	-0 704060784	5. 4·	27.56	64·	251.03	123.	546 79
Ni	-1.287743928	-2.266130012	-0.670837669	+. 5'	34.73	65:	252.12	124.	548.20
Ni	0.013940708	-0.007361859	2.850398195	6:	35.91	66:	257.83	126:	548.42
Ni	-2.420001924	0.087373602	-1.352879317	7:	40.62	67:	261.79	127:	563.57
С	-2.798212971	-2.641012731	-1.460716187	8:	41.81	68:	275.03	128:	576.62
C	-0.211403122	-2.856108225	-2.117790380	9:	49.86	69:	275.63	129:	582.64
С	2.782955222	-3.140493178	-1.595578188	10:	53.69	70:	285.04	130:	598.30
С	1.709034575	-2.962723871	1.256034432	11:	58.69	71:	305.54	131:	601.32
С	-0.172416246	-2.724411390	3.164368427	12:	60.79	72:	309.78	132:	613.85
С	-1.860538687	-2.691196001	1.070101583	13:	63.37	73:	384.17	133:	615.57
С	-3.905617387	0.182029864	-2.233578686	14:	64.04	74:	389.31	134:	617.78
С	-3.140833298	0.082243739	0.421075536	15:	64.74	75:	393.48	135:	648.09
С	0.025115433	0.033316117	4.580583171	16:	67.28	76:	393.66	136:	1911.69
С	-1.227819934	-0.054745567	-2.857134837	17:	70.18	77:	399.66	137:	1912.73
С	-1.882144008	0.092228867	2.591706811	18:	71.30	78:	400.76	138:	1922.70
0	-3.748189856	-3.050999830	-1.962538513	19:	71.57	79:	403.65	139:	1931.27
0	-0.305610638	-3.304889734	-3.193899769	20:	73.16	80:	405.45	140:	1931.78
0	3.702724840	-3.586499620	-2.132689070	21:	74.48	81:	410.13	141:	1942.45
0	2.571930037	-3.469717378	1.861642730	22:	74.89	82:	411.24	142:	1943.46
0	-0.255027004	-3.158790125	4.226047923	23:	77.35	83:	420.41	143:	1954.09
0	-2.811686793	-3.105921571	1.609286672	24:	78.71	84:	423.66	144:	1963.36
0	-4.892474178	0.264468377	-2.822776531	25:	79.77	85:	427.44	145:	1990.89
0	-4.232417740	0.090138024	0.840913566	26:	81.73	86:	428.11	146:	1992.20
0	0.033197834	0.072280657	5.732201466	27:	82.75	87:	428.80	147:	2003.26
0	-1.412584362	-0.170946264	-4.006478197	28:	84.67	88:	429.38	148:	2079.17
0	-2.784465697	0.159405341	3.333212940	29:	84.84	89:	431.34	149:	2083.18
Ni	1.377107213	-0.021731930	0.842841710	30:	86.10	90:	432.63	150:	2089.85
Ni	0.060853888	2.289979333	1.456398798	31:	88.14	91:	434.69	151:	2097.72
Ni	-1.143846560	2.326777031	-0.627750754	32:	90.24	92:	440.68	152:	2099.15
Ni	1.276023308	2.260364744	-0.629084878	33:	96.39	93:	443.54	153:	2119.48
N1	2.431867597	-0.072380752	-1.348534736	34:	102.41	94:	445.32	154:	2127.64
C	2.740236610	2.705335478	-1.468800058	35:	104.22	95:	446.28	155:	2128.48
C	0.077279650	2.828629943	-1.962386036	36:	106.03	96:	453.68	156:	2169.08
C	-2.5/1992020	2.866388151	-1.466248228	37:	108.51	97:	459.66		
C	-1./0/981505	2.824738916	1.093246239	38:	114.67	98:	460.24		
C	0.079896283	2.790644962	3.123103280	39:	115.99	99:	402.75		
C	1.840001920	2.755620912	1.0903/898/	40:	120.78	100:	403.40		
C	2 162227840	-0.214109707	-2.226011465	41.	121.32	101.	405.50		
c	1 269057040	0.153200124	-2 851958922	42.	122.20	102.	407.44		
c	1.209037040	-0 16315/393	2 575789081	43.	132.24	103.	470.54		
õ	3 669419210	3 129384747	-1 999509941	44.	142.00	104.	475.86		
õ	0.088373623	3 340162422	-3 014320715	45:	146.68	105.	477.08		
õ	-3 465399802	3 365407126	-1 994847761	40.	153 70	100.	481 24		
ŏ	-2 618735907	3 325369800	1.630219046	48.	154 19	107.	482 78		
õ	0.099327097	3 253037593	4 177859327	49.	156.78	109.	483 75		
õ	2.768902910	3.233009356	1.627614751	50:	157.62	110:	488.19		
õ	4.892001674	-0.327487985	-2.823117027	51:	159.17	111:	490.45		
Õ	4.248895673	0.173713162	0.830389250	52:	177.02	112:	494.32		
0	1.454064753	0.346384803	-3.990456690	53:	180.26	113:	497.93		
0	2.814361424	-0.305016553	3.307532650	54:	183.99	114:	510.00		
				55:	185.72	115:	510.27		
				56:	206.56	116:	515.02		
				57:	208.45	117:	517.36		
				58:	215.56	118:	525.12		
				59:	216.85	119:	528.83		
				60:	222.73	120:	534.11		

$[PtNi_{11}(CO)_{21}]^{4-} isB_e (E = -19076.474610605354 \text{ a.u.}, G^{298K} = -19076.37934703 \text{ a.u.})$

54 PtNi11C21O21

Computed frequencies (cm⁻¹)

Ni	-0.000339093	0.000836530	-1 486317744	1.	i14 99	61.	243 98	121.	531.26
Ni	-1 /1029529/	0.050302594	0.891708546	2.	10.98	62:	250.65	121.	531.20
Ni	0.070645345	2 354060785	1 416100771	2.	26.63	63.	250.05	122.	534.51
INI NG	1 121617415	-2.334000783	0.665679129	3.	20.03	03. 64:	250.70	123.	525 12
INI NT:	1.12101/415	-2.323770019	-0.003078128	4.	29.60	04. (5)	251.05	124.	535.12
INI D4	-1.29/120389	-2.236511051	-0.033912400	5.	30.77	05:	252.00	125:	540.89
Pt N:	-0.000011089	-0.000415500	3.092393303	0:	33.18	00: (7)	200.02	120:	555.00
IN1 C	-2.4243/6102	0.082239728	-1.339810935	7:	38.12	67:	261.79	127:	563.79
C	-2.756988580	-2.66/362898	-1.504365211	8:	40.65	68:	262.82	128:	563.79
C	-0.114804171	-2.773724684	-2.009745211	9:	50.37	69:	274.42	129:	594.60
С	2.549268096	-2.864184231	-1.506813259	10:	55.90	70:	290.32	130:	598.82
С	1.688262084	-2.863476520	1.042416985	11:	58.31	71:	291.96	131:	600.42
С	-0.104136371	-2.928688497	3.066659174	12:	58.89	72:	313.89	132:	604.59
С	-1.882389595	-2.732794879	1.065883077	13:	59.66	73:	394.72	133:	610.82
С	-3.914816857	0.154826149	-2.221193758	14:	60.03	74:	394.82	134:	628.79
С	-3.174590665	-0.035009237	0.405072975	15:	66.96	75:	395.01	135:	641.55
С	-0.000796825	0.000145979	4.949221366	16:	68.43	76:	395.86	136:	1911.24
С	-1.233321615	0.187145832	-2.830711035	17:	69.89	77:	398.88	137:	1913.87
С	-2.045444289	0.225114194	2.603309476	18:	72.67	78:	402.83	138:	1924.02
0	-3.676366973	-3.095630255	-2.050266328	19:	73.68	79:	405.66	139:	1930.82
0	-0.138649171	-3.254660425	-3.076006287	20:	73.83	80:	408.96	140:	1932.20
0	3.443746332	-3.362256288	-2.034079137	21:	75.34	81:	410.17	141:	1941.88
Õ	2,599901053	-3 384264735	1.558768866	22:	75.85	82:	416.58	142:	1942.70
õ	-0.132271461	-3 426985304	4 103443033	22:	76.59	83.	419 31	143	1954 14
õ	-2 822748106	-3 185582654	1 594465737	23.	70.37	84.	417.51	143.	1960.16
õ	4 006668221	0.208280706	2 803882351	2 4 . 25.	78.60	85.	426.11	145.	1000.10
0	4.900008221	0.208289790	-2.803882331	25.	80.56	85. 86.	420.11	145.	1005.86
0	-4.2/1504/10	-0.134088083	0.794307410	20:	80.30	80: 97.	420.70	140:	1995.80
0	-0.001173555	0.000127288	0.100337724	27:	81.49	0/:	429.72	14/:	2007.47
0	-1.39150/9/6	0.346415125	-3.9//809030	28:	85.00	88:	432.38	148:	2075.15
U V	-2.9/1/43/75	0.426/3435/	3.28/056311	29:	85.74	89:	432.90	149:	2083.17
N1	1.410012445	-0.050554327	0.891680339	30:	86.72	90:	432.96	150:	2090.44
N1	0.079485500	2.353990860	1.41698/226	31:	86.93	91:	434.29	151:	2093.52
Ni	-1.121243982	2.324857645	-0.665136050	32:	89.24	92:	436.61	152:	2097.50
Ni	1.297303075	2.238277438	-0.652906172	33:	91.66	93:	442.18	153:	2117.36
Ni	2.423373112	-0.080783243	-1.341042044	34:	101.28	94:	446.98	154:	2121.42
С	2.757453172	2.667794017	-1.502501885	35:	101.43	95:	450.00	155:	2128.02
С	0.115520311	2.773525103	-2.009335797	36:	103.97	96:	452.64	156:	2166.71
С	-2.548848387	2.864758669	-1.506731248	37:	107.58	97:	455.68		
С	-1.687719347	2.865814997	1.042296067	38:	108.77	98:	458.29		
С	0.104512611	2.928513736	3.067399472	39:	114.29	99:	462.02		
С	1.883503764	2.728813248	1.067591426	40:	115.73	100:	462.27		
С	3.913647749	-0.152283654	-2.222890719	41:	120.03	101:	463.79		
С	3.174338647	0.028570937	0.404138013	42:	122.38	102:	465.42		
С	1.231764509	-0.187023528	-2.831413024	43:	125.84	103:	466.51		
С	2.044906711	-0.219907994	2.604012707	44:	132.62	104:	475.47		
0	3.677071793	3.096568475	-2.047646876	45:	138.54	105:	477.53		
õ	0.139759523	3 253691409	-3.075945231	46:	143.18	106	479.80		
õ	-3 443816343	3 362776805	-2 033237718	47:	147.01	107	483.27		
õ	-2 598819929	3 387956173	1 558232023	48:	149.34	107.	483.27		
0	0.133631611	3 126690819	1.030232023	48:	152.80	100.	405.71		
0	0.133031011	2 178774108	4.104213279	49. 50:	162.00	109.	404.39		
õ	4 00551220	0.205040825	2 805622305	50.	164.32	110.	405.55		
0	4.703312369	-0.203040833	-2.003022303	51:	104.32	111:	400.40		
0	4.2/1932346	0.1404/2350	0.792981306	52:	182.45	112:	497.42		
0	1.389218598	-0.348890/06	-3.9/8280405	53:	182.77	113:	497.98		
0	2.972036053	-0.414267412	3.288/33881	54:	184.73	114:	506.11		
				55:	188.70	115:	506.20		
				56:	193.81	116:	512.25		
				57:	202.58	117:	513.37		
				58:	214.49	118:	520.73		
				59:	234.86	119:	527.44		
				60:	235.94	120:	528.74		

$[PtNi_{11}(CO)_{21}]^{4-} isB_i (E = -19076.502016993978 \text{ a.u.}, G^{298K} = -19076.40802153 \text{ a.u.})$

54 PtNi11C21O21

Computed frequencies (cm⁻¹)

Pt	-0.000162958	0.000284301	-1.445342732	1:	13.09	61:	232.44	121:	536.76
Ni	-1.434095324	0.041343558	0.849643430	2:	21.75	62:	243.37	122:	548.32
Ni	-0.071387567	-2.270600927	1.413045140	3:	28.38	63:	243.66	123:	549.32
Ni	1.141024448	-2.434507037	-0.664621560	4:	32.86	64:	247.72	124:	551.95
Ni	-1.301554509	-2.342002579	-0.667311830	5:	32.92	65:	248.45	125:	552.09
Ni	-0.000467224	-0.000270851	2.826727973	6:	35.79	66:	253.24	126:	561.83
Ni	-2.528969770	0.111356286	-1.356909851	7:	40.20	67:	254.19	127:	562.00
C	-2 765092356	-2 762533368	-1 509449951	8.	41.02	68:	262 11	128	567 55
č	-0.105204553	-2 994752168	-1 975648780	9.	45.57	69·	263.45	120.	590.58
č	2 569345229	-2 983527881	-1 489434529	10:	51 55	70.	203.13	130:	594.76
c	1 698230828	-2 8/7739667	1.07/30/199	10.	52.2	0 70.	294.63	130.	597.89
Ċ	0.008420317	2 738701147	3 001100177	11	55.6	5 72.	294.03	131.	601.45
C	1 872104110	2.736701147	1.072528780	12	57.0	9 72. 9 72.	297 72	132.	620.22
C	-1.0/2194119	-2.730323290	2 169748455	13	57.0 60.1	7 7.	299.40	133.	620.52
C	2 21090940	0.163374907	-2.100740433	14	64.25	2 14. 75.	204.06	134.	665 20
C	-5.210808011	-0.003/85/64	0.4490/1344	15:	04.33	75:	394.00	135:	005.20
C	-0.000602544	-0.000751304	4.558/1/096	10:	65.00	70:	399.64	130:	1910.39
C	-1.3/5240834	0.1//09/966	-2.885201680	17:	68.42	//:	400.62	137:	1915.98
C	-1.912239936	0.146294/16	2.595/53090	18:	/0.04	/8:	401.33	138:	1927.10
0	-3.697750979	-3.165810745	-2.0513/3/9/	19:	71.01	- 79:	401.84	139:	1932.89
0	-0.125492474	-3.535428072	-3.011925967	20	72.2	7 80:	405.37	140:	1933.81
0	3.471271116	-3.476995238	-2.008451761	21	73.5	9 81:	410.97	141:	1944.69
0	2.595438429	-3.342530978	1.638029434	22	75.0	8 82:	413.04	142:	1944.89
0	-0.126133287	-3.207395907	4.142905748	23	75.6	0 83:	417.59	143:	1954.01
0	-2.792991326	-3.182665375	1.638503471	24	77.0	8 84:	419.27	144:	1962.18
0	-5.059894692	0.234332856	-2.708640100	25:	78.69	85:	422.94	145:	1979.96
0	-4.295253449	-0.091956309	0.880353300	26:	79.78	86:	425.06	146:	1990.36
0	-0.000773844	-0.001208323	5.710600855	27:	80.07	87:	427.05	147:	1999.26
0	-1.493900520	0.299854772	-4.043935099	28:	81.23	88:	428.50	148:	2082.93
0	-2.787888554	0.270075490	3.361582667	29:	85.88	89:	429.79	149:	2087.51
Ni	1.433849465	-0.041686523	0.849648218	30	87.2	7 90:	430.00	150:	2093.97
Ni	0.071456692	2.270330985	1.413074351	31	88.8	9 91:	433.43	151:	2097.05
Ni	-1.140749988	2.434804244	-0.664658520	32	90.2	3 92:	433.94	152:	2097.85
Ni	1.301838521	2.341854043	-0.667217048	33	91.5	7 93:	448.04	153:	2121.66
Ni	2.528491532	-0.111218137	-1.357309442	34	96.3	5 94:	448.63	154:	2126.87
С	2,765506307	2,762345849	-1.509062568	35:	100.84	95:	452.81	155:	2128.07
Č	0.105728179	2.995347968	-1.975337897	36:	101.23	96:	453.51	156:	2169.85
Č	-2.568891830	2,983932548	-1 489678797	37:	104.05	97.	455.26		
Č	-1.697889405	2.848383458	1.074170728	38:	106.64	98	457.57		
č	0.098645750	2 738335954	3 091166033	39.	109.96	5 99·	460 34		
č	1 872721062	2 734916900	1 072825789	40	110 2	20 100	462 51		
c	4.042673736	-0.182389032	-2 169581894	41	121 3	36 101.	464.00		
c	3 210620958	0.000731791	0 448754849	41	121.2	101:	464.30		
c	1 374451701	-0.176865113	-2 885582933	42	123.2	58 103·	467.16		
c	1.911724057	-0.1/0805115	2 505071000	43	132.0	103.	407.10		
õ	3 608280534	3 1656/15/8	2.393971999	44	134.71	.4 104.	470.45		
0	0.126207201	2 525652272	2 011911770	45.	127.72	105.	478.00		
0	2 470400222	2 1775002272	-3.011611779	40.	141.63	2 100.	4/0.94		
0	-3.470490522	2 2 4 2 9 0 7 6 2 2	-2.009092/11	47.	141.02	107:	401.42		
0	-2.394/0243/	3.34369/033	1.05//8500/	40.	143.34	F 108:	404.11		
0	0.120030282	3.200901308	4.143010900	49:	150.53	109:	484.91		
0	2.793907493	5.180229568	1.0389/9442	50	160.0	110:	487.15		
0	5.05908/261	-0.232542425	-2./0985/683	51	1/8.5		487.91		
0	4.295277126	0.086634921	0.8/9928125	52	178.8	5/ 112:	494.17		
0	1.4928/5520	-0.299942963	-4.044289976	53	1/9.4	H 113:	512.92		
0	2.787318162	-0.263781766	3.362467216	54	180.4	4 114:	514.07		
				55:	182.79	115:	514.32		
				56:	201.36	116:	517.80		
				57:	206.85	117:	517.90		
				58:	210.05	5 118:	525.00		
				59:	229.12	2 119:	532.37		
				60	230.3	32 120:	535.76		

$[Pt_2Ni_{10}(CO)_{21}]^{4-} is AA \ (E = -17688.412020313470 \ a.u., \ G^{298K} = -17688.31980550 \ a.u.)$

Computed frequencies (cm⁻¹)

54 Dr 20	1:10021021					Computed	l frequenci	es (cm ⁻¹)	
Pt2P	0.004688000	0.022016000	1 520222000	1.	0.74	61.	224.46	121.	525 71
INI NT	0.004688000	0.032016000	-1.530253000	1:	9.74	61:	224.40	121:	535./1
N1	-1.359836000	0.0856/1000	0.850849000	2:	15.51	62:	233.68	122:	530.32
Pt D4	-0.092889000	-2.535100000	1.614865000	3:	22.55	63:	246.16	123:	537.83
Pl NC	1.203363000	-2.360693000	-0.060213000	4:	25.70	04: 65:	250.10	124:	540.55
INI NI:	-1.322209000	-2.314520000	-0.004988000	5:	35.00	65:	251.01	125:	547.11
INI NI:	0.007290000	0.028529000	2.802585000	0:	35.11	00: 67.	251.78	120:	549.00
C	-2.421233000	0.077872000	-1.555075000	7:	20.12	67:	201.28	127:	575.01
C	-2.799843000	2 834763000	2 10/3/1000	o. 0:	12 66	60·	273.70	128.	508 71
c	2 786165000	2.034703000	1 679251000	9. 10:	42.00	70.	274.55	129.	601 56
c	2.780105000	2 122287000	-1.079251000	10.	52.64	70.	204.00	130.	608.06
C	0.232051000	-3.123287000	3 441716000	11.	50.21	71.	303.94	131.	611.48
c	2.035660000	2 828727000	1.014552000	12.	59.21 60.34	72.	363.83	132.	615 10
c	-3.919/17000	0 187258000	-2 19/293000	13.	63 77	73.	380.06	133.	615.88
c	-3 13//10000	0.013188000	0.450212000	14.	64.25	75.	302.00	134.	6/18/21
c	0.016900000	0.037205000	4 591203000	15.	64.37	76:	394 36	136	1911 92
č	-1 242906000	0.016218000	-2 854226000	17:	66.80	70.	398.08	130.	1912.96
č	-1.875429000	0.237385000	2.607105000	18:	68.24	78:	400.80	138:	1923.13
õ	-3 732532000	-2 989008000	-2 098312000	19.	69.87	79.	401 22	139	1932.87
õ	-0 276042000	-3 238541000	-3 198906000	20:	71.20	80.	404 69	140	1933.91
ŏ	3,700529000	-3 423072000	-2.269658000	20.	71.53	81:	409.02	141:	1943.67
õ	2 757547000	-3 640096000	1 758934000	22.	73 70	82.	409.82	142.	1945 38
ŏ	-0.321148000	-3.259888000	4.541568000	23:	76.34	83:	411.85	143:	1955.70
ŏ	-3.022836000	-3.245516000	1.481994000	24:	77.14	84:	423.80	144:	1968.52
õ	-4.916056000	0.282816000	-2.763972000	25:	77.31	85:	426.15	145:	1990.99
õ	-4.224503000	-0.058089000	0.868452000	26:	79.17	86:	426.82	146:	1992.62
0	0.026593000	0.059196000	5.743286000	27:	82.66	87:	427.39	147:	2004.54
0	-1.438053000	-0.009655000	-4.007537000	28:	83.04	88:	428.37	148:	2083.78
0	-2.775018000	0.429984000	3.329222000	29:	83.31	89:	431.67	149:	2085.00
Ni	1.382608000	0.011176000	0.855118000	30:	84.35	90:	432.03	150:	2093.46
Ni	0.070258000	2.314852000	1.440632000	31:	85.53	91:	433.99	151:	2097.28
Ni	-1.135083000	2.331895000	-0.647731000	32:	86.68	92:	435.11	152:	2102.60
Ni	1.279494000	2.259672000	-0.651391000	33:	89.96	93:	440.38	153:	2122.37
Ni	2.431765000	-0.081834000	-1.341245000	34:	91.29	94:	442.98	154:	2127.41
С	2.739304000	2.706058000	-1.495367000	35:	101.92	95:	446.32	155:	2132.75
С	0.084474000	2.800848000	-1.998121000	36:	102.77	96:	453.79	156:	2170.02
С	-2.563870000	2.871328000	-1.483905000	37:	105.01	97:	457.18		
С	-1.686445000	2.871343000	1.066051000	38:	109.62	98:	458.81		
С	0.101039000	2.828948000	3.105570000	39:	114.68	99:	460.63		
С	1.856804000	2.761832000	1.065565000	40:	117.76	100:	461.79		
С	3.931031000	-0.157312000	-2.199414000	41:	118.52	101:	463.86		
С	3.160521000	0.027518000	0.433203000	42:	119.08	102:	466.99		
C	1.271411000	0.063806000	-2.856546000	43:	122.62	103:	468.69		
С	1.909757000	-0.078894000	2.600787000	44:	126.94	104:	470.06		
0	3.664879000	3.130826000	-2.031884000	45:	134.39	105:	470.13		
0	0.094539000	3.285598000	-3.0625/5000	46:	136.16	106:	4/4./5		
0	-3.458660000	3.368258000	-2.011757000	47:	146.91	107:	477.09		
0	-2.591160000	3.395061000	1.590530000	48:	148.23	108:	481./3		
0	0.132225000	3.294169000	4.158195000	49:	149.19	109:	483.01		
0	2.7864/2000	5.255592000	1.595951000	50:	157.01	110:	486.88		
0	4.931898000	-0.1903/3000	-2.709088000	51:	15/.91	111:	487.28		
0	4.232189000	0.11/0/9000	0.042094000	52:	138.30	112:	490.22		
0	1.400/23000	0.172744000	-4.003292000	53:	1/3.8/	113:	494.32 109 16		
U	2.012001000	-0.139004000	3.339822000	54:	104.05	114:	498.10		
				55.	189.47	115.	512.07		
				50:	107.47	110.	517.57		
				52.	206.95	117.	521 50		
				50.	200.92	110.	526.50		
				59. 60·	220.91	120.	533.98		
				00.	220.71	120.	555.70		

$\left[Pt_{2}Ni_{10}(CO)_{21}\right]^{4-} is AA'-1 \ (E = -17688.412068707108 \ a.u., \ G^{298K} = -17688.32102956 \ a.u.)$

Computed frequencies (cm⁻¹)

54						Computed	l frequenci	es (cm ⁻¹)	
Pt2N	Ni10C21O21	0.0000000000	1 51 51 50000		1.40				
Ni	-0.000617000	-0.000023000	-1.515150000	1:	1.49	61:	217.11	121:	533.11
Ni	-1.382395000	0.053926000	0.862227000	2:	12.40	62:	219.70	122:	533.62
Pt	-0.104476000	-2.514499000	1.567105000	3:	21.37	63:	242.95	123:	536.62
Ni	1.157395000	-2.357125000	-0.641114000	4:	26.07	64:	243.19	124:	545.36
Ni	-1.314125000	-2.268842000	-0.659154000	5:	29.88	65:	250.07	125:	546.83
Ni	0.000217000	-0.001412000	2.865946000	6:	33.39	66:	258.35	126:	548.63
Ni	-2.431438000	0.088191000	-1.335726000	7:	41.51	67:	259.92	127:	576.50
C	-2.744019000	-2.648564000	-1.584328000	8:	41.85	68:	272.36	128:	577.01
С	-0.079819000	-2.763829000	-1.995580000	9:	49.33	69:	273.39	129:	582.89
С	2.577531000	-2.812301000	-1.548271000	10:	50.69	70:	285.25	130:	586.29
C	1.814861000	-2.985666000	1.020759000	11:	53.64	71:	304.30	131:	612.36
С	-0.143660000	-3.058766000	3.358908000	12:	54.26	72:	310.35	132:	615.80
C	-2.065064000	-2.778201000	1.003007000	13:	56.66	73:	383.63	133:	617.69
C	-3.941377000	0.135171000	-2.183093000	14:	56.85	_74:	386.52	134:	617.99
C	-3.146916000	0.160833000	0.456908000	15:	62.12	75:	388.12	135:	647.52
C	0.000770000	0.000598000	4.593426000	16:	62.56	76:	392.07	136:	1912.13
C	-1.258718000	-0.019369000	-2.843324000	17:	63.86	77:	395.83	137:	1915.32
C	-1.900158000	0.043789000	2.629252000	18:	65.10	78:	399.48	138:	1924.54
0	-3.650010000	-3.059784000	-2.160924000	19:	68.78	79:	400.16	139:	1931.92
0	-0.086069000	-3.212052000	-3.075520000	20:	68.93	80:	401.74	140:	1932.37
0	3.462337000	-3.282574000	-2.112843000	21:	70.75	81:	408.29	141:	1941.10
0	2.754236000	-3.504706000	1.486181000	22:	72.18	82:	410.56	142:	1943.12
0	-0.170579000	-3.466773000	4.438079000	23:	72.27	83:	411.06	143:	1957.77
0	-3.064727000	-3.174152000	1.463235000	24:	75.59	84:	417.78	144:	1965.37
0	-4.949340000	0.167813000	-2.739686000	25:	77.00	85:	422.96	145:	1991.68
0	-4.239118000	0.248674000	0.866487000	26:	78.81	86:	423.21	146:	1992.84
0	0.001426000	0.002420000	5.745805000	27:	79.60	87:	426.18	147:	2005.48
0	-1.444488000	-0.087817000	-3.996286000	28:	80.50	88:	429.40	148:	2081.56
0	-2.802275000	0.046221000	3.372401000	29:	82.68	89:	430.65	149:	2087.13
Ni	1.382136000	-0.053228000	0.861789000	30:	84.16	90:	431.36	150:	2091.49
Pt	0.103100000	2.512994000	1.568582000	31:	85.17	91:	433.27	151:	2095.18
Ni	-1.157178000	2.356135000	-0.640824000	32:	88.04	92:	441.09	152:	2102.76
Ni	1.315068000	2.266989000	-0.657441000	33:	92.50	93:	441.31	153:	2123.83
N1	2.429919000	-0.091676000	-1.33/144000	34:	96.49	94:	444.40	154:	2125.40
С	2.745394000	2.647031000	-1.581935000	35:	96.55	95:	445.52	155:	2131.80
C	0.081570000	2.759797000	-1.995310000	36:	105.48	96:	447.54	156:	2169.54
C	-2.5/6018000	2.811947000	-1.549/34000	37:	109.10	97:	447.74		
C	-1.812655000	2.993063000	1.018439000	38:	111.64	98:	460.99		
C	0.141//6000	3.055184000	3.360931000	39:	115.67	99:	463.76		
C	2.062429000	2.782166000	1.004835000	40:	116.62	100:	464.10		
C	3.939263000	-0.14042/000	-2.185/50000	41:	118.79	101:	464.57		
C	3.14/309000	-0.1411/1000	0.454/81000	42:	119.50	102:	400.40		
C	1.256/55000	0.0164/0000	-2.844145000	43:	120.82	103:	469.82		
C	1.900172000	-0.058//0000	2.028829000	44:	130.10	104:	4/1.//		
0	3.031983000	3.05/230000	-2.158274000	45:	131.00	105:	472.00		
0	0.088551000	3.207030000	-3.073038000	40:	145.10	100:	475.17		
0	-3.4000/1000	3.281402000	-2.115124000	47:	145.01	107:	470.34		
0	-2.749526000	2 461268000	1.461452000	40:	149.25	108:	477.05		
0	0.108852000	2 191505000	4.440830000	49:	150.08	109:	4/9.44		
0	3.000300000	5.181505000	1.405942000	50:	155.55	110:	484.81		
0	4.940007000	-0.1/4381000	-2.745229000	51:	155.55	111.	400.04		
0	4.241201000	-0.20311/000	0.004139000	52:	133.39	112:	492.33		
0	2 802001000	0.003930000	-3.771230000	55: 54.	173.21	115:	472.47		
U	2.802091000	-0.079803000	5.5/192/000	54:	100.51	114:	493.08		
				55: EC.	204 45	115:	510.00		
				50: 57.	204.03	110:	515.22		
				57:	200.29	11/:	572 52		
				58:	215.45	118:	525.55 525.55		
				59:	215.07 216.52	119:	528.02		
				00:	210.32	120:	520.93		

$\left[Pt_{2}Ni_{10}(CO)_{21}\right]^{4-} isAA'-2 \ (E = -17688.412784592023 \ a.u., \ G^{298K} = -17688.32030848 \ a.u.)$

Computed frequencies (cm⁻¹)

54 Dr 21	1:10(21(2))					Computed	l frequenci	es (cm ⁻¹)	
Pt2r	0.005087000	0.025476000	1 510614000	1.	12.42	<i>c</i> 1.	217 25	121.	524.11
INI NT	-0.00598/000	-0.0354/6000	-1.519614000	1:	12.42	01:	217.25	121:	534.11
IN1 D	-1.3634/4000	0.0526/3000	0.846133000	7:	18.24	62:	221.72	122:	535.88
Pt	-0.1131/2000	-2.493963000	1.591132000	3:	23.66	63:	242.99	123:	537.92
INI NE	1.170082000	-2.550740000	-0.010782000	4.	21.07	64.	243.34	124:	545.45
INI NI:	-1.30/294000	-2.304380000	-0.051285000	5:	31.07	65: 66:	250.99	125:	547.49
INI NG	-0.018432000	0.040399000	2.838989000	0. 7.	33.67	60: 67:	250.98	120:	575.60
C	-2.433707000	2 658604000	1 50500000	7.	12.48	07. 68:	230.07	127.	575.00
C	-2.755112000	2 703500000	-1.393909000	o. Q.	42.40	08. 60:	273.29	120.	585.08
ĉ	2 502065000	2 822344000	1 502562000	9. 10:	51 27	70.	214.30	129.	580.06
ĉ	1 831238000	2.013340000	1.060756000	10.	54.20	70.	202.42	130.	612.83
c	-0.166352000	-2.913340000	3 388603000	11.	56.76	71.	308.82	131.	615.13
c	-2.01/159000	-2 955955000	0.975177000	12.	61.09	72.	382.45	132.	618 54
c	-3 922695000	0.210289000	-2 194966000	13.	61.88	73. 74·	384.02	133.	619.61
c	-3 132537000	-0.140251000	0.451861000	15.	62 65	75.	388 77	135.	647.49
č	-0.049586000	-0.042248000	4.586024000	15.	64.06	76:	390.01	136:	1910.80
Č	-1.274599000	-0.045936000	-2.848337000	17:	66.58	77:	393.06	137:	1912.63
č	-1.896558000	0.326536000	2.568890000	18:	67.44	78:	397.62	138:	1922.94
õ	-3.641872000	-3.045437000	-2.186772000	19:	69.46	79:	400.04	139:	1932.35
õ	-0.050177000	-3.257217000	-3.045535000	20:	70.51	80.	402.00	140:	1932.95
ŏ	3.481425000	-3.298234000	-2.056439000	21:	71.21	81:	408.41	141:	1943.34
õ	2.775655000	-3.397044000	1.562230000	22:	74.09	82:	408.93	142:	1944.74
ŏ	-0.210341000	-3.414047000	4.469999000	23:	74.39	83:	410.50	143:	1956.93
õ	-2.959477000	-3.491535000	1.409355000	24:	76.21	84:	419.75	144:	1965.26
0	-4.900929000	0.336266000	-2.790755000	25:	78.62	85:	421.58	145:	1989.59
0	-4.202366000	-0.352742000	0.874523000	26:	79.43	86:	424.60	146:	1992.57
0	-0.072801000	-0.121210000	5.735328000	27:	80.60	87:	427.14	147:	2003.74
0	-1.462403000	-0.114708000	-4.000667000	28:	81.33	88:	428.47	148:	2080.06
0	-2.786995000	0.604577000	3.274910000	29:	83.25	89:	429.09	149:	2081.72
Ni	1.366383000	-0.020315000	0.858314000	30:	85.59	90:	431.47	150:	2091.31
Ni	0.085296000	2.357997000	1.470696000	31:	88.30	91:	435.03	151:	2101.41
Pt	-1.263974000	2.555817000	-0.679154000	32:	90.23	92:	439.76	152:	2102.36
Ni	1.273631000	2.261260000	-0.696326000	33:	90.88	93:	441.35	153:	2119.18
Ni	2.427056000	-0.089100000	-1.335183000	34:	96.55	94:	442.54	154:	2130.44
С	2.760561000	2.635679000	-1.527427000	35:	97.72	95:	446.40	155:	2132.41
С	0.162842000	2.796447000	-2.138620000	36:	105.97	96:	447.93	156:	2169.53
С	-2.816983000	3.135300000	-1.548684000	37:	108.39	97:	448.62		
С	-1.640536000	3.095295000	1.267581000	38:	110.94	98:	459.02		
С	0.235073000	2.753847000	3.167157000	39:	112.62	99:	461.43		
С	1.875891000	2.738901000	1.020351000	40:	115.45	100:	463.67		
C	3.929384000	-0.143974000	-2.194501000	41:	119.79	101:	466.78		
C	3.141106000	-0.086061000	0.450800000	42:	120.26	102:	467.75		
С	1.240158000	-0.071225000	-2.848178000	43:	123.48	103:	468.02		
C	1.8801/6000	0.005/58000	2.619770000	44:	127.40	104:	470.81		
0	3.693029000	3.046/44000	-2.060508000	45:	13/.//	105:	4/4.00		
0	0.230985000	3.203303000	-3.233033000	46:	138.64	106:	475.10		
0	-3./48163000	3.5/58/6000	-2.069918000	4/:	144.81	107:	4/5.18		
0	-2.450785000	2 172542000	1.805/40000	48:	150.09	108:	4/1.19		
0	0.338226000	3.173543000	4.232200000	49:	151.95	109:	482.70		
0	2.833330000	5.1/4512000	1.550/06000	50:	155.22	110:	487.01		
0	4.731400000	0.113690000	-2.701211000	51:	155.00	111:	493.97		
0	4.233180000	-0.113089000	-4 002168000	52:	175 00	112:	494.40 404 72		
0	2 779560000	0.037008000	3 36720/000	55.	178.90	113:	424.73		
0	2.119309000	0.023091000	5.507294000	54.	170.40	114.	499.02 508 34		
				56. 56.	204.87	115.	508.34		
				50. 57·	207.65	117.	515 78		
				58.	214.91	118.	522.48		
				50. 59·	215.65	119.	526.18		
				60:	216.18	120:	529.41		

$[Pt_2Ni_{10}(CO)_{21}]^{4-} is AB_e - 1 \ (E = -17688.406584257413 \ a.u., \ G^{298K} = -17688.31265799 \ a.u.)$

Computed frequencies (cm⁻¹)

54						Computed	l frequenci	es (cm ⁻¹)	
Pt2N	Ni10C21O21	0.011676000	1 405120000		:22.02	(1	224.24	101	500.00
N1	0.009274000	-0.0116/6000	-1.485139000	1:	122.03	61:	234.34	121:	530.33
IN1 D4	-1.410663000	0.106836000	0.898498000	2:	22.76	62:	242.22	122:	530.76
Pt	-0.125584000	-2.581611000	1.553095000	3:	24.16	63:	243.48	123:	531.01
INI NI:	1.13/30/000	-2.3/0081000	-0.641519000	4:	29.05	04:	250.97	124:	535.09
IN1 Df	-1.3301/3000	-2.277400000	-0.058404000	5:	35.08	65: 66:	252.55	125:	552 65
Pt Ni	2 407849000	0.050990000	1 340463000	0. 7.	30.41	67:	257.07	120:	563.20
C	2 775040000	2 631531000	1 581100000	7.	<i>JJJJJJJJJJJJJ</i>	68:	261.50	127.	574.01
c	-0.100810000	-2 789736000	-1.991042000	0. Q.	41.19	69·	201.50	120.	582.42
c	2 554600000	-2 834599000	-1 550382000	10	52 77	70.	273.74	130.	598.22
č	1 827222000	-2 958859000	1.019018000	11	53.69	70.	200.20	130.	603.69
č	-0.163065000	-3.173340000	3.334036000	12	56.58	72:	312.60	132:	611.00
Č	-2.089563000	-2.801309000	1.003089000	13	59.13	73.	383.70	133:	614.05
č	-3.889927000	0.216760000	-2.234359000	14	59.99	74:	390.61	134:	628.39
Ċ	-3.166839000	0.090888000	0.411256000	15:	62.02	75:	393.46	135:	643.66
С	0.033960000	0.043333000	4.954816000	16:	62.25	76:	394.21	136:	1913.96
С	-1.232243000	-0.107755000	-2.829775000	17:	64.78	77:	396.81	137:	1914.95
С	-2.031654000	0.216253000	2.624456000	18:	67.94	78:	398.72	138:	1924.86
0	-3.693929000	-3.016250000	-2.155307000	19:	69.57	79:	400.59	139:	1932.19
0	-0.111122000	-3.246382000	-3.067216000	20	71.44	80:	405.83	140:	1933.67
0	3.432235000	-3.319937000	-2.114397000	21	73.57	81:	409.69	141:	1942.81
0	2.786480000	-3.436563000	1.487080000	22	75.27	82:	412.19	142:	1945.33
0	-0.194973000	-3.619830000	4.396818000	23	76.30	83:	416.26	143:	1956.81
0	-3.092557000	-3.200505000	1.452857000	24	76.68	84:	416.94	144:	1965.77
0	-4.869442000	0.312162000	-2.831494000	25:	78.11	85:	423.77	145:	1992.44
0	-4.272219000	0.063499000	0.791670000	26:	79.72	86:	424.79	146:	1996.26
0	0.051814000	0.077498000	6.111537000	27:	80.18	87:	428.22	147:	2009.25
0	-1.402586000	-0.268683000	-3.975164000	28:	80.68	88:	429.73	148:	2074.41
0	-2.958906000	0.361179000	3.320146000	29:	84.58	89:	431.41	149:	2086.08
N1	1.42596/000	-0.0190/1000	0.89/161000	30	85.11	90:	432.40	150:	2092.46
INI NI:	0.088174000	2.374994000	1.405/05000	31	87.28	91:	434.20	151:	2097.20
INI NG	1 206050000	2.329104000	-0.009808000	32.	89.22 90.01	92:	433.47	152:	2100.21
NG	2 432007000	0.140748000	1 3263/3000	34	90.01	93.	439.07	155.	2114.75
C	2.452997000	2 663617000	-1 532677000	35.	96.85	95·	445.08	154.	2123.02
č	0.092545000	2.759181000	-2.027536000	36:	102.39	96:	448.31	155:	2168.07
č	-2.547597000	2.874222000	-1.508991000	37.	104.25	97:	452.14	150.	2100.07
Ĉ	-1.679690000	2.880798000	1.043256000	38:	107.44	98:	455.69		
С	0.120945000	2.948135000	3.058912000	39:	109.88	99:	460.56		
С	1.870376000	2.793595000	1.032112000	40	114.78	100:	462.44		
С	3.923819000	-0.225383000	-2.208298000	41	116.25	101:	463.24		
С	3.177119000	0.100705000	0.413227000	42	119.61	102:	464.36		
С	1.258807000	0.062226000	-2.821235000	43	124.86	103:	464.72		
С	2.063512000	-0.229737000	2.608330000	44	127.21	104:	471.24		
0	3.675748000	3.081404000	-2.080931000	45:	131.91	105:	475.59		
0	0.108371000	3.231871000	-3.097486000	46:	137.79	106:	477.72		
0	-3.435342000	3.380600000	-2.040187000	47:	142.89	107:	478.24		
0	-2.592288000	3.397621000	1.561805000	48:	145.61	108:	480.05		
0	0.154759000	3.442258000	4.097236000	49:	146.94	109:	482.17		
0	2.801437000	3.286/3/000	1.540204000	50	150.40	110:	484.64		
0	4.910/22000	-0.283980000	-2.790149000	51	157.22	111:	490.23		
0	4.205244000	0.31/404000	-3 96/616000	52	103.74	112:	492.70		
0	2 990688000	-0.459516000	3 280950000	54	182.60	115:	490.10		
0	2.770000000	5.757510000	5.200750000	55.	185.11	115.	503.69		
				56.	191.44	116.	510.47		
				57:	201.81	117:	512.81		
				58:	212.57	118:	518.85		
				59:	216.70	119:	524.91		
				60	217.50	120:	527.46		

$[Pt_2Ni_{10}(CO)_{21}]^{4-} is AB_e - 2 \ (E = -17688.407460733724 \ a.u., \ G^{298K} = -17688.31484838 \ a.u.)$

Computed frequencies (cm⁻¹)

54 D(2)	110021021					Computed	l frequenci	es (cm ⁻¹)	
Pt2r	0.000774000	0.010464000	1 562706000	1.	12.09	61.	225 66	121.	520 56
INI NT	-0.009774000	0.019464000	-1.565706000	1:	12.98	61:	235.00	121:	530.50
IN1 D	-1.416990000	0.091935000	0.880227000	2:	21.99	62:	242.18	122:	531./1
Pt	-0.0/1246000	-2.495194000	1.596380000	3:	26.29	63:	243.53	123:	535.42
INI NE	1.104100000	-2.300462000	-0.033097000	4.	29.00	04: 65:	251.10	124:	549 11
INI NI:	-1.305296000	-2.335831000	-0.028010000	5:	32.95	65:	251.04	125:	550 74
INI Dt	0.000970000	0.042421000	2.800278000	0:	34.07	60:	257.00	120:	562.07
	-2.024099000	0.141007000	-1.429013000	/:	41.51	67:	201.54	127:	570.26
C	-2.740272000	-2.755855000	1 080845000	8.	42.23	00. 60:	201.00	128.	580 11
ĉ	2 570466000	2.705015000	-1.989845000	9. 10:	40.19	70.	273.20	129.	500.23
C	2.370400000	-2.812777000	1 000616000	10.	40.47	70.	204.77	130.	599.25 602.70
c	-0.091611000	-2 987803000	3 /02395000	11.	56.15	71.	200.98	131.	610.30
c	-1.99808/000	-2.987803000	1.031725000	12.	58.87	72.	383.21	132.	621.84
c	-1.223768000	0.279996000	-2 365288000	13.	62.36	73.	388.28	133.	626.88
c	-3 206967000	-0.089563000	0.604811000	15.	63.97	75.	303.20	134.	6/3 61
č	0.031761000	-0.035658000	4 596450000	16:	66.24	76:	394 46	136	1911.60
č	-1 186746000	-0.077861000	-2 964332000	17:	67 79	70. 77·	397 31	130.	1913.68
č	-1.854199000	0.324792000	2.649774000	18:	70.57	78:	400.87	138:	1922.92
õ	-3 643878000	-3 182664000	-2 107707000	19.	71.87	79.	403 27	139	1931 58
ŏ	-0.081695000	-3 206875000	-3 072447000	20.	73.66	80.	405.41	140	1934 52
ŏ	3 445143000	-3.274296000	-2.153537000	20.	74.19	81:	406.41	141:	1944.21
ŏ	2 730525000	-3 620703000	1 457047000	21.	76.76	82.	410 54	142.	1946 74
ŏ	-0.112245000	-3.373222000	4 490524000	23:	77.19	83:	415.57	143:	1956.51
ŏ	-2.944095000	-3.415601000	1.500749000	24:	78.23	84:	418.59	144:	1964.13
õ	-5.209042000	0.404105000	-2.959109000	25:	79.51	85:	420.13	145:	1991.38
0	-4.256870000	-0.315150000	1.066509000	26:	80.05	86:	422.80	146:	1993.91
0	0.050038000	-0.104509000	5.745768000	27:	80.65	87:	426.34	147:	2006.69
0	-1.333389000	-0.245863000	-4.111535000	28:	81.14	88:	429.13	148:	2076.14
0	-2.720676000	0.596400000	3.387261000	29:	82.81	89:	431.02	149:	2081.47
Ni	1.339313000	-0.029153000	0.846534000	30:	87.03	90:	432.69	150:	2089.29
Ni	0.091704000	2.322866000	1.435358000	31:	87.47	91:	433.48	151:	2098.73
Ni	-1.105497000	2.417931000	-0.646957000	32:	90.75	92:	435.38	152:	2103.13
Ni	1.294897000	2.250229000	-0.659518000	33:	91.14	93:	439.68	153:	2120.01
Ni	2.432003000	-0.095321000	-1.311799000	34:	94.47	94:	444.93	154:	2127.15
С	2.757444000	2.675945000	-1.506708000	35:	96.67	95:	449.05	155:	2130.77
С	0.103205000	2.781942000	-2.026455000	36:	102.81	96:	450.56	156:	2167.44
С	-2.511457000	3.048403000	-1.472762000	37:	103.30	97:	451.88		
С	-1.668185000	2.901394000	1.070430000	38:	108.65	98:	455.93		
С	0.122170000	2.838116000	3.101795000	39:	110.68	99:	457.91		
С	1.874887000	2.777616000	1.037978000	40:	112.17	100:	461.59		
С	3.972147000	-0.109910000	-2.107265000	41:	117.02	101:	462.43		
С	3.093453000	-0.339763000	0.478655000	42:	119.72	102:	463.52		
C	1.307414000	0.092655000	-2.836870000	43:	122.72	103:	466.08		
С	1.890615000	0.174257000	2.585876000	44:	127.59	104:	471.63		
0	3.684309000	3.105623000	-2.037876000	45:	131.84	105:	473.55		
0	0.131886000	3.234851000	-3.104593000	46:	133.88	106:	474.62		
0	-3.386240000	3.587461000	-1.990454000	47:	143.86	107:	479.53		
0	-2.563307000	3.425580000	1.610610000	48:	147.14	108:	482.22		
0	0.148510000	3.305194000	4.153287000	49:	147.85	109:	483.59		
0	2.8032/9000	5.26/056000	1.554430000	50:	150.66	110:	488.29		
0	5.007722000	-0.10/0/9000	-2.010/40000	51:	155.52	111:	494.20		
0	4.145208000	-0.01/145000	3 077805000	52:	102.32	112:	493.39 109 56		
0	1.323923000	0.220301000	-3.7//093000	53:	1/0.20	113:	498.30		
U	2.8000/0000	0.579/18000	3.262430000	54:	102.83	114:	502.01		
				55.	104.01	115.	505.01		
				50.	200.60	110.	511 52		
				52.	210.09	112.	517.00		
				50.	217.40	110.	573 75		
				J9. 60.	213.22	120.	527.75		
				00.	217.10	120.	521.25		

$[Pt_2Ni_{10}(CO)_{21}]^{4-} is AB_i - 1 \ (E = -17688.435276497021 \ a.u., \ G^{298K} = -17688.34203306 \ a.u.)$

Computed frequencies (cm⁻¹)

54 Dr 20	1:10(21(021)					Computed	l frequenci	es (cm ⁻¹)	
Pt2P	0.020520000	0.000911000	1 594500000	1.	:0.02	(1.	228.00	121.	526.20
IN1 D	-0.030530000	-0.000811000	-1.584509000	1:	18.02	01:	228.99	121:	530.39
Pt	-1.296383000	0.052/12000	0.813986000	2:	9.41	62:	230.75	122:	546.73
Pt	-0.152668000	-2.594241000	1.616/06000	3:	24.06	63:	239.91	123:	548.05
INI NE	1.108245000	-2.524725000	-0.392933000	4:	20.91	64.	245.12	124:	551.11
INI NI:	-1.303490000	-2.3038/1000	-0.04/033000	5:	35.81	65: 66:	248.59	125:	561.05
INI NI:	0.049222000	0.040911000	2.939193000	0:	27.21	60:	255.05	120:	566 70
C	-2.490062000	0.078940000	-1.420370000	7:	20.81	07: 69.	255.95	127:	574.04
C	-2.782849000	2 778001000	1 072835000	ö. Q:	13 56	08. 60:	202.12	128.	582 17
c	2 541763000	2.778332000	1 489576000	9. 10:	43.30	70.	202.92	129.	502.17
C	2.341703000	-2.704322000	-1.469370000	10.	40.40	70.	270.03	130.	592.09
C	0.177443000	2.913382000	3 396395000	11.	52.20	71.	294.92	131.	615.22
c	2 077588000	3.015022000	0.987175000	12.	55.02	72.	380.64	132.	620.78
c	-3.956224000	0.185735000	-2 31/29/000	13.	58.06	73.	383.58	133.	639.41
c	-3 236991000	0.08391/000	0.348127000	14.	58.87	75.	388 42	134.	665.00
č	0.092406000	0.013725000	4 678872000	15.	62 72	76:	394 44	136	1911 99
č	-1 270507000	0.004983000	-2 915751000	17:	64 59	70. 77·	398.06	130.	1918.67
č	-1.845345000	0.185132000	2.740047000	18.	65.37	78:	399.76	138:	1928.31
õ	-3 687518000	-3 104346000	-2 195138000	19.	65.95	79.	400 75	139	1933.07
ŏ	-0.064943000	-3 225670000	-3 052571000	20:	69.45	80.	404 65	140	1935.04
ŏ	3 422775000	-3.259510000	-2.039507000	20.	71.50	81:	407.44	141:	1943.85
õ	2.768157000	-3.380753000	1.536506000	22:	74.11	82:	409.78	142:	1945.13
ŏ	-0.181622000	-3.570206000	4.473148000	23:	75.04	83:	412.25	143:	1956.13
ŏ	-3.041204000	-3.516077000	1.419674000	24:	76.05	84:	418.90	144:	1965.30
õ	-4.937206000	0.270623000	-2.911697000	25:	76.48	85:	419.29	145:	1982.35
0	-4.307314000	0.100491000	0.822593000	26:	77.71	86:	421.72	146:	1991.68
0	0.118303000	-0.017887000	5.830066000	27:	79.30	87:	423.35	147:	2001.41
0	-1.444037000	-0.028286000	-4.072868000	28:	80.53	88:	428.26	148:	2082.88
0	-2.784733000	0.324350000	3.424368000	29:	81.44	89:	429.82	149:	2086.63
Ni	1.420141000	-0.020286000	0.913505000	30:	85.36	90:	430.70	150:	2093.76
Ni	0.097370000	2.402875000	1.454791000	31:	87.13	91:	432.17	151:	2097.94
Ni	-1.147840000	2.416639000	-0.641643000	32:	89.11	92:	433.59	152:	2102.08
Ni	1.265352000	2.222156000	-0.654632000	33:	90.30	93:	441.65	153:	2121.12
Ni	2.406684000	-0.117452000	-1.326228000	34:	92.39	94:	446.53	154:	2128.98
С	2.719045000	2.636221000	-1.521689000	35:	95.47	95:	450.07	155:	2131.36
С	0.070775000	2.767845000	-2.016353000	36:	98.86	96:	451.15	156:	2170.12
С	-2.575095000	2.962253000	-1.471354000	37:	101.50	97:	454.09		
С	-1.642416000	3.043052000	1.074869000	38:	102.01	98:	456.51		
С	0.157040000	2.916725000	3.115083000	39:	104.82	99:	457.96		
С	1.894349000	2.746756000	1.045908000	40:	111.54	100:	459.90		
С	3.918736000	-0.148180000	-2.173965000	41:	116.35	101:	462.67		
С	3.166668000	-0.093206000	0.459000000	42:	120.24	102:	464.22		
C	1.248977000	-0.024436000	-2.870251000	43:	123.65	103:	466.74		
С	1.956775000	0.002792000	2.656372000	44:	130.46	104:	475.05		
0	3.635225000	3.068449000	-2.069238000	45:	132.90	105:	477.19		
0	0.105903000	3.223939000	-3.0926/6000	46:	135.66	106:	4/8.82		
0	-3.471235000	3.453289000	-2.002313000	47:	140.55	107:	479.76		
0	-2.523389000	3.600625000	1.602496000	48:	143.40	108:	482.02		
0	0.210115000	3.3/5861000	4.169653000	49:	145.09	109:	483.59		
0	2.85/2/3000	3.192820000	1.536922000	50:	150.05	110:	484.41		
0	4.93001/000	-0.1039/8000	-2.724336000	51:	158.05	111:	485.72		
0	4.2/3/33000	-0.10601/000	0.829324000	52:	1/4.0/	112:	494.37		
0	1.4000/0000	0.012/04000	-4.0100/3000	53:	1/0.01	113:	499.03		
U	2.8/1833000	0.01/938000	3.363141000	54:	100.30	114:	510.40		
				55.	200.20	115:	512.47		
				50:	200.29	110:	518 30		
				58.	203.30	112.	523 34		
				50.	210.28	110.	526.43		
				60:	215.11	120:	530.67		
				001		-=	/		

$[Pt_2Ni_{10}(CO)_{21}]^{4-} is AB_i - 2 \ (E = -17688.434994151510 \ a.u., \ G^{298K} = -17688.34250172 \ a.u.)$

Computed frequencies (cm⁻¹)

54						Computed	l frequenci	es (cm ⁻¹)	
Pt2N	vi10C21O21								
Pt	0.005081000	0.000428000	-1.434939000	1:	14.02	61:	229.85	121:	537.17
Ni	-1.430108000	0.063175000	0.866159000	2:	25.32	62:	231.74	122:	547.23
Pt	-0.087885000	-2.494467000	1.575412000	3:	26.40	63:	241.73	123:	549.58
Ni	1.167616000	-2.464334000	-0.647883000	4:	30.88	64:	242.66	124:	550.90
Ni	-1.337127000	-2.371040000	-0.650741000	5:	34.67	65:	248.52	125:	552.14
Ni	0.002831000	0.052435000	2.845378000	6:	36.84	66:	248.79	126:	562.22
Ni	-2.524965000	0.091526000	-1.339021000	7:	38.78	67:	253.62	127:	567.91
C	-2.774093000	-2.720960000	-1.571660000	8:	41.33	68:	260.79	128:	572.12
C	-0.103545000	-2.919082000	-1.980444000	9:	44.59	69:	261.73	129:	589.61
C	2.577082000	-2.915348000	-1.568456000	10:	48.16	70:	272.05	130:	593.22
C	1.814247000	-3.052081000	1.022806000	11:	50.53	71:	291.29	131:	601.92
C	-0.109640000	-2.955953000	3.389579000	12:	51.74	72:	298.73	132:	614.85
C	-2.033899000	-2.883483000	1.026810000	13:	59.19	73:	382.12	133:	619.93
C	-4.036926000	0.201745000	-2.151572000	14:	60.75	/4:	387.12	134:	640.09
C	-3.19/64/000	-0.042992000	0.4/8/68000	15:	63.19	75:	392.11	135:	1010.20
C	0.002514000	-0.012599000	4.574295000	10:	04.55	70:	393.28	130:	1910.30
C	-1.3/88/5000	0.118383000	-2.8/3/52000	17:	05.05	77:	395.83	137:	1914.98
C O	-1.900370000	2.001762000	2.012204000	10.	68.04	70:	399.37	130.	1920.29
0	-3.693201000	-3.091/03000	-2.154509000	19:	08.94	/9:	400.55	139:	1934.30
0	-0.120016000	-3.388419000	-3.050362000	20:	70.45	80:	405.21	140:	1934.82
0	3.403323000	-5.500825000	-2.140103000	21:	71.41	81: 82:	403.30	141:	1940.24
0	2.723890000	-3.399017000	1.309343000	22:	75.27	02: 92:	408.85	142:	1947.91
0	-0.126204000	-3.33/188000	4.478745000	25:	75.21	85. 94.	410.00	145:	1950.01
0	-2.985710000 5.045947000	-3.334309000	2 700377000	24.	76.78	04. 85.	415.77	144.	1900.30
0	4 279161000	0.287955000	-2.700377000	25.	70.78	85.	410.98	145.	1980.95
0	-4.279101000	-0.108099000	5 72/9/8000	20.	78.24	80.	424.12	140. 147.	1900.07
0	1 503386000	-0.007155000	4.035571000	27.	80.20	87. 88.	424.20	147.	2082.17
0	-2 770623000	0.198032000	3 364220000	20.	84.63	80.	428.18	140.	2082.17
Ni	1 433483000	-0.039287000	0.871371000	30:	85 36	90.	428.93	150	2003.20
Ni	0.078012000	2 291711000	1 378969000	31.	85.58	91·	432.82	150.	2101 31
Ni	-1 144591000	2 440358000	-0.697155000	32.	86.27	92.	436.06	152	2101.31
Ni	1.294099000	2.358834000	-0.709788000	33:	89.92	93.	438.82	153:	2123.46
Ni	2.534148000	-0.098859000	-1.329159000	34:	92.22	94:	445.74	154	2129.64
C	2,753462000	2,780499000	-1.555483000	35.	98.53	95:	446.42	155:	2132.07
č	0.089194000	2.996834000	-2.019735000	36:	99.17	96:	452.45	156:	2170.91
Ĉ	-2.579307000	2.975447000	-1.518820000	37:	100.93	97:	453.95		
Č	-1.683168000	2.889708000	1.038961000	38:	101.04	98:	456.36		
Ċ	0.110249000	2.778870000	3.054547000	39:	108.15	99:	458.15		
C	1.876772000	2.767259000	1.018432000	40:	109.45	100:	461.04		
С	4.069559000	-0.091654000	-2.104468000	41:	119.20	101:	463.38		
С	3.182996000	-0.295304000	0.497405000	42:	120.87	102:	464.56		
С	1.398818000	-0.074761000	-2.870017000	43:	121.60	103:	467.36		
С	1.914450000	0.132403000	2.616863000	44:	127.01	104:	472.36		
0	3.683636000	3.188140000	-2.098232000	45:	129.84	105:	475.04		
0	0.100895000	3.525342000	-3.062116000	46:	134.08	106:	476.29		
0	-3.485587000	3.460373000	-2.037781000	47:	138.18	107:	479.96		
0	-2.570271000	3.407552000	1.597071000	48:	139.69	108:	482.16		
0	0.139029000	3.257327000	4.101280000	49:	144.58	109:	485.68		
0	2.799179000	3.226168000	1.570897000	50:	153.48	110:	490.18		
0	5.103535000	-0.072959000	-2.611974000	51:	156.91	111:	492.70		
0	4.246069000	-0.531796000	0.926960000	52:	171.01	112:	495.10		
0	1.529259000	-0.101131000	-4.033609000	53:	177.96	113:	496.91		
0	2.798217000	0.292685000	3.366311000	54:	180.90	114:	511.46		
				55:	182.16	115:	512.78		
				56:	199.67	116:	513.42		
				57:	206.16	117:	519.40		
				58:	207.47	118:	523.11		
				59:	208.98	119:	528.50		
				60:	214.43	120:	534.51		

$[Pt_2Ni_{10}(CO)_{21}]^{4-} isB_eB_e(E=-17688.399509772160 \ a.u., \ G^{298K}=-17688.30519335 \ a.u.)$

Computed frequencies (cm⁻¹)

54	110001001					Computed	l frequenci	es (cm ⁻¹)	
Pt2N	0.017088000	0.007722000	1 554610000	1.	:10 55	(1)	220.20	101.	575 50
N1	-0.01/088000	0.007732000	-1.554610000	1:	118.55	61:	239.30	121:	525.58
N1	-1.48/955000	0.049/65000	0.911034000	2:	14.12	62:	249.10	122:	525.85
N1	-0.053/98000	-2.360190000	1.432649000	3:	22.99	63:	250.51	123:	532.30
N1	1.13/0/3000	-2.32260/000	-0.659890000	4:	27.36	64:	251.69	124:	533.34
N1	-1.276116000	-2.306815000	-0.629600000	5:	30.95	65:	252.02	125:	537.44
Pt	-0.008683000	0.002098000	3.0/9316000	6:	31.45	66:	257.02	126:	552.97
Pt	-2.626550000	0.085284000	-1.460953000	7:	33.77	67:	260.45	127:	563.37
С	-2.730709000	-2.815669000	-1.460587000	8:	38.06	68:	261.91	128:	563.72
C	-0.101164000	-2.802366000	-1.99/943000	9:	46.92	69:	262.18	129:	596.95
C	2.56/153000	-2.851739000	-1.504936000	10:	51.62	70:	276.56	130:	600.99
C	1.711540000	-2.862634000	1.044653000	11:	52.48	71:	290.30	131:	602.73
C	-0.064008000	-2.931064000	3.084928000	12:	56.79	72:	304.45	132:	605.82
C	-1.854773000	-2.765420000	1.098193000	13:	57.58	73:	386.87	133:	614.74
C	-4.236012000	0.157881000	-2.3888/9000	14:	58.59	74:	392.78	134:	631.88
С	-3.273256000	-0.100976000	0.528687000	15:	59.35	75:	393.86	135:	633.18
C	0.003218000	-0.022375000	4.939443000	16:	60.32	76:	395.68	136:	1911.35
C	-1.156576000	0.261256000	-2.972101000	17:	68.05	77:	396.26	137:	1914.87
С	-2.040613000	0.280628000	2.644606000	18:	70.07	78:	401.73	138:	1925.17
0	-3.635727000	-3.291390000	-1.987815000	19:	71.08	79:	402.18	139:	1930.77
0	-0.116220000	-3.290111000	-3.061288000	20:	71.98	80:	407.04	140:	1932.61
0	3.464138000	-3.344970000	-2.032182000	21:	72.58	81:	410.48	141:	1942.48
0	2.626472000	-3.383597000	1.555053000	22:	74.10	82:	412.56	142:	1943.26
0	-0.081264000	-3.424994000	4.123854000	23:	75.27	83:	414.09	143:	1955.61
0	-2.782366000	-3.228123000	1.640761000	24:	75.87	84:	417.49	144:	1960.88
0	-5.244175000	0.204852000	-2.953470000	25:	76.79	85:	421.69	145:	1991.66
0	-4.344061000	-0.287307000	0.959998000	26:	77.81	86:	422.27	146:	1997.81
0	0.010017000	-0.043758000	6.095423000	27:	78.64	87:	425.40	147:	2011.86
0	-1.256926000	0.494687000	-4.112081000	28:	79.32	88:	428.76	148:	2077.75
0	-2.938796000	0.536132000	3.348053000	29:	80.69	89:	432.48	149:	2080.67
Ni	1.391181000	-0.048719000	0.879596000	30:	83.73	90:	433.24	150:	2089.61
Ni	0.090311000	2.351700000	1.420409000	31:	84.37	91:	433.93	151:	2096.23
Ni	-1.088738000	2.395629000	-0.669403000	32:	85.57	92:	434.30	152:	2100.92
Ni	1.319384000	2.245028000	-0.644482000	33:	90.45	93:	437.31	153:	2113.76
Ni	2.413584000	-0.077844000	-1.344639000	34:	91.48	94:	440.23	154:	2123.88
С	2.784548000	2.667459000	-1.489165000	35:	93.24	95:	448.19	155:	2125.61
С	0.156186000	2.812699000	-2.007079000	36:	100.85	96:	448.61	156:	2164.37
С	-2.493535000	3.019124000	-1.505205000	37:	101.48	97:	451.10		
С	-1.673059000	2.884992000	1.044939000	38:	103.57	98:	451.54		
С	0.113172000	2.917634000	3.075098000	39:	104.57	99:	460.73		
С	1.895505000	2.725334000	1.080988000	40:	110.84	100:	462.36		
С	3.919831000	-0.135607000	-2.208075000	41:	118.99	101:	463.34		
С	3.158849000	0.041293000	0.400543000	42:	119.94	102:	464.15		
С	1.267199000	-0.239843000	-2.846131000	43:	121.83	103:	465.55		
С	2.031955000	-0.233681000	2.591765000	44:	127.44	104:	467.78		
0	3.706657000	3.093416000	-2.032022000	45:	128.34	105:	475.16		
0	0.204111000	3.306007000	-3.067102000	46:	136.72	106:	478.53		
0	-3.371443000	3.555324000	-2.019833000	47:	139.65	107:	479.16		
0	-2.579730000	3.407037000	1.568398000	48:	143.41	108:	482.25		
0	0.142985000	3.414417000	4.112500000	49:	145.35	109:	484.06		
0	2.835337000	3.170418000	1.617220000	50:	148.21	110:	484.87		
0	4.920510000	-0.176869000	-2.774352000	51:	149.20	111:	485.93		
0	4.251889000	0.160094000	0.797369000	52:	172.33	112:	491.21		
0	1.448584000	-0.459294000	-3.979674000	53:	182.41	113:	494.10		
0	2.961954000	-0.439958000	3.267420000	54:	183.46	114:	498.95		
				55:	186.49	115:	502.10		
				56:	188.71	116:	502.44		
				57:	197.73	117:	507.59		
				58:	198.77	118:	508.32		
				59:	235.36	119:	520.92		
				60:	236.86	120:	523.71		

$[Pt_2Ni_{10}(CO)_{21}]^{4-} isB_eB_i - 1(E = -17688.432325128389 \text{ a.u.}, G^{298K} = -17688.34022078 \text{ a.u.})$

Computed frequencies (cm⁻¹)

54						Computed	l frequenci	es (cm ⁻¹)	
Pt2N	li10C21O21								
Ni	-0.029207000	-0.002274000	-1.540980000	1:	13.34	61:	231.49	121:	533.66
Pt	-1.316421000	0.048220000	0.865879000	2:	16.19	62:	245.22	122:	534.48
Ni	-0.129667000	-2.463177000	1.422631000	3:	23.47	63:	245.55	123:	540.77
Ni	1.090403000	-2.321682000	-0.649802000	4:	27.85	64:	247.34	124:	543.62
Ni	-1.331686000	-2.334218000	-0.683715000	5:	29.37	65:	248.90	125:	548.66
Pt	0.069721000	0.017001000	3.187356000	6:	30.27	66:	253.45	126:	562.20
Ni	-2.481236000	0.073916000	-1.399340000	7:	35.14	67:	254.71	127:	562.65
C	-2.776755000	-2.743854000	-1.562667000	8:	40.30	68:	255.93	128:	568.84
C	-0.111202000	-2.791847000	-2.028079000	9:	45.23	69:	265.91	129:	593.02
С	2.537116000	-2.829215000	-1.478848000	10:	49.16	70:	270.23	130:	597.58
C	1.651566000	-2.905709000	1.056604000	11:	51.23	71:	285.78	131:	597.76
C	-0.171944000	-3.013820000	3.076927000	12:	54.62	72:	305.84	132:	601.99
C	-1.905482000	-2.947158000	1.009496000	13:	57.46	73:	380.62	133:	618.94
C	-3.947205000	0.140198000	-2.305403000	14:	57.68	/4:	389.57	134:	649.05
C	-3.247402000	0.020490000	0.334110000	15:	59.61	75:	390.38	135:	661.66
C	0.176240000	0.046261000	5.028914000	16:	61.13	76:	394.74	136:	1912.28
C	-1.249065000	0.169987000	-2.883689000	17:	66.11	77:	401.76	137:	1918.52
C	-1.986499000	0.194701000	2.758228000	18:	67.51	78:	402.52	138:	1929.15
0	-3.691352000	-3.151349000	-2.132029000	19:	68.97	79:	403.15	139:	1934.57
0	-0.092166000	-3.260121000	-3.099500000	20:	70.54	80:	406.24	140:	1935.57
0	3.434571000	-3.330024000	-1.998271000	21:	73.04	81:	407.92	141:	1945.31
0	2.570837000	-3.429207000	1.555065000	22:	73.76	82:	410.28	142:	1946.34
0	-0.212857000	-3.492007000	4.122324000	23:	75.33	83:	418.48	143:	1957.05
0	-2.831759000	-3.457656000	1.507709000	24:	75.83	84:	420.41	144:	1963.74
0	-4.928857000	0.188690000	-2.904373000	25:	76.62	85:	424.84	145:	1983.06
0	-4.324181000	-0.030421000	0.791113000	26:	77.92	86:	426.45	146:	1993.01
0	0.247752000	0.068018000	6.183705000	27:	79.89	87:	427.32	147:	2004.14
0	-1.403163000	0.318196000	-4.033370000	28:	81.09	88:	428.71	148:	2083.00
0	-2.955285000	0.340911000	3.39/1/4000	29:	81.98	89:	430.28	149:	2086.00
Ni	1.456908000	-0.072660000	0.945435000	30:	83.88	90:	431.10	150:	2094.34
N1	0.061789000	2.486527000	1.443065000	31:	85.50	91:	432.75	151:	2095.47
N1	-1.148324000	2.4138/6000	-0.662199000	32:	89.42	92:	435.86	152:	2100.95
N1	1.267268000	2.22/100000	-0.623377000	33:	90.57	93:	440.82	153:	2121.25
N1	2.403155000	-0.084068000	-1.321436000	34:	92.92	94:	445.09	154:	2124.58
C	2.732186000	2.626356000	-1.480553000	35:	97.47	95:	451.55	155:	2131.19
C	0.103119000	2.763070000	-2.010526000	36:	100.65	96:	453.76	156:	2168.56
C	-2.56/146000	2.940616000	-1.520831000	37:	101.85	97:	454.84		
C	-1.089079000	3.054548000	1.035234000	38:	104.51	98:	455.55		
C	0.081660000	3.052108000	3.091513000	39:	106.05	99:	458.64		
C	1.8/20//000	2.782274000	1.081480000	40:	109.09	100:	460.48		
C	3.890034000	-0.103003000	-2.200741000	41:	110.70	101:	462.15		
C	3.189027000	0.030117000	0.422742000	42:	110.40	102:	404.80		
C	2 107580000	-0.1/4/10000	-2.844550000	45:	121.77	103:	400.17		
C O	2.107389000	-0.200933000	2.040280000	44.	124.00	104.	472.93		
0	3.04/949000	2 218642000	-2.023132000	43:	127.14	105:	470.00		
0	2 450870000	3.218043000	-3.063674000	40.	132.03	100.	479.70		
0	2 503613000	3.423797000	-2.004470000	47.	137.21	107.	481.30		
0	-2.393013000	2 525070000	1.554050000	40.	140.13	108.	465.51		
0	2 820747000	2 220526000	4.133039000	49.	140.40	109.	404.01		
0	2.829747000	0.223084000	2 778053000	50.	152.90	110.	483.94		
0	4.090490000	0.223084000	-2.778055000	51.	176.00	111.	400.77		
ő	1 429879000	-0.321660000	-3 986552000	52.	177 38	112:	500 37		
õ	3 0/2058000	-0 501702000	3 303825000	55.	182.30	113.	511 52		
U	5.042056000	-0.301702000	5.505825000	54:	182.59	114.	512.52		
				55.	105.55	115.	514.60		
				50:	190.00	110.	515.25		
				57.	207.70	117.	516 71		
				50.	207.79	110.	526.12		
				59. 60·	230.28	120.	528.12		
				00.	230.20	120.	520.50		

$[Pt_2Ni_{10}(CO)_{21}]^{4-} isB_eB_i - 2(E = -17688.429924836251 \ a.u., \ G^{298K} = -17688.33735572 \ a.u.)$

Computed frequencies (cm⁻¹)

54						Computed	l frequenci	es (cm ⁻¹)	
Pt2N	Ni10C21O21	0.000.00000	1 21 5 40 1000						
Pt	-0.001523000	0.000638000	-1.317604000	1:	111.84	61:	231.26	121:	535.74
Ni	-1.524584000	0.033538000	0.925633000	2:	18.39	62:	242.40	122:	536.07
Ni	-0.077558000	-2.333882000	1.359619000	3:	26.35	63:	243.19	123:	546.61
Ni	1.138289000	-2.459432000	-0.709572000	4:	26.75	64:	248.39	124:	547.11
Ni	-1.306210000	-2.356687000	-0.716431000	5:	29.03	65:	248.73	125:	557.12
Pt	-0.002766000	-0.001606000	3.060460000	6:	29.77	66:	250.81	126:	561.38
Ni	-2.537777000	0.110312000	-1.317078000	7:	35.61	67:	251.73	127:	561.89
C	-2.771702000	-2.751530000	-1.568053000	8:	36.62	68:	253.66	128:	570.64
C	-0.108847000	-3.012184000	-2.020442000	9:	38.78	69:	258.57	129:	590.33
С	2.567382000	-3.014113000	-1.526319000	10:	40.89	70:	270.74	130:	595.05
C	1.702032000	-2.866222000	1.035726000	11:	48.83	71:	284.87	131:	601.76
C	-0.109469000	-2.847631000	3.032468000	12:	51.58	72:	297.76	132:	603.98
C	-1.873484000	-2.798988000	1.015356000	13:	53.89	73:	386.27	133:	635.72
C	-4.023969000	0.220958000	-2.180550000	14:	56.39	74:	387.70	134:	636.48
C	-3.275648000	-0.073150000	0.444604000	15:	58.50	75:	387.75	135:	662.81
C	-0.002304000	-0.0049/9000	4.921252000	16:	60.18	76:	392.37	136:	1912.29
C	-1.352038000	0.217819000	-2.795810000	17:	64.17	77:	396.47	137:	1920.19
С	-2.093531000	0.180212000	2.638018000	18:	64.44	78:	401.26	138:	1926.49
0	-3.707210000	-3.135272000	-2.119183000	19:	68.66	79:	401.31	139:	1935.12
0	-0.130287000	-3.548157000	-3.058965000	20:	70.30	80:	406.40	140:	1936.92
0	3.472260000	-3.505975000	-2.041606000	21:	70.80	81:	406.47	141:	1944.32
0	2.605205000	-3.356093000	1.594379000	22:	71.92	82:	411.14	142:	1946.98
0	-0.140067000	-3.345689000	4.069505000	23:	73.94	83:	411.99	143:	1958.18
0	-2.788998000	-3.274871000	1.565459000	24:	74.01	84:	417.08	144:	1963.49
0	-5.013743000	0.299807000	-2.762978000	25:	74.88	85:	419.80	145:	1986.00
0	-4.365406000	-0.230884000	0.842999000	26:	75.87	86:	423.02	146:	1990.53
0	-0.002655000	-0.008432000	6.077205000	27:	77.14	87:	426.17	147:	2005.09
0	-1.419414000	0.372914000	-3.953547000	28:	77.49	88:	426.59	148:	2078.76
0	-2.982195000	0.345533000	3.378500000	29:	79.80	89:	428.44	149:	2089.62
Ni	1.522868000	-0.035186000	0.925111000	30:	80.62	90:	429.77	150:	2097.32
Ni	0.077572000	2.332160000	1.358527000	31:	84.55	91:	430.38	151:	2097.51
Ni	-1.136886000	2.461816000	-0.711468000	32:	85.57	92:	431.42	152:	2097.75
N1	1.30/269000	2.355944000	-0.717025000	33:	87.25	93:	443.33	153:	2118.40
Ni	2.534609000	-0.110426000	-1.319876000	34:	89.58	94:	445.25	154:	2122.77
C	2.773584000	2.750964000	-1.566838000	35:	90.74	95:	448.30	155:	2132.13
C	0.111724000	3.013185000	-2.021763000	36:	95.30	96:	452.73	156:	2168.29
C	-2.565435000	3.017195000	-1.528583000	37:	100.26	97:	452.88		
C	-1.699723000	2.8/1766000	1.032921000	38:	100.43	98:	455.59		
C	0.110689000	2.845922000	3.031462000	39:	102.79	99:	456.45		
C	1.8/5945000	2.790802000	1.01603/000	40:	105.01	100:	458.29		
C	4.0208/6000	-0.216616000	-2.184359000	41:	109.47	101:	464.78		
C	3.2/4554000	0.055185000	0.442455000	42:	112.49	102:	465.90		
C	1.34/639000	-0.215220000	-2.797666000	43:	120.01	103:	406.80		
C	2.090883000	-0.103/81000	2.038937000	44:	125.52	104:	4/1./0		
0	5.709888000	3.133002000	-2.110455000	45:	120.90	105:	4/0.34		
0	0.154175000	3.549525000	-3.0000/1000	40:	129.22	100:	4/6./5		
0	-3.4/0298000	3.509290000	-2.043003000	47:	134.32	107:	481.01		
0	-2.001289000	2 244227000	1.390018000	40:	140.52	108:	482.00		
0	0.143229000	3.344237000	4.008284000	49:	145.55	109:	402.12		
0	2.795520000	3.201131000	1.50/855000	50:	145.59	110:	482.20		
0	3.010988000	-0.291819000	-2.700049000	51:	172.01	111:	400./1		
0	4.300833000	0.1930/1000	2 055526000	52:	170.00	112:	474.54		
0	1.413428000	-0.309/84000	-3.733320000	53:	178.40	113:	490.32		
0	2.979750000	-0.30/985000	3.38352/000	54:	180.11	114:	504.11		
				55: EC.	100.01	115:	514.09		
				50: 57.	101.34	110:	519.41		
				57:	200 51	11/:	510.41		
				50.	200.51	110:	522 10		
				59:	220.01	120.	522.10		
				00.	227.14	120.	550.15		

$[Pt_2Ni_{10}(CO)_{21}]^{4-} \ is B_i B_i \ (E = -17688.454147015927 \ a.u., \ G^{298K} = -17688.36210154 \ a.u.)$

Computed frequencies (cm⁻¹)

54 D+2N	1:10021021					Computed	l frequencie	es (cm ⁻¹)	
PtZr Dt	0.027000000	0.002102000	1 550551000	1.	15 72	61.	220 20	121.	511.96
Pl Dt	-0.05/900000	-0.002192000	-1.339331000	1:	13.75	62	220.20	121:	544.00
Pl NC	-1.420919000	0.042398000	1 451002000	2:	25.70	62:	255.60	122:	552 14
INI NG	-0.074673000	-2.308912000	0.642506000	5:	20.25	64:	241.15	125:	556.20
INI NG	1.1411//000	-2.413049000	-0.042300000	4.	30.16	04. 65:	242.39	124.	560.20
INI NG	-1.300848000	-2.455142000	2 012/35000	5:	32.30	66:	245.45	125:	561.66
Ni	2 605163000	0.012203000	2.912433000	0.	38.03	67:	240.52	120.	567.08
C	2.005105000	2 8/3112000	-1.442048000	/. 8.	30.77	68:	251.50	127.	571.56
c	-0.079653000	-3.021/28000	-1.96/1/5000	0.	41.80	60·	252.21	120.	589.31
c	2 585038000	-2 920508000	-1 468654000	10:	47.10	70.	262.15	130.	593 52
c	1 703/39000	-2.920308000	1 089205000	10.	49.30	70.	202.15	130.	596.54
c	-0.093541000	-2 828926000	3 128042000	12:	50.42	71.	300.16	131.	601 52
č	-1 847236000	-2 944126000	1.067325000	13:	52 55	73.	383.67	132.	629.73
č	-4 087203000	0 197678000	-2 296848000	13.	53.76	73. 74·	386.98	134.	658.01
č	-3.341585000	0.082016000	0.353334000	15.	57.01	75.	393.41	135:	680.15
č	0.078893000	0.040490000	4.634314000	16:	58.95	76:	394.84	136:	1911.78
Ĉ	-1.415707000	0.133204000	-2.976199000	17:	62.42	77:	395.82	137:	1916.71
č	-1.912512000	0.094479000	2.754160000	18:	65.25	78:	400.37	138:	1928.54
õ	-3.699121000	-3.229151000	-2.052786000	19:	68.82	79:	401.33	139:	1933.97
õ	-0.065732000	-3.569448000	-2.996269000	20:	70.13	80:	403.22	140:	1934.79
õ	3.493386000	-3.404061000	-1.985511000	21:	71.61	81:	408.21	141:	1946.59
õ	2.614117000	-3.369953000	1.627948000	22:	73.16	82:	408.84	142:	1947.18
0	-0.109558000	-3.268478000	4.192155000	23:	73.73	83:	415.54	143:	1954.33
0	-2.746260000	-3.455532000	1.611218000	24:	74.19	84:	417.64	144:	1964.73
0	-5.085009000	0.257533000	-2.869123000	25:	74.68	85:	421.36	145:	1973.42
0	-4.417836000	0.080450000	0.818385000	26:	75.77	86:	423.01	146:	1982.02
0	0.119750000	0.066483000	5.784469000	27:	77.65	87:	424.15	147:	1997.33
0	-1.546466000	0.212530000	-4.138491000	28:	79.10	88:	425.68	148:	2088.22
0	-2.814122000	0.151051000	3.500737000	29:	79.25	89:	427.58	149:	2091.24
Ni	1.398839000	-0.048096000	0.861179000	30:	81.60	90:	428.76	150:	2097.07
Ni	0.082411000	2.377276000	1.458102000	31:	84.20	91:	431.97	151:	2099.33
Ni	-1.136601000	2.520056000	-0.640891000	32:	85.46	92:	435.70	152:	2103.46
Ni	1.297068000	2.320003000	-0.635163000	33:	87.72	93:	440.30	153:	2124.33
Ni	2.478005000	-0.101402000	-1.375135000	34:	87.95	94:	447.71	154:	2130.99
С	2.761035000	2.728618000	-1.482659000	35:	95.64	95:	450.65	155:	2131.13
С	0.115850000	2.959333000	-1.976868000	36:	98.40	96:	452.84	156:	2171.71
С	-2.559438000	3.066924000	-1.474644000	37:	99.21	97:	455.28		
С	-1.662691000	3.034820000	1.090449000	38:	100.26	98:	455.94		
С	0.117513000	2.847395000	3.131471000	39:	100.83	99:	456.54		
С	1.892831000	2.738648000	1.099992000	40:	105.26	100:	457.27		
С	4.006677000	-0.164295000	-2.167845000	41:	114.88	101:	458.23		
С	3.164211000	0.008117000	0.437751000	42:	116.07	102:	461.69		
C	1.363108000	-0.150420000	-2.951116000	43:	123.34	103:	463.34		
С	1.912892000	-0.180606000	2.597606000	44:	124.71	104:	468.12		
0	3.689645000	3.144538000	-2.021870000	45:	129.42	105:	477.13		
0	0.164544000	3.462910000	-3.030360000	46:	129.79	106:	479.23		
0	-3.458151000	3.556837000	-2.001812000	47:	133.02	107:	480.26		
0	-2.5402/1000	3.574222000	1.642389000	48:	133.82	108:	481.06		
0	0.154559000	3.299268000	4.190207000	49:	142.72	109:	483.33		
0	2.838224000	5.164/26000	1.040088000	50:	156.99	110:	484.35		
0	5.051445000	-0.207343000	-2.090/01000	51:	1/5.04	111:	488.4/		
0	4.2556/2000	0.103095000	0.84/496000	52:	174.60	112:	493.51		
0	1.341392000	-0.231208000	-4.104610000	53: EA:	175 4	113:	516.50		
U	2.000230000	-0.540508000	3.331640000	54:	1/3.04	114:	517.02		
				55: 52.	103.01	115:	517.02		
				50: 57.	204.63	110:	510.34		
				57.	204.05	117.	574 16		
				50.	203.00	110.	525 19		
				J9. 60.	223.75	120.	536 38		
				00.		120.	550.50		

$[Pt_{18}Ni(CO)_{22}]^{4-}$ isA(E = -6144.906719533445 a.u.)

Pt18	SNiC22O22		
Pt	-0.212174151	0.114595587	1.297379925
Ni	-2.010619139	1.457981921	0.004327744
Pt	2.395415034	-0.040839423	0.541812606
Pt	-0.012464848	0.042238750	3.979485942
Pt	0.733537691	2.403762399	-0.199140495
Pt	2.309793300	0.138827156	-2.240283791
Pt	-1.844110197	1 736886256	2 679495302
Pt	1 140433578	2 159865861	2.523103857
C	3 286765344	0.263926480	-3 804407893
c	3 735/31339	0.265720400	-0.83/096218
c	1 480761120	3 623101025	1 168268632
C	1.409701120	2.020205905	1.108208032
C	1./6544/425	2.939323693	4.00/415591
C	0.009313134	0.000080704	3.803338742
C	-2.5/0250//4	2.809620100	3.991/09180
C	-3.2/4019/53	1.922493036	1.260539788
0	3.899929296	0.339858472	-4.772462942
0	4.836048803	0.862995845	-0.891081644
0	1.972462538	4.686415665	1.270710066
0	2.171652219	3.420144901	5.035391084
0	0.130929148	0.090497145	6.956580608
0	-3.018943781	3.466787840	4.824752243
0	-4.411784175	2.154175166	1.394156548
Pt	-0.210581123	0.117262904	-1.313752280
Pt	-2.114767822	-1.443180241	0.139384628
Pt	-0.050758960	-0.013005132	-3.987958805
Pt	0.764657409	-2.269626981	-0.476950849
Pt	2 652374965	-0.294813541	3 263568566
Pt	-1.768542252	-1.742200600	-2.582754701
Pt	1.075056206	-2 421247305	-3 194554231
C	3 610464876	-0 569136605	4 813100049
c	3 800210633	0.636145586	1 724060648
c	1 706402706	2 509786076	1.724000048
C	1.790493790	-3.308780070	-1.009120300
C	1.01/901130	-3.229670401	-4./59212095
C	-0.029849705	-0.070002136	-5.812441588
C	-2.304339707	-2.586141/41	-4.133623778
C	-3.0/660539/	-2.495792509	-1.235823178
0	4.252816269	-0.755275128	5.751860081
0	4.991/450/3	-1.048/93/16	1.639337637
0	2.527679198	-4.419907110	-1.590631268
0	1.979464103	-3.766907898	-5.712376516
0	-0.024690150	-0.115269060	-6.966646896
0	-2.634630830	-3.100088784	-5.106320551
0	-3.965346713	-3.252375172	-1.345065941
Pt	-2.180455635	-1.250984383	2.875372030
Pt	0.615370089	-2.252772801	2.296982552
С	0.704787370	-3.708642919	0.891174445
С	0.819256118	-3.207493390	3.867407517
С	-2.974567331	-1.694964756	4.472016344
С	-3.478441315	-1.962679851	1.492978938
0	0.655612156	-4.877555029	0.943536952
õ	0.948352998	-3 808166074	4.837814758
ŏ	-3 493366572	-1 970018024	5 461707850
0	1 555848545	2 411244673	1 585746247
D+	2 222560222	1 244922400	2 672772805
ΓL Dt	-2.222309322	2 458152006	-2.073772803
C	0.307331009	2 200220727	1 502252022
C	0.740390718	5.892382707	-1.52555033
C	0.6/2351323	3.363160916	-4.518594655
C	-3.421545792	1.661308087	-4.013469539
C	-2.839767921	2.535543066	-1.246956166
0	0.796285882	5.060609607	-1.585739658
0	0.765565756	3.953363493	-5.502359639
0	-4.148126528	1.919092844	-4.866460510
0	-3.405373512	3.550865904	-1.368366511

$[Pt_{18}Ni(CO)_{22}]^{4-}$ is A'(E = -6144.911455623183 a.u.)

Pt18	NiC22O22		
Pt	0.296116195	0.006781470	1.321345873
Pt	-1.905215647	1.354297371	0.538681729
Pt	2.722948141	-0.024167155	-0.024802500
Pt	0.056709498	0.025805143	4.006860876
Pt	0.840802470	2.405555135	-0.118474308
Pt	2.584358952	-0.000398460	-2.776057664
Ni	-1.953187100	1.432084247	3.119029351
Pt	0.604002692	2,395670960	2.626416377
C	3 495267589	0.026588344	-4 370012795
č	4 097776348	-0.253200763	-1 428975234
c	0.9/8016852	3 835704750	1 255267794
c	0.718407421	2 222004766	1.233207794
C	0.716497421	0.120574226	4.213091049
C	-0.030246730	0.120374320	3.835550250
C	-2.094244310	1.898105805	4.000591075
C	-2.8600/3066	2.463315139	1.906407532
0	4.064985850	0.042952077	-5.369267827
0	5.242093664	-0.456066728	-1.569284112
0	1.084755397	4.996328381	1.343203665
0	0.787698412	3.894122154	5.208524781
0	-0.086532723	0.160333796	6.986487657
0	-3.180096646	2.217239965	5.595150269
0	-3.597022528	3.373700763	1.953813660
Pt	0.274635807	0.027033474	-1.300306857
Pt	-1.954213975	-1.391095181	-0.565934640
Pt	0.043672415	0.025091311	-3.971957199
Pt	0.799280013	-2.392269365	0.163455776
Pt	2.590846534	-0.010326573	2.734306633
Pt	-2.133769335	-1.562145453	-3.302720341
Pt	0.644300462	-2.362881070	-2.588888801
C	3.520360035	-0.009258854	4.320293977
C	4 092192281	0.218687099	1 371442068
č	1 270949514	-3 718737497	-1 244745078
č	0.830077319	-3 275608776	-4 181619632
c	-0.085184953	-0.035970384	-5 793554733
c	2 032105840	2 162125145	1 848482050
c	2.932193840	2 502691119	1 707201565
õ	4.007745012	-2.393081118	5 215065969
0	4.097743912	-0.000119720	1 507124452
0	1.72000.00121	4 7971 57720	1.30/124432
0	1./39990001	-4./8/15//30	-1.354121098
0	0.945155442	-3.83/289/40	-5.1/09000/4
0	-0.1/2094395	-0.050159355	-6.944853835
0	-3.459685826	-2.575669461	-5.786212211
0	-3.693849171	-3.515935425	-1.753580972
Pt	-1.909800832	-1.185865137	2.243668051
Pt	0.755739407	-2.381964253	2.917129539
С	0.997005496	-3.823251197	1.514860250
С	0.964903071	-3.324901085	4.485093894
С	-2.715971197	-1.812417620	3.775978851
С	-3.302557379	-1.748657578	0.842194333
0	1.166572520	-4.978013864	1.617055908
0	1.100483059	-3.905951001	5.468473011
0	-3.203293712	-2.210876869	4.737285570
0	-4.427043003	-2.057408909	0.940244886
Pt	-1.930669426	1.220503299	-2.265995932
Pt	0.774493732	2.413260082	-2.865622513
С	1.452383279	3.708867577	-1.474102486
C	0.968120608	3.374927669	-4.425332261
Ĉ	-2.769513448	1.893708046	-3.762227130
č	-3 249939058	1.867353233	-0.821796883
õ	2 011708242	4 734081682	-1 568522187
õ	1 098048604	3 964609034	-5 404272537
ŏ	-3 2701/15128	2 314558285	-4 706268866
õ	-4 336532/18/	2.214220202	-0.905650853
		ム・ム ノーテフィルリー・プリー	N. N. NI N. N. 1

$[Pt_{18}Ni(CO)_{22}]^{4-}$ isB (E = -6144.876970262768 a.u.)

Pt18	3NiC22O22		
Ni	-0.187345347	-0.405281944	1.355077961
Pt	-1.813564821	1.413492213	0.323519744
Pt	2.228572890	-0.052684771	0.293919816
Pt	0.126805388	0.128824918	3.998098321
Pt	0.773868355	2.383965007	-0.853005310
Pt	2.298481594	0.230128019	-2.525827287
Pt	-2 101790102	1 405470805	3 029706188
Pt	0.651540220	1 952434930	1 909943963
C	3 518905496	0.233054519	-3 931861740
c	2 556991200	0.233034317	1 028040465
C	0.972201122	2 620016125	-1.020949403
C	0.873201133	3.029610133	0.08/0191/9
C	1.049396214	2.812645930	3.503/31031
C	-0.2/841333/	-0.12081/104	5./6950/664
C	-2.976285360	1.944250664	4.564618500
С	-3.337517402	1.837729488	1.527715028
0	4.280438948	0.227258315	-4.789022799
0	4.638353098	1.054977890	-0.989530471
0	0.956044139	4.773049988	0.908002952
0	1.303290343	3.468291248	4.411237051
0	-0.501946529	-0.225714642	6.896605352
0	-3.573065255	2.287074569	5.487162119
0	-4.467978059	2.145308311	1.466505034
Pt	-0.072180121	-0.241056584	-1.184553511
Pt	-2.123204707	-1.553140822	0.084336104
Pt	-0.080999722	-0.073076704	-3 902869874
Pt	0.702689374	-2.554884345	0.052367139
Pt	2 702609847	0 126264478	2 931515676
Pt	-2 112836630	-1 415923914	-2 640932340
Dt	0.677104238	2 475301422	2.040752540
C	2 624710017	0.168047257	4 517002572
c	2 700208087	0.100047557	4.517992572
C	5.199296961	-0.04110404/	1.420047423
C	1.304/30442	-5.61/106165	-1.353642466
C	0.953515041	-3.347756220	-4.290595680
C	0.532690562	0.136656282	-5.59653/350
C	-2.892845404	-1.940125569	-4.227951828
C	-3.560582211	-1.875535844	-1.263420834
0	4.227194228	0.170525658	5.500956521
0	4.799801628	-1.232105038	1.324018317
0	1.907208084	-4.850492141	-1.436187252
0	1.125949867	-3.889594557	-5.290591908
0	0.850730831	0.205662419	-6.705051173
0	-3.370747455	-2.273355393	-5.220656443
0	-4.695746966	-2.139687214	-1.325910941
Pt	-1.981932865	-1.569350202	2.820355208
Pt	0.957583526	-2.306739234	2.738030931
С	0.947236554	-3.898517735	1.491315034
С	1.462488959	-2.967928112	4.390834635
С	-2.626147507	-2.161989542	4.457037886
Ċ	-3.070526717	-2.571087633	1.484338783
0	1.038060109	-5.051797932	1 666790477
õ	1 767356247	-3 400708121	5 410383392
ŏ	-3.046660025	-2 563208568	5 447833296
õ	3 88/208011	2.505200500	1 586025800
Dt	1 807538280	1 562384810	2 420103513
ΓL Dt	-1.007556260	1.302304019	2 550686274
rt C	1 461420220	2 204200002	-3.3370002/4
C	1.401429220	3.604209083	-2.083248009
C	1.002066325	3.534213262	-5.145/95517
C	-2.639413914	2.119681136	-3.9/8261196
C	-2.552258504	2.770253879	-0.994023698
0	2.018538928	4.834202866	-2.063126937
0	1.182677590	4.187651847	-6.077177766
0	-3.172644059	2.460273773	-4.938176518
0	-3.103497686	3.798028861	-0.963907152

$[Pt_{18}Ni(CO)_{22}]^{4-}$ isC (E = -6144.902429961958 a.u.)

Pt18NiC22O22			
Pt	-0.393946184	0.001141817	1.496598685
Pt	-2.164698962	1.564797868	0.079311359
Pt	2.602841368	-0.006754967	-0.941909872
Ni	-0.481174872	0.003690675	3.997393338
Pt	0.843154565	2.158971861	0.334772957
Pt	2.699541912	-0.012661624	-3.683341073
Pt	-2.204681377	1.595110087	2.796668328
Pt	0.670978393	2 134965296	3 115206440
C	3 564834864	-0.016855974	-5 312310687
c	1 116676036	0.026065310	2 244520861
C	1.005060220	2 520105000	1 710552048
C	1.093000329	3.339193909	1./19332048
Č	0.948105748	3.08/3649/3	4.6/3904882
C	0.004/5950/	-0.009918190	5.612/43/44
C	-2.890729811	2.119389151	4.418496133
С	-3.593887921	2.044637628	1.390172610
0	4.191037638	-0.019865456	-6.281406389
0	5.287132392	-0.043273303	-2.279919539
0	1.311421281	4.685156689	1.839902865
0	1.098722797	3.703618069	5.632925671
0	0.317057254	-0.018005508	6.721164377
0	-3.328645704	2.460352866	5.427677105
õ	-4 716712233	2 363108519	1 413137639
Pt	-0 244940190	0.001342803	-1 155337215
Dt	2 172764056	1 553766145	0.070078556
Γt D+	-2.172704030	-1.555700145	2 827402724
Pl D4	-0.112/00324	-0.000007098	-5.62/405/24
Pt	0.855044510	-2.162130924	0.337585220
Pt	2.351428026	-0.005238657	1.835599291
Pt	-2.059970617	-1.540711791	-2.64/84/158
Pt	0.991237657	-2.139035639	-2.442072313
С	3.150953394	-0.009011149	3.498792386
С	3.938224636	0.010658904	0.567979481
С	1.654934039	-3.392087097	-1.002295204
С	1.319267010	-3.131015857	-3.962044222
С	0.039228618	0.009536525	-5.633786593
С	-2.734913848	-2.121399370	-4.265223445
Ĉ	-3 036859855	-2 682748437	-1 304686096
õ	3 705962726	-0.010881552	4 505125402
õ	5.006008063	0.026703563	0.727067056
0	2 272402588	4 384462408	1.061471557
0	2.272493300	-4.364402406	-1.0014/155/
0	1.30/414303	-5.746104962	-4.91100//04
0	0.080163688	0.015382291	-6./8/08/392
0	-3.158248876	-2.487728563	-5.269/42226
0	-3.750158789	-3.608534527	-1.389661483
Pt	-2.212982057	-1.582548338	2.798426163
Pt	0.660099949	-2.135332829	3.120139566
С	1.084384871	-3.538571101	1.724926891
С	0.934976443	-3.093862040	4.676149860
С	-2.903615080	-2.104588893	4.419206996
С	-3.600781664	-2.032231284	1.392011169
0	1.301522062	-4.684605535	1.845699663
õ	1 083976603	-3 713454972	5 633229401
õ	-3 343752908	-2 444188295	5 427799399
0	1 773547768	2.351270178	1 415782720
D _t	2 051910907	1 552961900	2 649996710
ΓL D+	-2.03101909/	1.333001090	-2.040000/10
rt C	1.000384/34	2.131493023	-2.443308/30
C	1.6668/4584	3.385211907	-1.006011218
C	1.346616257	3.121217723	-3.964417404
С	-2.724107969	2.141018452	-4.265116912
С	-3.023248892	2.698502420	-1.304745288
0	2.284310703	4.377906118	-1.065391740
0	1.541857706	3.737743486	-4.913225136
0	-3.146298168	2.511763398	-5.268516769
0	-3.733202739	3.627033483	-1.389292662

References

(1) G. M. Sheldrick, *SADABS-2008/1 - Bruker AXS Area Detector Scaling and Absorption Correction*; Bruker AXS: Madison, WI, **2008**.

- (2) G. M. Sheldrick, Crystal Structure Refinement with SHELXL. Acta Cryst., 2015, C71, 3-8.
- (3) (a) A. L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Cryst.,

2003, **36**, 7-13; (b) A. L. Spek, Structure validation in chemical crystallography *Acta Cryst.*, 2009, **D65**, 148-155.