Effect of electronic structure of energy transfer in bimetallic Ru(II)/Os(II) complexes

Weijun Dai, Shiwen Yu, Ci Kong, Defang Zhao, Chixian He, Zining Liu, Jianwei Dong, Jian-Jun Liu*, Feixiang Cheng*

College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011

E-mail: jjliu302@163.com; chengfx2019@163.com

Scheme S1. Chemical structures of the target monometallic $Ru(L^1L^{1'})$, homometallic $Ru(\mu-L^1L^{1'})Ru$ and heterometallic $Ru(\mu-L^1L^{1'})Os$ complexes.

Scheme S2. Chemical structures of the target monometallic $(\mu - L^1L^1)$ Ru, heterometallic Os $(\mu - L^1L^1)$ Ru complexes.

Scheme S3. Chemical structures of the target monometallic $Ru(\mu-L^2L^2)$, homometallic $Ru(\mu-L^2L^2)Ru$, heterometallic $Ru(\mu-L^2L^2)Os$ complexes.

Scheme S4. Chemical structures of the target monometallic $(\mu - L^2L^2)$ Ru, heterometallic Os $(\mu - L^2L^2)$ Ru complexes.

Figure S1. Energy level diagrams of complexes $Ru(\mu - L^1L^1)Ru$ (a), $Os(\mu - L^1L^1)Ru$ (b). The full line, dotted line and curved line represent excitation, luminescence and non-radiative decay, respectively.

Figure S2. The HOMO and the LUMOs of the complexes containing bridging ligand L²L²'

Figure S3. Oxidation cyclic voltammetry of complex $Ru(\mu$ -L¹L^{1'})

Figure S4. Oxidation cyclic voltammetry of complex Ru(µ-L²L^{2'})

Figure S5. Oxidation cyclic voltammetry of complex (µ-L¹L¹)Ru

Figure S6. Oxidation cyclic voltammetry of complex (µ-L²L^{2'})Ru

Figure S7. Oxidation cyclic voltammetry of complex $Ru(\mu-L^1L^1)Ru$

Figure S8. Oxidation cyclic voltammetry of complex $Ru(\mu$ -L²L²)Ru

Figure S9. Oxidation cyclic voltammetry of complex Ru(µ-L¹L¹)Os

Figure S10. Oxidation cyclic voltammetry of complex Ru(µ-L²L²)Os

Figure S12. Oxidation cyclic voltammetry of complex $Os(\mu-L^2L^2)Ru$

Figure S13. Reduction cyclic voltammetry of complex $Ru(\mu-L^1L^{1'})$

Figure S14. Reduction cyclic voltammetry of complex (µ-L¹L¹)Ru

Figure S15. Reduction cyclic voltammetry of complex $Ru(\mu-L^1L^1)Ru$

Figure S16. Reduction cyclic voltammetry of complex Ru(µ-L¹L¹)Os

Figure S17. Reduction cyclic voltammetry of complex Os(µ-L¹L¹)Ru

Figure S18. Reduction cyclic voltammetry of complex Ru(µ-L²L^{2'})

Figure S19. Reduction cyclic voltammetry of complex $(\mu$ -L²L^{2'})Ru

Figure S20. Reduction cyclic voltammetry of complex $Ru(\mu-L^2L^2)Ru$

Figure S21. Reduction cyclic voltammetry of complex Ru(µ-L²L²)Os

Figure S22. Reduction cyclic voltammetry of complex Os(µ-L²L^{2'})Ru

Figure S23. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 1

Figure S24. ESI-MS of compound 1

Figure S25. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2

Figure S26. ESI-MS of compound 2

Figure S27. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of ligand L¹L¹

Figure S28. ESI-MS of ligand $L^1L^{1'}$

Figure S29. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of ligand L²L²'

Figure S30. ESI-MS of ligand L²L²'

Figure S31. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of Ru(µ-L¹L¹)Ru

Figure S33. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of Ru(µ-L²L²')Ru

Figure S35. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of Ru(µ-L¹L¹')

Figure S37. ¹H NMR (400 MHz, DMSO- d_6) spectrum of Ru(μ -L²L²)

Figure S38. ESI-HRMS of Ru(µ-L²L²')

Figure S39. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of Ru(µ-L¹L¹')Os

Figure S40. ESI-HRMS of Ru(µ-L1L1')Os

Figure S41. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of Ru(µ-L²L²')Os

Figure S43. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of (µ-L¹L¹)Ru

Figure S45. ¹H NMR (400 MHz, DMSO-d₆) spectrum of (µ-L²L²')Ru

Figure S47. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of Os(µ-L¹L¹)Ru

Figure S49. ¹H NMR (400 MHz, DMSO-d₆) spectrum of Os(µ-L²L²')Ru

