Supporting Information for:

"Probing Borafluorene B-C Bond Insertion With

Gold Acetylide and Azide"

Yijie Li^{\dagger}, *Yu-Hsuan Shen*^{\ddagger}, *Alec M. Esper*^{\ddagger}, *John R. Tidwell*^{\dagger}, *Adam S. Veige*^{\ddagger^*}, *Caleb D. Martin*^{\dagger^*}

[†] Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348,Waco, TX 76798

‡ University of Florida, Department of Chemistry, Center for Catalysis, Gainesville, FL 32611,United States

Author to address correspondence: Caleb D. Martin (caleb_d_martin@baylor.edu)

Table of Contents

Multinuclear NMR spectra	S3
FT-IR spectra	
X-ray crystallographic details	S39
Computational Details	S40
References.	

-4.65

-31.23

Figure S6. Expanded aryl region of ${}^{13}C{}^{1}H$ NMR spectrum of **2** in CDCl₃.

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1. Figure S7. ¹H NMR spectrum of **2** after exposure under UV = 254 nm for 24 h in C₆D₆.

9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 f1 (ppm)

Figure S8. Expanded aryl region of ¹H NMR spectrum of **2** after exposure under UV = 254 nm for 24 h in C_6D_6 .

Figure S9. ¹H NMR spectrum of **2** after heating at 50 °C for 19 h in C_6D_6 .

3.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6 f1 (ppm)

Figure S10. Expanded aryl region of ¹H NMR spectrum of **2** after heating at 50 °C for 19 h in C_6D_6 .

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm) Figure S11. ¹H NMR spectra of reaction between **1** and Ph₃PAu-C \equiv C-*p*-tol in C₆D₆

Figure S12. Expanded methyl region of ¹H NMR spectra of reaction between **1** and Ph₃PAu-C=C-*p*-tol in C₆D₆ (*2.10 ppm, ×1.97 ppm)

Figure S13. ¹H NMR spectrum of reaction between **1** and Ph₃PAu-C \equiv C-*p*-tol in C₆D₆ at 15 min.

Figure S14. ¹H NMR spectrum of reaction between **1** and Ph₃PAu-C=C-*p*-tol in C₆D₆ at 3 h.

Figure S15. ¹H NMR spectrum of reaction between **1** and Ph₃PAu-C \equiv C-*p*-tol in C₆D₆ at 21 h

Figure S16. ¹H NMR spectrum of reaction between **1** and Ph₃PAu-C \equiv C-*p*-tol in C₆D₆ at 45 h.

Figure S17. ¹H NMR spectrum of reaction between **1** and Ph₃PAu-C \equiv C-*p*-tol in C₆D₆ at 69 h.

Figure S18. ³¹P {¹H} NMR spectra of reaction between **1** and Ph₃PAu-C=C-*p*-tol in C₆D₆

Figure S19. Expanded ³¹P {¹H} NMR spectra of reaction between **1** and Ph₃PAu-C \equiv C-*p*-tol in C₆D₆(*41.9 ppm, ×41.3 ppm)

Figure S23. ¹¹B{¹H} spectrum of $3Z \cdot DMAP$ in C₆D₆. Ph₃P_\

—1.26

Figure S24. ¹³C{¹H} NMR spectrum of $3Z \cdot DMAP$ in C₆D₆.

62 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 108 106 104 102 10 f1 (ppm)

Figure S25. Expanded aryl region of $^{13}C\{^{1}H\}$ NMR spectrum of $\textbf{3Z} \cdot \textbf{DMAP}$ in C₆D₆. Ph_3P_

Figure S27. Expanded aryl region of ¹H NMR spectrum of **3E**·**DMAP** in CDCl₃.

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm) Figure S28. VT 1 H NMR spectra of **3E·DMAP** in CDCl₃.

-39.79

Figure S30. ${}^{31}P{}^{1}H$ spectrum of **3E**·**DMAP** in CDCl₃.

-1.51

annu nomm

Induction and the second s

Figure S32. ¹³C{1H} NMR spectrum of $3E \cdot DMAP$ in CDCl₃

160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 f1 (ppm)

Figure S33. Expanded aryl region of ${}^{13}C{}^{1}H$ NMR spectrum of **3E**·**DMAP** in CDCl₃

Figure S35. FT-IR spectrum of $3Z \cdot DMAP$. Ph₃P DMAP Ph₂P

Figure S36. FT-IR spectrum of **3E**·**DMAP**.

	2	3Z·DMAP	3E·DMAP
CCDC	2219219	2219220	2219221
Empirical Formula	C ₃₆ H ₂₈ AuBN ₃ P	$C_{53}H_{47}BCl_2N_2P$	C55H52AuBN2P
FW (g/mol)	741.36	1021.57	979.73
Crystal System	triclinic	triclinic	monoclinic
Space Group	P-1	P-1	$P 2_1/n$
a (Å)	10.2446(9)	12.804(2)	18.0377(5)
b (Å)	12.5326(9)	14.327(2)	18.2628(5)
c (Å)	12.8125(11)	14.901(3)	18.6944(5)
α (°)	75.113(3)	82.115(7)	90
β (°)	80.036(3)	82.921(7)	118.3750(10)
γ (°)	67.918(2)	76.566(7)	90
V (Å ³)	1467.8(2)	2621.7(8)	5418.4(3)
Ζ	2	2	4
$D_{c} (g \text{ cm}^{-3})$	1.677	1.294	1.201
Radiation λ (Å)	0.71073	0.71073	0.71073
Temp (K)	150	150	150
R1 [I>2($\boldsymbol{\sigma}$)I] ^{<i>a</i>}	0.0599	0.0456	0.0180
wR2 $(F^2)^{a}$	0.1612	0.1071	0.0469
$GOF(S)^a$	1.078	1.068	1.053

Table S1: X-ray crystallographic details for 2, 3Z·DMAP, 3E·DMAP

 ${}^{a}R1(F[I > 2(I)]) = \sum ||F_{o}| - |F_{c}||/ \sum |F_{o}|; wR2(F_{2} [all data]) = \{[w(F_{o^{2}} - F_{c^{2}})_{2}]/[w(F_{o^{2}})_{2}]\}^{1/2}; S(all data) = [w(F_{o^{2}} - F_{c^{2}})_{2}/(n - p)]^{1/2} (n = no. of data; p = no. of parameters varied; w = 1/\sigma^{2} (F_{o^{2}}) + (aP)^{2} + bP] where P = (F_{o^{2}} + 2F_{c^{2}})/3 and a and b are constants suggested by the refinement program.$

5. Computational Details

Geometries were fully optimized using the Gaussian 16 software package¹ and visualized using GaussView 6.² All relevant minima and transition states were fully optimized in the gas phase at the B3LYP^{3,4} level of theory employing correlation-consistent polarized valence double-Dunning (DZ) basis sets with cc-pVDZ quality^{5,6} from the EMSL basis set exchange library, using a small core pseudopotential on all metals.⁷ All calculations were performed using standard Gaussian 16 SCF convergence criteria with the density fitting approximation (Resolution of Identity. RI)⁸⁻¹¹. The nature of each stationary point was checked with an analytical secondderivative calculation (no imaginary frequency for minima). Final single-point energies were calculated by employing triple- ζ Dunning (TZ) basis sets (cc-pVTZ quality)⁵ while retaining the B3LYP functional. Solvent effects (benzene, $\varepsilon = 2.27$) with the Solvent Model based on Density (SMD) were included in the single point calculations.¹² Grimme dispersion corrections with zero damping (keyword -zero) were added at this stage using the standalone dftd3 program.¹³ Enthalpies and Gibbs free energies were then obtained from TZ single-point energies and thermal corrections from the B3LYP/cc-pVDZ-(PP) vibrational analyses (at 298 K and 1 atm); entropy corrections were scaled by a factor of 0.67 to account for decreased entropy in the condensed phase.14-16

5.1. Comparison between X-ray and Calculated Structures

Table S2. Comparison between the X-ray structures (Exp) and calculated structure (DFT) of **2** optimized at B3LYP/cc-pVDZ level of theory.

Bond Parameters	2 (Exp)	2 (DFT)	% Error
Au(1) - N(1) (Å)	2.07	2.09	1
B(1) - N(1) (Å)	1.65	1.70	3
N(1) - N(2) (Å)	1.23	1.24	1
N(2) - N(3) (Å)	1.12	1.14	2
$\angle P(1)$ -Au(1)-N(1) (°)	171.6	177.4	3
∠N(1)-N(2)-N(3) (°)	177.8	178.0	0

Table S3. Comparison between the X-ray structure (Exp) and calculated structure (DFT) of **3Z·DMAP** optimized at B3LYP/cc-pVDZ level of theory.

Bond Parameters	3Z·DMAP (Exp)	3Z·DMAP (DFT)	% Error
Au(1)-C(7) (Å)	2.05	2.08	1
C(7) = C(6) (Å)	1.37	1.37	0
B(1) - C(6) (Å)	1.62	1.63	1
B(1) - N(1) (Å)	1.63	1.65	1
∠Au(1)-C(7)-C(6) (°)	122.1	125.8	3

Table S4. Comparison between the X-ray structure (Exp) and calculated structure (DFT) of **3E·DMAP** optimized at B3LYP/cc-pVDZ level of theory.

Bond Parameters	3E·DMAP (Exp)	3E·DMAP (DFT)	% Error
Au(1) - C(7) (Å)	2.06	2.09	1
C(7)=C(6) (Å)	1.36	1.37	1
B(1) - C(6) (Å)	1.62	1.64	1
B(1) - N(1) (Å)	1.61	1.64	2
∠Au(1)-C(7)-C(6) (°)	123.5	121.6	-2

5.2. Energy Tables

Table S5. Final Energies, Enthalpy and Entropy Corrections, Gibbs Free Energies from B3LYP functional with Zero Damping Dispersion Correction-D0. In Hartree. See Computational Details for Methods.

Compound	E(B3LYP/cc-	E(B3LYP(SMD)/cc-	ZPE	DO	Hcorrection	$G_{ m correction}$	Scorrection	G
	DVDZ)	pv1Z)						
DMAP	-382.275064	-382.402879	0.160879	-0.012919	0.170503	0.126976	0.043527	-382.274458
1	-718.652565	-718.882321	0.255096	-0.027167	0.269909	0.213603	0.056306	-718.677304
$PPh_2 \Delta u N_2 + 1$	-1336 400823	-1336 627650	0 287269	-0.043820	0 309903	0 229546	0.080357	-1336 415406
I I II JI II	1550.400025	1550.027050	0.207207	0.045020	0.507705	0.227540	0.0000007	1550.415400
2	-2055.084980	-2055.57/618	0.543018	-0.096462	0.581021	0.465199	0.115822	-2055.170660
2g	-2055.078674	-2055.573881	0.543032	-0.085655	0.581097	0.462257	0.118840	-2055.158062
Ph₃PAu-C≡C-	-1519.331460	-1519.680558	0.401388	-0.054033	0.429116	0.336821	0.092295	-1519.367312
<i>p</i> -tol								
3E·DMAP	-2620.325736	-2620.996177	0.822982	-0.144207	0.875785	0.726842	0.148943	-2620.364391
3 E	-2238.033699	-2238.582152	0.659393	-0.106838	0.702586	0.574723	0.127863	-2238.072072
3Z·DMAP	-2620.320760	-2620.992101	0.822891	-0.150987	0.875805	0.726789	0.149016	-2620.367123
3Z	-2237.376343	-2238.579528	0.659415	-0.109629	0.702706	0.573651	0.129055	-2238.072917
2g Ph ₃ PAu-C≡C- <i>p</i> -tol 3E · DMAP 3E 3Z · DMAP 3Z	-2053.078674 -1519.331460 -2620.325736 -2238.033699 -2620.320760 -2237.376343	-2055.573881 -1519.680558 -2620.996177 -2238.582152 -2620.992101 -2238.579528	0.543032 0.401388 0.822982 0.659393 0.822891 0.659415	-0.085655 -0.054033 -0.144207 -0.106838 -0.150987 -0.109629	0.581097 0.429116 0.875785 0.702586 0.875805 0.702706	0.462257 0.336821 0.726842 0.574723 0.726789 0.573651	0.118840 0.092295 0.148943 0.127863 0.149016 0.129055	-2055.158062 -1519.367312 -2620.364391 -2238.072072 -2620.367123 -2238.072917

Table S6. Final Energies, Enthalpy and Entropy Corrections, Gibbs Free Energies from B3LYP functional with Zero Damping Dispersion Correction-D0. In Hartree. See Computational Details for Methods.

Compound	E(B3LYP/cc- pVDZ)	E(B3LYP(SMD)/cc- pVTZ)	ZPE	D0	$H_{ m correction}$	Gcorrection	$S_{ m correction}$	G
DMAP	-382.275064	-382.402879	0.160879	-0.012919	0.170503	0.126976	0.043527	-382.274458
1	-718.652565	-718.882321	0.255096	-0.027167	0.269909	0.213603	0.056306	-718.677304
HN ₃ +1	-164.798116	-164.847465	0.021337	-0.000440	0.025502	-0.001666	0.027168	-164.798116
H-2	-883.4689488	-883.728839	0.278077	-0.037114	0.297163	0.230426	0.066737	-883.513504
H-C≡C- <i>p</i> -tol+1	-347.731699	-347.846277	0.136251	-0.009833	0.145545	0.102195	0.043350	-347.739610
H-3E · DMAP	-1448.761599	-1449.202843	0.560221	-0.084691	0.593235	0.494488	0.098747	-1448.760459
H-3E	-1066.463875	-1066.781760	0.396364	-0.050070	0.419797	0.342213	0.077584	-1066.464014
H-3Z·DMAP	-1448.763642	-1449.206233	0.560079	-0.079779	0.593224	0.493374	0.099850	-1448.759687
H-3Z	-1066.461900	-1066.779445	0.396765	-0.048998	0.420137	0.342828	0.077309	-1066.460103

5.3. Relative Enthalpies and Gibbs Free Energies

Table S7. Relative Energies (zero damping corrections, B3LYP/SMD corrected SPE)- Bolded is energy reference structure. All values are in kcal/mol at 298 K and 1 atm.

Compound	ΔH	ΔG
$PPh_3AuN_3 + 1$	0.0	0.0
2	-57.7	-48.9
2g	-48.5	-41.0
$Ph_3PAu-C \equiv C-p-tol + 1$	0.0	0.0
3E·DMAP	-46.6	-28.4
3 E	-25.9	-17.2
3Z·DMAP	-48.3	-30.2
3Z	-26.0	-17.8

Table S8. Relative Energies (zero damping corrections, B3LYP/SMD corrected SPE)- Bolded is

 energy reference structure. All values are in kcal/mol at 298 K and 1 atm.

Compound	ΔH	ΔG
$HN_3 + 1$	0.0	0.0
H-2	-4.3	2.8
$H-C\equiv C-p-tol+1$	0.0	0.0
H-3E·DMAP	-62.0	-43.4
H-3E	-38.8	-29.6
H-3Z·DMAP	-61.1	-42.9
H-3Z	-36.5	-27.1

References

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. a.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. a.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, a. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, a. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. a.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. a.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, a. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Rev. C. 01. Gaussian Inc., Wallingford CT 2016.
- 2. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6.0. 16. *GaussView, Version 6. Semichem Inc. Shawnee Mission KS* 2016.
- 3. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 4. C. Lee, W. Yang and R. G. Parr, *Physical Review B*, 1988, **37**, 785-789.
- 5. N. B. Balabanov and K. A. Peterson, J. Chem. Phys., 2005, 123, 064107.
- 6. N. B. Balabanov and K. A. Peterson, J. Chem. Phys., 2005, 123, 064107.
- 7. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T. L. Windus, J. Chem. Inf. Model, 2007, 47, 1045-1052.
- 8. E. J. Baerends, D. E. Ellis and P. Ros, Chem. Phys., 1973, 2, 41-51.
- 9. J. L. Whitten, J. Chem. Phys., 1973, 58, 4496-4501.
- 10. M. Feyereisen, G. Fitzgerald and A. Komornicki, Chem. Phys. Lett., 1993, 208, 359-363.
- 11. O. Vahtras, J. Almlöf and M. W. Feyereisen, Chem. Phys. Lett., 1993, 213, 514-518.
- 12. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- 13. S. Grimme, Wiley Interdscip. Rev. Comput. Mol. Sci., 2011, 1, 211-228.
- 14. S. Tobisch and T. Ziegler, J. Am. Chem. Soc., 2004, 126, 9059-9071.
- 15. F. Zaccaria, C. Ehm, P. H. M. Budzelaar and V. Busico, ACS Catalysis, 2017, 7, 1512-1519.
- 16. F. Zaccaria, R. Cipullo, P. H. M. Budzelaar, V. Busico and C. Ehm, J. Polym. Sci., Part A: Polym. Chem., 2017, 55, 2807-2814.