Electronic Supporting Information

Sn(II)-Doped One-Dimensional Hybrid Metal Halide $[C_5H_{14}NO]CdCl_3$ Single Crystals With Broadband Greenish-Yellow Light Emission.

Haiming Cheng, ^{1a} Chi Cao, ^{1a} Shiyong Teng, ^d Zhinan Zhang, ^a Ying Zhang, ^a Dayang Wang, ^a Wensheng Yang, ^{abc} and Renguo Xie*a

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China.

^b Engineering Center for Nanomaterials, Henan University, Kaifeng, 475004, China

^c Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.

^d First Hospital, Jilin University, Changchun 130021, China.

*E-mail: renguoxie@jlu.edu.cn

Table of contents

Sections	Titles	Pages
Table S1	Crystal data and structure refinement for $[C_5H_{14}NO]CdCl_3$	S3
Table S2	Fractional atomic coordinates (×10 ⁴) and equivalent isotropic displacement parameters	S4
	(Å ² ×10 ³) for [C ₅ H ₁₄ NO]CdCl ₃ . $U_{(eq)}$ is defined as one third of the trace of the	
	orthogonalized U_{ij} tensor	
Table S3	Selected bond lengths (Å) and angles (deg) for $[C_5H_{14}NO]CdCl_3$	S5
Table S4	The data of ICP-OES and the molar ratios of $[C_5H_{14}NO]CdCl_3:xSn^{2+}~(0\leq x\leq 0.25)$	S 6
Table S5	Chromaticity coordinates of $[C_5H_{14}NO]CdCl_3:Sn^{2+}$ crystals at different temperatures	S 6
	when excited by 288nm UV light	
Figure S1	The photographs of $[C_5H_{14}NO]CdCl_3$ crystals were obtained by slow volatilization.	S 7
Figure S2	The asymmetric unit of compound [C ₅ H ₁₄ NO]CdCl ₃	S7
Figure S3	Powder X-ray diffraction (PXRD) patterns (left) and magnified PXRD patterns (right)	S7
	of $[C_5H_{14}NO]CdCl_3:Sn^{2+}$	
Figure S4	The EDS spectrum of as-synthesized [C5H14NO]CdCl3:xSn2+ samples	S 8
Figure S5	A Tauc plot of the absorption measurements of the $[C_5H_{14}NO]CdCl_3$ and	S8
	$[C_{5}H_{14}NO]CdCl_{3}$:1.33%Sn ²⁺	
Figure S6	Emission spectra of Sn^{2+} -doped [C ₅ H ₁₄ NO]CdCl ₃ samples at different temperatures	S8
Figure S7	Chromaticity coordinate diagram of $[C_5H_{14}NO]CdCl_3:1.33\%Sn^{2+}$ sample under	S9
	different temperature conditions	
Figure S8	Charge densities of the VBM (e) and CBM (f) for Sn^{2+} -doped [C ₃ H ₁₄ NO]CdCl ₃	S9
Figure S9	The calculated partial DOS of (a) $[C_5H_{14}NO]CdCl_3$ and (b) Sn^{2+} -doped	S9
	[C ₃ H ₁₄ NO]CdCl ₃	

Formula	[C ₅ H ₁₄ NO]CdCl ₃
Formula mass	322.92
Crystal system	orthorhombic
Space group	$Pna2_1$
<i>a</i> (Å)	16.8879 (4)
<i>b</i> (Å)	8.1763 (2)
<i>c</i> (Å)	7.7975 (2)
α (°)	90
β (°)	90
γ (°)	90
$V(Å^3)$	1076.68 (5)
Ζ	4
$ ho_{ m calcd}$ (g/cm ³)	1.992
Temperature (K)	293
λ (Å)	0.71073
F(000)	632
$\mu \text{ (mm}^{-1})$	2.72
$R1, wR2 (I > 2\sigma(I))^{a}$	0.0175/0.0339
GOF on F^2	-0.004(19)

Table S1. Crystal data and structure refinement for $[C_5H_{14}NO]CdCl_3$.

atom	Х	У	Z	$U_{ m eq}({ m \AA}^2)$
Cd1	4903.5(2)	4835.6(2)	4003.5(6)	26.37(7)
C11	4011.5(5)	2369.8(9)	4580.6(9)	35.86(18)
C12	4246.0(4)	6502.7(9)	6529.2(11)	31.09(16)
C13	5968.8(4)	4119.6(9)	6382.7(10)	30.96(16)
01	5632.1(13)	7253(2)	3349(3)	31.0(5)
N1	6805.8(15)	9500(3)	5155(3)	26.5(5)
C1	5456.6(17)	8921(3)	3770(4)	29.7(7)
C2	5912.7(17)	9476(4)	5323(4)	27.0(6)
C3	7134(2)	10360(4)	6692(5)	44.2(9)
C4	7058(2)	10392(5)	3581(5)	57.5(12)
C5	7140(2)	7809(4)	5157(5)	47.9(9)

Table S2. Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for [C₅H₁₄NO]CdCl₃. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Symmetry	codes:	(i) 1-	X,1-Y,-1/2+Z; (ii)	1-X,1-Y,1/2
01—0	Cd1—Cl2	87.06(5)	C1—C2—N1	116.4(2)
01—0	Cd1—Cl2 ¹	84.63(5)	O1—C1—C2	111.4(2)
01—0	Cd1—Cl1	174.73(6)	C5—N1—C3	107.1(2)
Cl3—0	Cd1—Cl3 ¹	170.005(18)	C5—N1—C2	111.4(2)
Cl21—	Cd1—Cl3	92.90(2)	C4—N1—C5	110.2(3)
Cl2—0	Cd1—Cl3	82.96(3)	C4—N1—C3	108.9(3)
Cl2—0	Cd1—Cl31	100.04(2)	C4—N1—C2	111.2(3)
Cl2 ¹ —0	Cd1—Cl31	82.71(3)	C3—N1—C2	107.8(2)
Cl2—0	Cd1—Cl2 ¹	170.783(9)	C1—O1—Cd1	129.27(17)
Cl1—0	Cd1—Cl3	95.89(3)	Cd1—Cl3—Cd1 ²	95.22(2)
Cl1—C	Cd1—Cl3 ¹	93.57(3)	Cd1—Cl2—Cd1 ²	95.87(2)
Cl1—C	Cd1—Cl2 ¹	97.02(3)	O1—Cd1—Cl3 ¹	81.66(6)
Cl1—0	Cd1—Cl2	91.61(3)	O1—Cd1—Cl3	89.01(6)
Cd	1—01	2.3838(19)	C1—C2	1.505(4)
Cd1		2.6601(9)	N1—C5	1.494(4)
Cd1	I—Cl3	2.6497(9)	N1—C4	1.490(4)
Cd1	I—Cl2	2.6400(9)	N1—C3	1.495(4)
Cd1		2.6424(9)	N1—C2	1.514(4)
Cd1	I—C11	2.5566(7)	01—C1	1.433(3)

Table S3. Selected bond lengths (Å) and angles (deg) for $[\rm C_5H_{14}NO]CdCl_3.$

Sn / Cd precursors ratio (at%)	ICP-OES-determined	PLQY
2%	0.96%	41.07%
5%	1.12%	80.28%
10%	1.33%	91.27%
15%	1.76%	86.25%
20%	2.14%	83.30%
25%	2.3%	71.72%

Table S4. The data of ICP-OES and the molar ratios of $[C_5H_{14}NO]CdCl_3:xSn^{2+}$ ($0 \le x \le 0.25$)

Table S5. Chromaticity coordinates of $[C_5H_{14}NO]CdCl_3:Sn^{2+}$ crystals at different temperatures when excited by 288nm UV light.

No.	Temperature (K)	Chromaticity coordinates (x, y)
Α	80	0.4632, 0.5011
В	110	0.4656, 0.5025
С	140	0.4415, 0.5144
D	170	0.4187, 0.5184
Е	200	0.3790,0.5181
F	230	0.3408, 0.5052
G	260	0.3282, 0.4886
Н	290	0.3234, 0.4750
Ι	320	0.3212, 0.4615

Figure S1. The photographs of $[C_5H_{14}NO]CdCl_3$ crystals were obtained by slow volatilization.

Figure S2. The asymmetric unit of compound $[C_5H_{14}NO]CdCl_3$.

Figure S3. Powder X-ray diffraction (PXRD) patterns (left) and magnified PXRD patterns (right) of [C₅H₁₄NO]CdCl₃:Sn²⁺

Figure S4. The EDS spectrum of as-synthesized $[C_5H_{14}NO]CdCl_3:xSn^{2+}$ samples.

Figure S5. A Tauc plot of the absorption measurements of the $[C_5H_{14}NO]CdCl_3$ and $[C_5H_{14}NO]CdCl_3$:1.33%Sn²⁺.

Figure S6. Emission spectra of Sn²⁺-doped [C₅H₁₄NO]CdCl₃ samples at different temperatures.

Figure S7. Chromaticity coordinate diagram of [C₅H₁₄NO]CdCl₃:1.33%Sn²⁺ sample under different temperature conditions.

Figure S8. Charge densities of the VBM (a) and CBM (b) for Sn²⁺-doped [C₅H₁₄NO]CdCl₃.

Figure S9. The calculated partial DOS of (a) $[C_5H_{14}NO]CdCl_3$ and (b) Sn^{2+} -doped

$[C_5H_{14}NO]CdCl_3.$