Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Cp* non-innocence and the implications of $(\eta^4$ -Cp*H)Rh intermediates in hydrogenation of CO₂, NAD⁺, amino-borane, and the Cp* framework – *a computational study*

Shrinwantu Pal

Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan

shrinwantu.pal@oist.jp

1. Computational Details

Density functional theory (DFT) calculations were performed using the M06L^{1,2} functional (with density fitting, using the 'denfit'² keyword in Gaussian terminology) and def2-tzvp³ basis sets for all elements (default ECPs for Rh) as implemented in the Gaussian 16 package.⁴ All structures were fully optimized using the SMD⁵ solvation model. NBO calculations were performed using the NBO 7.0 package.⁶ Connectivity between the transition states and corresponding intermediates on either side were established by means of intrinsic reaction coordinate (IRC) calculations at the same level of theory. Analytical frequency calculations (at 298.15 K and 1 atm.) performed on the resultant geometries conformed to exactly ZERO imaginary frequencies for all ground states and exactly ONE imaginary frequency for the transition states.

Free energies of solutes were corrected for the change in standard states.^{7,8} Solubilities of H_2^9 and CO_2^{10} at higher pressures were adapted from literature,^{9–11} as detailed below. The hydroxide ion as well as transition states for (de)protonation were calculated by adding explicit water molecules.

Gibbs free energies are reported as the sum of solvent-corrected electronic and thermal free energies. All geometries are provided as MOL2 files which can be directly opened in any molecule editor, such as Mercury (https://www.ccdc.cam.ac.uk), Avogadro (https://avogadro.cc) or Jmol (http://jmol.sourceforge.net). Animations corresponding to imaginary frequencies from vibrational analysis are provided as GIF files, while those showing the intrinsic reaction coordinates corresponding to **TS6** as discussed in the main text is provided as a MOV file (**IRC6**).

The following tables tabulate the free energies of all calculated species; additionally, an interactive XLS sheet is also being provided.

2. Tables

The solubility of H_2^9 and CO_2^{10} at 2 MPa pressure in water are presented in the literature as volume equivalent of the gas (in cc) at STP that dissolves in 1 g of water. Conversion to mol/L yields the solubilities of H_2 and CO_2 as 0.02 M and 0.58 M. On the other hand, the solubility of H_2 at ~ 4MPa in THF¹¹ is presented in the literature as mole fraction in THF (density = 887 g/L; M_w = 72.11 g/mol). Conversion to mol/L yields the solubility of H_2 in THF as 0.12 M.

Table S1: Solubilities of H2 and CO2 at higher pressures								
	Conc. (M)	Notes						
H2, 2 MPa in water	. ,	Solubility of H2 in water at 2 MPa H2 pressure is 0.44 cc/g of water						
CO2, 2 MPa in water	0.58	Solubility of CO2 in water at 2 MPa CO2 pressure is 14.2 cc/g of water						
H2, 4 MPa in THF	0.12	Nolefraction solubility of H2 in THF at 4 MPa H2 pressure is 0.00996						

Standard state correction¹² is given as: SSC = 0.593*ln[Concentration(M)/0.0409]. The concentration of bulk solvents water and THF are 55.5 M (c = $1000 \text{ g/L} \div 18 \text{ g/mol}$) and 12.3 M (c = $887 \text{ g/L} \div 72.11 \text{ g/mol}$), respectively. Concentration of DMAB was taken as 4.0 M to reflect experimental conditions reported.¹³ The free energy of hydroxide was calculated by explicitly solvating the OH⁻ ion by three water molecules to the gas-phase free energy of the OH⁻ ion calculated by DFT and further corrected to account for a concentration of 1 M.

Table S2: Free energy correction	S				
	ΔG (DFT)	conc.	Correction	∆Gcorrected	Notes
	(Hartree)	(M)	(kcal/mol)	a.u.	INOLCS
H2O	-76.452183	55.55	4.28	-76.445366	SSC
H2 (2 MPa in water)	-1.170728	0.02	-0.49	-1.171503	SSC
CO2 (2 MPa CO2 pressure)	-188.657767	0.58	1.57	-188.655259	SSC
OH-(aq)3	-305.309900	-	-	-305.309900	DFT calculated OH- with explisit solvation with three water molecules (aq)
OH-(aq)3, 1 M in water	-305.309900	1.00	1.90	-305.306879	$\Delta G(solv, 1 M) = \Delta G(solvated) + SSC$
THF	-232.416333	12.30	3.38	-232.410941	SSC
DMAB	-161.780761	4.00	2.72	-161.776430	SSC
H2 (4 MPa in THF)	-1.172882	0.12	0.65	-1.171845	SSC

Table S3: Free Energy profile for the formation of 1, 2 and 3 in 1 M aqueous OH-								
Creation		Δ	G		SUM	REL	Notes	
Species		(Harl	tree)		(Hartree)	(kcal/mol)	NOLES	
4 + H2 + OH-(aq)3 + 3 H2O	-1071.813508	-1.171503	-305.306879	-229.336097	-1607.627988	0.0	Starting materials	
5 + 2 OH-(aq)3 + H2	-995.823095	-610.613758	-1.171503		-1607.608357	12.3	Dissociation of OH- from Rh(III)-center of 4	
6 + 2 OH-(aq)3	-996.985880	-610.613758			-1607.599638	17.8	Formation of Rh-ŋ2(H2) int.	
TS1 + H2O + OH-(aq)3	-1225.835867	-76.445366	-305.306879		-1607.588112	25.0	TS for deprotonation of Rh-η2(H2) fragment	
1 + 4 H2O + OH-(aq)3	-996.545022	-305.781463	-305.306879		-1607.633364	-3.4	Formation of Rh(III)-H	
TS2 + 4 H2O + OH-(aq)3	-996.517986	-305.781463	-305.306879		-1607.606328	13.6	TS for reductive elimination of the Cp*-H pair	
2 + 4 H2O + OH-(aq)3	-996.546434	-305.781463	-305.306879		-1607.634776	-4.3	Formation of Cp*H(endo) Rh(I) complex	
TS3 + 5 H2O	-1225.389695	-382.226829			-1607.616524	7.2	TS for reductive deprotonation of Rh(III)-H	
7 + 8 H2O	-996.080983	-611.562926			-1607.643909	-10.0	Formation of Cp*Rh(I) int. via deprot of Rh-H of 1	
TS4 + 5 H2O	-1225.376673	-382.226829			-1607.603502	15.4	TS for protonation of Cp* fragment of 7 in exo manner	
TS5 + 5 H2O	-1225.372606	-382.226829			-1607.599435	17.9	TS for protonation of the Cp^* fragment of 7 in endo manner	
3 + OH-(aq)3 + 4 H2O	-996.546882	-305.306879	-305.781463		-1607.635224	-4.5	Formation of Cp*H(exo) Rh(I) int.	

Note: free energies of 1, 2 and 3 relative to 4 are highlighted in purple

Table S4: Free energy profile for the hydrogenation of CO2							
Species		ΔG	SUM	REL	Notes		
species	(Hartree)	(Hartree)	(kcal/mol)	Notes		
1 + CO2 + OH-(aq)3	-996.545022 -188.6552	59 -305.306879	-1490.507160	0.0	Rh(III)-H intermediate		
TS6 + OH-(aq)3	-1185.181631 -305.3068	79	-1490.488510	11.7	TS for direct hydride transfer to CO2		
5 + HCOO- + OH-(aq)3	-995.823095 -189.3674	47 -305.306879	-1490.497421	6.1	Formation of 5-coordinate Rh(III) int. and formate		
8 + OH-(aq)3	-1185.197682 -305.3068	-1185.197682 -305.306879		1.6	Coordination of formate to Rh(III)-center of 5		
2 + CO2 + OH-(aq)3	-996.546434 -188.6552	59 -305.306879	-1490.508572	-0.9	endo Cp*H intermediate		
TS7 + OH-(aq)3	-1185.143513 -305.3068	79	-1490.450392	35.6	TS for hydride transfer from endo Cp*H to CO2		
3 + CO2 + OH-(aq)3	-996.546882 -188.6552	59 -305.306879	-1490.509020	-1.2	exo Cp*H intermediate		
TS8 + OH-(aq)3	-1185.159495 -305.3068	79	-1490.466374	25.6	TS for hydride transfer from exo Cp*H to CO2		
4 + HCOO- + 3 H2O	-1071.813508 -189.3674	47 -229.336097	-1490.517052	-6.2	Formation of formate and reinstatement of 4		

Table S5: Barriers for hydride delivery to NAD+ from 1, 2 and 3								
Species		Δ	G		SUM	REL	Notes	
	(Hartree)				(Hartree)	(kcal/mol)	Notes	
4 + HCOO- + NAD+ + 3 H2O	-1071.813508	-189.367447	-456.752617	-229.336097	-1947.269669	0.0	Starting materials	
TS9 + OH- + CO2	-1453.287123	-305.306879	-188.657767		-1947.251769	11.2	TS for direct hydride transfer to NAD+	
TS10 + OH- + CO2	-1453.245097	-305.306879	-188.657767		-1947.209743	37.6	TS for hydride transfer from endo Cp*H to NAD+	
TS11 + OH- + CO2	-1453.263480	-305.306879	-188.657767		-1947.228126	26.1	TS for hydride transfer from exo Cp*H to NAD+	

Crossies		ΔG	i	SUM	REL	Notes
Species		(Hartree)			(kcal/mol)	NOLES
9' + DMAB + H2	-1228.217017	-161.776430	-1.171845	-1391.165292	12.6	Cp*Rh-THF complex + dimethylamine-borane + H2
1' + Me2NHBH2-THF + H2	-996.555693	-393.457762	-1.171845	-1391.185300	0.0	Formation of Rh(III)-H intermediate and [Me2NH-BH2THF]+
2' + Me2NHBH2-THF + H2	-996.555174	-393.457762	-1.171845	-1391.184781	0.3	Formation of (Cp*H)Rh intermediate
10' + Me2NHBH2-THF	-997.718212	-393.457762		-1391.175974	5.9	Formation of n1-(H2) (Cp*H) Rh intermediate
TS12' + Me2NHBH2-THF	-997.686024	-393.457762		-1391.143786	26.1	TS for oxidative addition of H2
11' + Me2NHBH2-THF	-997.687266	-393.457762		-1391.145028	25.3	Formation of (Cp*H) Rh(III) dihydride
TS13' + Me2NHBH2-THF	-997.684639	-393.457762		-1391.142401	26.9	TS for insertion of Cp*H in Rh(III)-H fragment
12' + Me2NHBH2-THF	-997.697796	-393.457762		-1391.155558	18.7	Formation of η3-allylic Cp*H2 Rh(III)-H intermediate
TS14' + Me2NHBH2-THF	-997.690195	-393.457762		-1391.147957	23.4	TS for C-H reductive coupling
13' + Me2NHBH2-THF	-997.702409	-393.457762		-1391.160171	15.8	Formation of n2-Cp*H3 Rh(I) intermediate

Table S7: Energy profile for the hydrogenation of the Cp* framework with H2 in water								
Creation	ΔG				SUM	REL	Notes	
Species		(Hart	ree)		(Hartree)	Hartree) (kcal/mol)	Notes	
4 + 2 H2	-1071.813508	-2.3430066			-1074.156515	4.3	Cp*Rh-OH complex + 2 H2	
1 + H2 + H2O	-996.545022	-1.171503	-76.445366		-1074.161891	0.9	Formation of Rh(III)-H intermediate and H2O	
2 + H2 + H2O	-996.546434	-1.171503	-76.445366		-1074.163303	0.0	Formation of (Cp*H)Rh intermediate	
10 + H2O	-997.708402	-76.445366			-1074.153768	6.0	Formation of ŋ1-(H2) (Cp*H) Rh intermediate	
TS12 + H2O	-997.674368	-76.445366			-1074.119734	27.3	TS for oxidative addition of H2	
11 + H2O	-997.676018	-76.445366			-1074.121384	26.3	Formation of (Cp*H) Rh(III) dihydride	
TS13 + H2O	-997.673415	-76.445366			-1074.118781	27.9	TS for insertion of Cp*H in Rh(III)-H fragment	
12 + H2O	-997.690859	-76.445366			-1074.136225	17.0	Formation of η3-allylic Cp*H2 Rh(III)-H intermediate	
TS14 + H2O	-997.681373	-76.445366			-1074.126739	22.9	TS for C-H reductive coupling	
13 + H2O	-997.692727	-76.445366			-1074.138093	15.8	Formation of η2-Cp*H3 Rh(I) intermediate	

Note: see Scheme S1 below

3. NBO calculations

NBO calculations were performed on **2**, **3** and **TS7** and **TS8**, paying emphasis on the interaction between the Rh, C¹ and H atoms, as shown below.

Species	Donor	Acceptor	E ⁽²⁾ kcal/mol
$2 \qquad \qquad$	Rh-C ²	σ*(C¹-Η)	1.04
$C^{2} \stackrel{\downarrow}{\longrightarrow} C^{2} \stackrel{\downarrow}{\longrightarrow} $	Lp(Rh)	Lv(C ¹)	27.96
TS7 N→Rh C=0 O	Lp(Rh)	Lv(C ¹)	12.19
$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	Lp(Rh)	σ*(C¹-H)	1.06
	Lp(C ¹)	σ*(Rh-C²)	123.08
	Lp(C ¹)	σ*(Rh-C²)	122.95

According to NBO⁶ calculations, **2** exhibits an extremely weak donation ($E^{(2)} = 1.04$ kcal/mol) of electrons from the Rh-C² fragment into the C¹-H fragment. As the complex departs towards hydride delivery, in **TS7**, filled *d*-orbitals on the Rh-center modestly ($E^{(2)} = 27.96$, 12.19 kcal/mol) donate electron density into empty orbitals on the C1-atom. It is noteworthy, however, that no interaction involving orbitals of the C¹-H fragment were detected.

In contrast, **3** exhibits a weak donation of electrons from *d*-orbitals on the Rh-center into the $\sigma^*(C^{1}-H)$ fragment, predisposing it towards C-H cleavage, consistent with the lower energy calculated for **TS8**. Indeed, in **TS8**, the lone pair orbitals on the C1-atom undergo extensive stabilizing overlap ($E^{(2)} = 123.08$, 122.95 kcal/mol) with the flanking C²-atoms. This type of interaction is absent in **TS7**.

4. References

- 1 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- 2 D. G. Gusev, Organometallics, 2013, **32**, 4239–4243.
- 3 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Rev. C.01., 2016
- 5 A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B*, 2009, **113**, 6378–6396.
- E. D. Glendening, C. R. Landis and F. Weinhold, *J. Comput. Chem.*, 2019, 40, 2234–2241;
 Citation for the NBO 7 program: NBO 7.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed,
 J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, and F.
 Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI (2018).
- 7 R. E. Plata and D. A. Singleton, J. Am. Chem. Soc., 2015, **137**, 3811–3826.
- 8 S. Pal, K. Nozaki, A. N. Vedernikov and J. A. Love, *Chem. Sci.*, 2021, **12**, 2960–2969.
- 9 R. Wiebe and V. L. Gaddy, J. Am. Chem. Soc., 1934, 56, 76–79.
- 10 R. Wiebe and V. L. Gaddy, J. Am. Chem. Soc., 1940, 62, 815–817.
- 11 E. Brunner, J. Chem. Eng. Data, 1985, **30**, 269–273.
- 12 C. J. Cramer, *Essentials of computational chemistry: theories and models*, John Wiley & Sons, 2013.
- 13 S. Pal, S. Kusumoto and K. Nozaki, *Organometallics*, 2018, **37**, 906–914.