Electronic Supplementary Information (ESI)

Enhanced sorption in an indium-acetylenedicarboxylate metal-organic framework with unexpected chains of *cis*-µ-OH-connected {InO₆} octahedra

Dennis Woschko, Süheyla Yilmaz, Christian Jansen, Alex Spieß, Robert Oestreich, Tobie Matemb Ma Ntep, Christoph Janiak*

Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.

* Corresponding author: C. Janiak Tel.: +49 211 81 12286; fax: +49 211 81 12287.

Emails: <u>dennis.woschko@hhu.de</u>, <u>sueheylaylmz@gmail.com</u>, <u>christian.jansen@hhu.de</u>, <u>alex.spiess@hhu.de</u>, <u>robert.oestreich@hhu.de</u>, <u>tobie.matemb.ma.ntep@hhu.de</u>, <u>janiak@uni-</u> <u>duesseldorf.de</u>

Keywords: Metal-organic frameworks, indium, linear linker, *cis*-µ-OH-connected polyhedra, chiral space group, gas adsorption, hydrogen, heat of adsorption, vapor adsorption, volatile organic compounds (VOCs), IAST selectivity.

The adsorption data is also supplied as separate files in AIF format as part of the ESI.

Content

Section S1: Characterization of HHUD-4 and In-fumS2
Section S2: CO_2 , CH_4 and H_2 gas sorption results and literature comparisonS6
Section S3: Calculations and fitting for the isosteric heat of adsorption of CO ₂ , CH ₄ and H ₂ S7
Section S4: Fitting and IAST calculations for CO_2/CH_4 mixturesS10
Section S5: Vapor sorption experimentsS13
Section S6: Fitting and IAST calculations for the vapor sorption experimentsS17
Section S7: Theoretical calculations with the HHUD-4 crystal structure dataS20
Section S8: HHUD-4 crystal dataS22
Section S9: ReferencesS27

Section S1: Characterization of HHUD-4 and In-fum

Figure S1. Raman spectra of HHUD-4 and In-fum in the range from 3500 to 100 cm⁻¹.

Figure S2. Comparison of the experimental powder X-ray diffractograms, PXRDs of In-fum (no X-ray structure available) after sequential activation steps with the simulated pattern of Ga-fum from the deposited cif file with CCDC no. 1838533.¹

b)

Figure S3. a) Optical microscopy images of single crystals of HHUD-4 directly obtained from synthesis. b) The predicted crystal habit of a bicapped square prism from the Bravais, Friedel, Donnay and Harker (BFDH) algorithm embedded in MERCURY.²

Figure S5. Thermogravimetric analysis of HHUD-4 and In-fum after supercritical (sc) drying or activation under vacuum at 100 °C for 3 h. TGA was carried out under nitrogen with a heating rate of 5 K min⁻¹.

Figure S6. Volumetric nitrogen sorption isotherms of different samples of HHUD-4 (filled symbols for adsorption, empty symbols for desorption).

comple	BET surface area	pore volume at p/p ₀ = 0.95
sample	[m² g ⁻¹]	[cm³ g⁻¹]
high surface sample 2	938	0.391
high surface sample 1	878	0.366
low surface sample 3	703	0.299
low surface sample 2	672	0.280
low surface sample 1	661	0.277

Table S1. BET surface areas and pore volumes of different HHUD-4 samples synthesized and washed under the same conditions.

Figure S7: a) Square channels along the a-axis and b) smaller channels perpendicular to a in Ga-fum. Redrawn from the deposited cif file with CCDC no. 1838533.¹

Section S2: CO₂, CH₄ and H₂ gas sorption results and literature comparison

Table S2. Summary of the CO₂, CH₄ and H₂ gas uptakes at 1 bar and calculated zero coverage isosteric heat of adsorption values for HHUD-4 and In-fum.

	HHUD-4	In-fum
	CO ₂	
maximum uptake at 293 K [mmol g ⁻¹]	2.74	1.76
maximum uptake at 273 K [mmol g ⁻¹]	3.77	2.91
Q _{st} ⁰ [kJ mol ⁻¹]	28.7	17.5
	CH ₄	
maximum uptake at 293 K [mmol g ⁻¹]	0.72	0.56
maximum uptake at 273 K [mmol g ⁻¹]	1.25	0.88
Q _{st} ⁰ [kJ mol ⁻¹]	26.2	29.8
	H ₂	
maximum uptake at 100 K [mmol g ⁻¹]	2.35	1.93
maximum uptake at 87 K [mmol g ⁻¹]	4.34	3.45
maximum uptake at 77 K [mmol g ⁻¹]	6.36	5.78
Q _{st} ⁰ [kJ mol ⁻¹]	11.4	8.2

Table S3. Summary of the literature reported CO₂, CH₄ and H₂ uptakes at 1 bar and heat of adsorption values for various MOFs.

MOF	CO ₂ uptake	CO ₂ Q _{st} ⁰	CH₄ uptake	CH ₄ Q _{st} ⁰	H ₂ uptake	H ₂ Q _{st} ⁰
	at 293 K	[kJ mol ^{−1}]	at 293 K	[kJ mol ^{−1}]	at 77 K	[kJ mol ^{−1}]
	[mmol g ⁻¹]		[mmol g ⁻¹]		[mmol g ⁻¹]	
Zr-HHU-1	0.9 ^[3]	60 ^[3]	-	-	4.10 ^[3]	10.3 ^[3]
Ce-HHU-1	2.5 ^[4]	47 ^[4]	-	-	-	_
Hf-HHU-1	1.6 ^[5]	39 ^[5]	-	-	-	_
NUS-36	2.1 ^[6,a]	_	-	-	-	_
MIL-53	2.11 ^[7]	25 ^[8]	0.57 ^[9]	15 ^[9,b]	1.47 ^[13]	-
CAU-10-H	2.76 ^[7]	25 ^[10,b]	1.04 ^[11]	8 ^[9,b]	6.42 ^[13]	-
Al-fum	2.52 ^[7]	-	1.14 ^[9]	15.9 ^[9]	9.01 ^[13]	-
MIL-160	4.22 ^[7]	33 ^[12]	0.84 ^[11]	18.7 ^[12]	11.91 ^[13]	_
CAU-23	3.97 ^[13]	22 ^[13]	0.89 ^[13]	14.8 ^[13]	10.25 ^[13]	4 ^[13]
SNU-15'	—	_	_	-	3.66 ^[14,c]	15.1 ^[14]
Ni(dhtp)	—	_	_	-	-	12.9 ^[15]
Zn ₃ (bdc) ₃ [Cu(pyen)]	—	-	—	-	-	12.3 ^[16]
(DMF)5(H2O)5						

a: measured at 273 K, visually read from graph and calculated to mmol g⁻¹ with the ideal gas equation p·v=n·R·T

b: visually read from graph

c: calculated with ideal gas equation from uptake in $\mbox{cm}^3\,\mbox{g}^{-1}$

Section S3: Calculations and fitting for the isosteric heat of adsorption of CO₂, CH₄ and H₂

Adsorption isotherms for CO₂, CH₄ (273 and 293 K) and H₂ (77, 87 and 100 K) of HHUD-4 and Infum were fitted with the Freundlich-Langmuir model. Freundlich-Langmuir fits are given in Figure S8 to Figure S11 and the fitting parameters are summarized in Table S4 and Table S5. Freundlich-Langmuir:

$$n = \frac{a \cdot b \cdot p^c}{1 + b \cdot p^c}$$

- $n = \text{amount absorbed [mmol g}^{-1}]$
- $a = maximal loading [mmol g^{-1}]$
- b = affinity constant [bar⁻¹]
- c = heterogeneity exponent

p = pressure [bar]

The isosteric heat of adsorption was then calculated with the Clausius-Clapeyron equation:

$$Q_{st} = -R\left(\frac{T_2 \cdot T_1}{T_2 - T_1}\right) ln \frac{p_2}{p_1}$$

Figure S8. Experimental a) CO₂ and b) CH₄ adsorption isotherms of HHUD-4 with their corresponding Freundlich-Langmuir model fits at 273 and 293 K.

Figure S9. Experimental H_2 adsorption isotherms of HHUD-4 with their corresponding Freundlich-Langmuir model fits at 77, 87 and 100 K.

Figure S10. Experimental a) CO₂ and b) CH₄ adsorption isotherms of In-fum with their corresponding Freundlich-Langmuir model fits at 273 and 293 K.

Figure S11. Experimental H_2 adsorption isotherms of In-fum with their corresponding Freundlich-Langmuir model fits at 77, 87 and 100 K.

Table 04. Treatminist Langing in thing parameters for 002 , 014 and 12 adsorption isotherms for through	Table S4	Freundlich-L	angmuir fitting	parameters fo	r CO ₂ , CH ₄ and	d H ₂ adsorp	otion isotherms	for HHUD-4
--	----------	--------------	-----------------	---------------	---	-------------------------	-----------------	------------

Gas	C	D ₂	CH₄		H ₂		
Temperature [K]	273	293	273	293	77	87	100
maximal loading, <i>a</i> [mmol g ⁻¹]*	6.3637	6.8862	6.5495	2.4905	11.4427	8.2774	6.5725
affinity constant, <i>b</i> [bar ⁻¹]	1.4995	0.6913	0.2254	0.4223	1.2724	1.1462	0.5855
heterogeneity exponent, c	0.9803	1.0051	1.0418	1.1616	0.7639	0.9154	0.9766
Correlation coefficient R ²	0.99994	0.99998	0.99988	0.99973	0.99959	0.99994	0.99999
Heat of adsorption [kJ mol-1]	28.7		26.2		11.4		

*amount adsorbed at saturation, that is maximal loading for the asymptotic curvature of the adsorption isotherm

Table S5. Freundlich-Langmuir fitting parameters for CO₂, CH₄ and H₂ adsorption isotherms for In-fum.

Gas	C	D ₂	CH4		H ₂		
Temperature [K]	273	293	273	293	77	87	100
maximal loading, <i>a</i> [mmol g ⁻¹]*	7.7913	8.5030	3.4056	1.5839	9.2512	6.4966	4.6511
affinity constant, <i>b</i> [bar ⁻¹]	0.6337	0.2760	0.3642	0.5684	1.6997	1.1804	0.7492
heterogeneity exponent, c	1.0906	1.0579	1.0873	1.2708	0.8568	0.9337	1.0345
Correlation coefficient R ²	0.99997	0.99998	0.99968	0.99919	0.99989	0.99999	0.99984
Heat of adsorption [kJ mol ⁻¹]	17	.5	29.8 8.		8.2		

*amount adsorbed at saturation, that is maximal loading for the asymptotic curvature of the adsorption isotherm

Section S4: Fitting and IAST calculations for CO₂/CH₄ mixtures

The adsorption isotherms for CO₂ and CH₄ were fitted with the 3PSim software.¹⁷ 3PSim is a tool to interpret and evaluate experimental adsorption data with several adsorption isotherm models, including Henry, Toth, Freundlich, LAI, SIPS, Dual-site Langmuir and DS Langmuir SIPS. The best fitting model for the CO₂ and CH₄ adsorption isotherms was the Toth model (a calculation of IAST with a Freundlich-Langmuir fit is not possible with the 3PSim software).

Toth:

$$q = q_{max} \frac{k \cdot p}{\left[1 + (k \cdot p)^t\right]^{\frac{1}{t}}}$$

q = amount absorbed [mmol g⁻¹] q_{max} = maximal loading [mmol g⁻¹] k = Toth constant/ affinity constant [bar⁻¹] t = heterogeneity exponent p = pressure [bar]

The IAST (ideal adsorbed solution theory) selectivity calculation was done with the "IAST with Toth" isotherm model with two components. The parameters (of both gases at a single temperature) obtained from the Toth fit (Table S6 and Table S7) were used as input, the molar fraction was set to 0.5 and the total pressure was set to 1 bar. From the resulting adsorbed fractions of CO_2 (x₁) and CH_4 (x₂) the selectivity was calculated with the following formula:

$$S = \frac{x_1/x_2}{y_1/y_2}$$

 y_1 and y_2 are the mole fractions of CO_2 and CH_4 , respectively.

Figure S12. Plots of IAST selectivity of a) HHUD-4 and b) In-fum for CO₂/CH₄ mixtures at 273 and 293 K.

Figure S13. Experimental a) CO₂ and b) CH₄ adsorption isotherms of HHUD-4 with their corresponding Toth model fits at 273 and 293 K.

Figure S14. Experimental a) CO_2 and b) CH_4 adsorption isotherms of In-fum with their corresponding Toth model fits at 273 and 293 K.

Table S6. Toth fitting parameters for CO₂ and CH₄ adsorption isotherms for HHUD-4.

Gas	С	O ₂	CH₄		
Temperature [K]	273	293	273	293	
maximal loading, q_{max} [mmol g ⁻¹]*	6.731296	6.977597	5.499398	1.309495	
affinity constant, k [bar-1]	1.551246	0.675349	0.263016	0.602038	
heterogeneity exponent, t	0.9086	1.0021	1.3643	3.1753	
Correlation coefficient R ²	0.999954	0.999983	0.999834	0.999092	

*amount adsorbed at saturation, that is maximal loading for the asymptotic curvature of the adsorption isotherm

Table S7. Toth fitting parameters for CO₂ and CH₄ adsorption isotherms for In-fum.

Gas	C	O ₂	CH₄		
Temperature [K]	273	293	273	293	
maximal loading, q _{max} [mmol g ⁻¹]*	4.722194	3.519293	2.388246	1.633522	
affinity constant, k [bar-1]	0.815456	0.578060	0.432077	0.363842	
heterogeneity exponent, t	2.0282	2.3315	1.7211	3.1443	
Correlation coefficient R ²	0.999987	0.999975	0.999630	0.997794	

*amount adsorbed at saturation, that is maximal loading for the asymptotic curvature of the adsorption isotherm

Table S8. Calculated IAST-selectivities for CO_2 and CH_4 mixtures at 273 and 293 K for HHUD-4 and In-fum at selected molar fractions.

MOF	Gases (X_1 and X_2) at T	IAST selectivity at molar fraction (rounded to the next integer value)			
		0.01	0.5		
	CO_2 and CH_4 at 273 K	7	6		
	CO ₂ and CH ₄ at 293 K	6	7		
In-Fum	CO_2 and CH_4 at 273 K	3	4		
	CO ₂ and CH ₄ at 293 K	4	4		

p/p ₀	HHUD-4	In-fum
benze	ne uptake [mg g ^{_1}] (% of maximum	uptake)
0.02	98 (36 %)	78 (28 %)
0.05	165 (61 %)	114 (41 %)
0.08	182 (68 %)	134 (48 %)
0.1	190 (71 %)	147 (53 %)
0.3	219 (81 %)	194 (70 %)
0.9	269	278
cyclohe	xane uptake [mg g ⁻¹] (% of maximu	m uptake)
0.02	41 (35 %)	34 (38 %)
0.05	82 (71 %)	40 (45 %)
0.08	87 (75 %)	43 (48 %)
0.1	89 (77 %)	46 (52 %)
0.3	98 (84 %)	57 (64 %)
0.9	116	89
n-hexa	ane uptake [mg g ⁻¹] (% of maximum	uptake)
0.02	71 (35 %)	150 (61 %)
0.05	118 (58 %)	160 (65 %)
0.08	126 (61 %)	165 (67 %)
0.1	129 (63 %)	169 (69 %)
0.3	149 (73 %)	189 (77 %)
0.9	205	245

Section S5: Vapor sorption experiments

0 -

0.0

0.2

0.4

0.6

relative pressure p/p₀ [-]

0.8

Table S9.	Benzene,	cyclohexane	and n-hexane u	uptake for	HHUD-4	and In-fum	at specific	p/p₀ values

1.0

b)

0

0.0

0.2

0.4

0.6

relative pressure p/p₀ [-]

1.0

0.8

Figure S16. Benzene, cyclohexane and n-hexane uptake capacity at 293 K of HHUD-4 at different relative pressures a) $p/p_0 = 0.1$, 0.3 and 0.9 and b) $p/p_0 = 0.02$, 0.05 and 0.08 (specific values in Table S9).

Figure S17. Benzene, cyclohexane and n-hexane uptake capacity at 293 K of In-fum at different relative pressures a) $p/p_0 = 0.1$, 0.3 and 0.9 and b) $p/p_0 = 0.02$, 0.05 and 0.08 (specific values in Table S9).

Figure S18. PXRD diffraction patterns of a) HHUD-4 and b) In-fum before and after vapor sorption experiments with benzene, cyclohexane, n-hexane and water.

Figure S19. Volumetric nitrogen sorption measurements at 77 K of a) HHUD-4 and b) In-fum before and after benzene vapor sorption experiment (filled symbols for adsorption, empty symbols for desorption).

Figure S20. Volumetric nitrogen sorption measurements at 77 K of a) HHUD-4 and b) In-fum before and after cyclohexane vapor sorption experiment (filled symbols for adsorption, empty symbols for desorption).

Figure S21. Volumetric nitrogen sorption measurements at 77 K of a) HHUD-4 and b) In-fum before and after n-hexane vapor sorption experiment (filled symbols for adsorption, empty symbols for desorption).

Figure S22. Volumetric nitrogen sorption measurements at 77 K of a) HHUD-4 and b) In-fum before and after water vapor sorption experiment (filled symbols for adsorption, empty symbols for desorption).

experiments.		
complo	BET surface area	pore volume at p/p ₀ = 0.95
sample	[m ² g ⁻¹]	[cm³ g⁻¹]
HHUD-4 before VOC sorption	661	0.277
HHUD-4 after benzene	746	0.319
HHUD-4 after cyclohexane	613	0.271
HHUD-4 after n-hexane	745	0.305
HHUD-4 after water	~ 0	~ 0
In-fum before VOC sorption	661	0.289
In-fum after benzene	609	0.274
In-fum after cyclohexane	792	0.346
In-fum after n-hexane	791	0.346*
In-fum after water	867	0.371

Table S10.	BET	surface	areas	and	pore	volume	of	HHUD-4	and	In-fum	samples	after	vapor	sorption
experiments														

 $*p/p_0 = 0.90$, due to an increase in uptake (overlap with a type II isotherm at higher pressures)

Section S6: Fitting and IAST calculations for the vapor sorption experiments

Similar to the procedure in Section S4: Fitting and IAST calculations for CO₂/CH₄ mixtures, the adsorption isotherms for benzene, cyclohexane and n-hexane at 293 K were fitted with the 3PSim software.¹⁷ For a better comparability all isotherms were fitted with the dual-site Langmuir Sips (DSLAISips) model. The pressure range above 0.09 bar for the cyclohexane adsorption isotherms of both HHUD-4 and In-fum were excluded from fitting to reduce the fitting error and obtain more accurate selectivities.

DSLAISips:

$$q_{eq} = q_{max} \left(\frac{K_1 \cdot p}{1 + K_1 \cdot p} + \frac{(K_2 \cdot p)^t}{(1 + K_2 \cdot p)^t} \right)$$

 q_{eq} = amount adsorbed [mmol g⁻¹] q_{max} = maximal loading [mmol g⁻¹] K_1 and K_2 = affinity constant for adsorption [bar⁻¹] p = pressure [bar] t = heterogeneity exponent

The IAST (ideal adsorbed solution theory) selectivity calculation were done with the "IAST with DSLAISips" isotherm model with two components. The selectivities were calculated over a pressure range of the fitted isotherms from 0 to 0.09 bar with a constant vapor composition of 50:50 of both VOCs with the following formula:

$$S = \frac{x_1/x_2}{y_1/y_2}$$

where y_1 and y_2 are the molar fractions of the VOC and x_1 and x_2 are represents the adsorbed vapor amount.

Figure S23. Experimental benzene, cyclohexane and n-hexane adsorption isotherms of HHUD-4 at 293 K with their corresponding DSLAISips model fits.

Figure S24. Experimental benzene, cyclohexane and n-hexane adsorption isotherms of In-fum at 293 K with their corresponding DSLAISips model fits.

Table S11. DSLAISips fitting parameters for benzene, cyclohexane and n-hexane adsorption isotherms for HHUD-4.

Vapor	benzene	cyclohexane	n-hexane
maximal loading, q _{max} [mmol g ⁻¹]	2.255265	0.642721	1.724326
affinity constant, K1 [bar1]	10.317593	180.740683	394.354743
affinity constant, K ₂ [bar ⁻¹]	396.315605	910.177530	5.066080
heterogeneity exponent, t	2.831478	3.891550	2.094568
Correlation coefficient R ²	0.999432	0.994705	0.992522

Table S12. DSLAISips fitting parameters for benzene, cyclohexane and n-hexane adsorption isotherms for In-fum.

Vapor	benzene	cyclohexane	n-hexane
maximal loading, q _{max} [mmol g ⁻¹]	2.649726	0.829770	2.151630
affinity constant, K1 [bar1]	217.494087	5.493819	722.691922
affinity constant, K ₂ [bar ⁻¹]	8.201325	252.500453	4.165343
heterogeneity exponent, t	1.995158	0.348853	2.142852
Correlation coefficient R ²	0.999661	0.994578	0.993071

Table S13. Calculated IAST-selectivities for different VOC-mixtures for HHUD-4 and In-fum at selected pressures.

		IAST Selectivity for X ₁ /X ₂ (rounded to the next integer value)				
MOF	VOC (X ₁ and X ₂)					
		10 mbar	50 mbar	90 mbar		
	benzene and cyclohexane	2	9	17		
HHUD-4	benzene and <i>n</i> -hexane	1	3	3		
	n-hexane and cyclohexane	2	3	3		
	benzene and cyclohexane	3	14	23		
In-Fum	benzene and <i>n</i> -hexane	2	2	1		
	<i>n</i> -hexane and cyclohexane	13	37	46		

Section S7: Theoretical calculations with the HHUD-4 crystal structure data

Mercury 'void' calculation ²	
Probe radius 1.2 Å, grid spacing 0.7 Å Void volume [ų] (% of unit cell) specific [cm³ g⁻¹]	773 (63) 0.48
Probe radius 0.7 Å, grid spacing 0.7 Å Void volume [Å ³] (% of unit cell) specific [cm ³ g ⁻¹]	790 (64) 0.49
Platon 'Calc Void' ^{18,19}	
Total potential solvent area [ų] (% of unit cell) specific [cm³ g⁻¹]	738 (60) 0.46
CrystalExplorer 'Crystal voids' calculation ^{20,21}	
Surface area S _{unit cell} (isovalue 0.002) [Ų] specific [m² g⁻¹]	362 2235
Surface area S _{unit cell} (isovalue 0.003) [Ų] specific [m² g⁻¹]	364 2247
Pore volume (isovalue 0.002) [ų] specific [cm³ g⁻¹]	716 0.44
Pore volume (isovalue 0.003) [ų] specific [cm³ g⁻¹]	761 0.47

 Table S14. Theoretical surface area and pore volume of HHUD-4.

Theoretical specific surface areas are calculated according to $(S_{\text{Unit Cell}} \cdot N_A)/(Z \cdot M)$ and theoretical specific pore volumes are calculated according to $(\text{Void Volume} \cdot N_A)/(Z \cdot M)$ or $(\text{Solvent Accessible Volume} \cdot N_A)/(Z \cdot M)$;

Z = 4 (number of asymmetric formula units), $N_A = Avogadro's$ constant: 6.022 \cdot 10²³ mol⁻¹, M = 243.87 g mol⁻¹ (molecular weight of the asymmetric formula unit).

Topology analysis for HHUD-4 with ToposPro and the Topcryst database^{22,23,24,25}

1:C4 H In O5 + solvent/intercluster bonds for rings>6

Topology for Bk1

Atom Bk1 links by bridge ligands and has

Common vertex with R(A-A)	Common vertex with	R(A-A)
---------------------------	--------------------	--------

Bk 1	1.5000	0.5000	0.3750	(100)	9.802A	1
Bk 1	0.5000	-0.5000	0.3750	(0-10)	9.802A	1

S20

 Bk 1
 -0.5000
 0.5000
 0.3750
 (-1 0 0)
 9.802A
 1

 Bk 1
 0.5000
 1.5000
 0.3750
 (0 1 0)
 9.802A
 1

Structural group analysis

Structural group No 1

Structure consists of plane layers (001) with Bk Num. groups=4; Thickness=4.00; Distances to Neighbors=3.203; 3.203

Coordination sequences

Bk1: 1 2 3 4 5 6 7 8 9 10 Num 4 8 12 16 20 24 28 32 36 40 Cum 5 13 25 41 61 85 113 145 181 221

TD10=221

Vertex symbols for selected sublattice

Bk1 Point symbol:{4^4.6^2}

Extended point symbol: [4.4.4.4.6(2).6(2)]

Point symbol for net: {4^4.6^2}

4-c net; uninodal net

You have to increase Max.Ring value to compute plane net VS correctly!

Topological type: **sql** (topos&RCSR.ttd) {4^4.6^2} - VS [4.4.4.4.*.*] (17828 types in 4 databases) Elapsed time: 3.80 sec.

Section S8: HHUD-4 crystal data

Refinement

The hydrogen atoms for OH were positioned geometrically (O—H = 0.98 Å) and refined using a riding model (AFIX 148) with $U_{iso}(H) = 1.5U_{eq}$.

Computing details

Data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: SHELXT-2015 (Sheldrick 2015a); program(s) used to refine structure: *SHELXL2017*/1 (Sheldrick, 2015b); molecular graphics: *DIAMOND* 4.3.1 (Brandenburg, 1999); software used to prepare material for publication: *SHELXL2017*/1 (Sheldrick, 2015b).

References

Bruker AXS. (2012). APEX2, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Brandenburg, K. (1999).
DIAMOND. Crystal Impact GbR, Bonn, Germany. Sheldrick, G. M. (1996). SADABS. University of Göttingen,
Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

S8.1 Crystal 1 (In-adc_P4122)

C₄HInO₅⁺solvent	$D_{\rm x} = 1.316 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 243.87$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Tetragonal, P4122	Cell parameters from 6739 reflections
a = 9.8021 (7) Å	$\theta = 2.6-26.4^{\circ}$
c = 12.812 (1) Å	$\mu = 1.90 \text{ mm}^{-1}$
V = 1231.0 (2) Å ³	<i>T</i> = 140 K
Z = 4	Octahedral, clear colourless
<i>F</i> (000) = 456	0.31 × 0.18 × 0.17 mm

Crystal data

Data collection

Bruker Kappa APEX-II CCD area detector diffractometer	1284 independent reflections
Radiation source: microfocus sealed tube	1266 reflections with $l > 2\sigma(l)$
Multilayer mirror monochromator	$R_{\rm int} = 0.023$
ω scans, $φ$ scans	$\theta_{max} = 26.5^{\circ}, \ \theta_{min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	<i>h</i> = -12→11
$T_{\min} = 0.882, \ T_{\max} = 1.000$	<i>k</i> = -12→12
8314 measured reflections	/=-16→12

Refinement

Refinement on <i>F</i> ²	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.009$	H-atom parameters constrained
$wR(F^2) = 0.025$	$w = 1/[\sigma^2(F_0^2) + (0.0096P)^2 + 0.2009P]$ where $P = (F_0^2 + 2F_c^2)/3$
S = 1.13	$(\Delta/\sigma)_{max} = 0.001$
1284 reflections	Δ _{max} = 0.21 e Å ⁻³
47 parameters	Δ _{min} = -0.30 e Å ⁻³
0 restraints	Absolute structure: Flack x determined using 476 quotients
	[(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst.
	B69 (2013) 249-259).
Primary atom site location: structure-	Absolute structure parameter: -0.017 (17)
invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²) for crystal 1 (In-adc_P4₁22)

	x	У	Z	U _{iso} */U _{eq}
In1	0.500000	0.61899 (2)	0.500000	0.01067 (6)
O1	0.48535 (15)	0.48535 (15)	0.375000	0.0160 (4)
H1	0.416816	0.416815	0.375001	0.019*
C1	0.5564 (2)	0.8056 (2)	0.31063 (15)	0.0187 (4)
02	0.48882 (19)	0.78840 (13)	0.39190 (10)	0.0226 (3)
C2	0.5553 (2)	0.9440 (2)	0.26710 (16)	0.0241 (4)
O3	0.62843 (14)	0.72099 (12)	0.26194 (10)	0.0202 (3)

Atomic displacement parameters $(Å^2)$ for crystal 1 (In-adc_P4₁22)

	<i>U</i> ¹¹	U ²²	U ³³	U ¹²	<i>U</i> ¹³	U ²³
In1	0.01167 (9)	0.01214 (9)	0.00819 (8)	0.000	0.00052 (7)	0.000
O1	0.0184 (6)	0.0184 (6)	0.0114 (7)	-0.0076 (10)	0.0037 (5)	-0.0037 (5)
C1	0.0247 (10)	0.0153 (9)	0.0162 (9)	-0.0003 (8)	-0.0028 (8)	0.0025 (8)
02	0.0327 (8)	0.0173 (6)	0.0180 (6)	0.0045 (7)	0.0035 (7)	0.0043 (5)
C2	0.0363 (11)	0.0173 (8)	0.0186 (10)	0.0004 (8)	0.0040 (9)	0.0010 (8)
O3	0.0275 (7)	0.0122 (6)	0.0208 (6)	-0.0030 (5)	0.0026 (7)	0.0002 (6)

Geometric parameters (Å, °) for crystal 1 (In-adc_P4122)

In1—01	2.0740 (10)	01—H1	0.9500
In1—O1 ⁱ	2.0740 (10)	C1—O2	1.245 (2)
In1—02	2.1651 (12)	C1—O3	1.256 (2)
In1—O2 ⁱⁱ	2.1651 (12)	C1—C2	1.466 (3)
In1—O3 ⁱⁱⁱ	2.1735 (12)	C2—C2 ^{iv}	1.183 (4)

In1—O3 ⁱ	2.1735 (12)		
01—In1—01 ⁱ	101.66 (6)	02—In1—O3 ⁱ	87.82 (6)
O1—In1—O2	89.25 (5)	O2 ⁱⁱ —In1—O3 ⁱ	88.44 (6)
01 ⁱ —In1—O2	169.08 (4)	O3 ⁱⁱⁱ —In1—O3 ⁱ	175.12 (7)
01—In1—02 ⁱⁱ	169.08 (4)	In1 ^v —O1—In1	120.58 (10)
O1 ⁱ —In1—O2 ⁱⁱ	89.25 (5)	In1 ^v —O1—H1	119.7
02—In1—02 ⁱⁱ	79.84 (7)	In1—O1—H1	119.7
01—In1—03 ⁱⁱⁱ	92.38 (5)	O2-C1-O3	128.67 (18)
O1 ⁱ —In1—O3 ⁱⁱⁱ	90.70 (5)	O2-C1-C2	116.09 (18)
02—In1—O3 ⁱⁱⁱ	88.44 (6)	O3—C1—C2	115.21 (17)
02 ⁱⁱ —In1—O3 ⁱⁱⁱ	87.82 (6)	C1-O2-In1	127.73 (13)
01—In1—O3 ⁱ	90.70 (5)	C2 ^{iv} —C2—C1	179.3 (3)
O1 ⁱ —In1—O3 ⁱ	92.38 (5)	C1—O3—In1 ^v	132.03 (13)

Symmetry codes: (i) -*y*+1, *x*, *z*+1/4; (ii) -*x*+1, *y*, -*z*+1; (iii) *y*, *x*, -*z*+3/4; (iv) *x*, -*y*+2, -*z*+1/2; (v) *y*, -*x*+1, *z*-1/4.

S8.2 Crystal 2 (In-adc_P4₃22)

Crystal data

C ₄ HInO ₅	$D_{\rm x}$ = 1.318 Mg m ⁻³
<i>M</i> _r = 243.87	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Tetragonal, <i>P</i> 4 ₃ 22	Cell parameters from 6150 reflections
<i>a</i> = 9.8015 (9) Å	$\theta = 2.6 - 30.6^{\circ}$
<i>c</i> = 12.7970 (14) Å	$\mu = 1.90 \text{ mm}^{-1}$
V = 1229.4 (3) Å ³	<i>T</i> = 140 K
Z = 4	Octahedral, clear colourless
<i>F</i> (000) = 456	0.24 × 0.22 × 0.20 mm

Data collection

Bruker Kappa APEX-II CCD area detector diffractometer	1889 independent reflections
Radiation source: microfocus sealed tube	1843 reflections with $I > 2\sigma(I)$
Multilayer mirror monochromator	R _{int} = 0.018
ω scans, $φ$ scans	$\theta_{max} = 30.6^{\circ}, \ \theta_{min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	<i>h</i> = -1111
$T_{\min} = 0.578, \ T_{\max} = 0.685$	<i>k</i> = -1114
7274 measured reflections	/=-1718

Refinement

Refinement on F ²	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.013$	$w = 1/[\sigma^2(F_0^2) + (0.0169P)^2 + 0.2125P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.034$	(Δ/σ) _{max} < 0.001
S = 1.08	$\Delta\rangle_{max} = 0.90 \text{ e } \text{\AA}^{-3}$
1889 reflections	$\Delta \rangle_{\text{min}} = -0.24 \text{ e } \text{\AA}^{-3}$
47 parameters	Absolute structure: Flack x determined using 718 quotients [(I+)-(I-
)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraints	Absolute structure parameter: -0.009 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$) for crystal 2 (In-adc_P4₃22)

	x	У	Z	U _{iso} */U _{eq}
ln1	0.500000	0.38083 (2)	0.500000	0.01173 (5)
O1	0.48519 (14)	0.51481 (14)	0.375000	0.0171 (4)
H1	0.416656	0.583345	0.375000	0.020*
C1	0.5569 (2)	0.1942 (2)	0.31003 (14)	0.0197 (4)
O3	0.62898 (14)	0.27889 (13)	0.26160 (10)	0.0211 (3)
O2	0.48841 (19)	0.21166 (13)	0.39147 (10)	0.0238 (3)
C2	0.5559 (2)	0.0557 (2)	0.26727 (14)	0.0247 (4)

Atomic displacement parameters ($Å^2$) for crystal 2 (In-adc_P4₃22)

	<i>U</i> ¹¹	U ²²	U ³³	<i>U</i> ¹²	<i>U</i> ¹³	U ²³
In1	0.01293 (8)	0.01347 (8)	0.00880 (7)	0.000	0.00052 (6)	0.000
O1	0.0196 (6)	0.0196 (6)	0.0121 (6)	0.0071 (8)	0.0034 (5)	0.0034 (5)
C1	0.0259 (10)	0.0160 (9)	0.0173 (8)	0.0009 (7)	-0.0042 (7)	-0.0017 (6)
O3	0.0277 (7)	0.0138 (6)	0.0217 (6)	0.0026 (5)	0.0023 (6)	-0.0003 (5)
O2	0.0330 (8)	0.0182 (6)	0.0202 (6)	-0.0050 (6)	0.0045 (6)	-0.0053 (5)
C2	0.0381 (12)	0.0173 (9)	0.0187 (9)	-0.0005 (7)	0.0023 (7)	-0.0016 (7)

Geometric parameters (Å, °) for crystal 2 (In-adc_P4₃22)

In1—O1 ⁱ	2.0747 (10)	O1—H1	0.9500
In1—O1	2.0747 (10)	C1—O2	1.252 (2)
In1—O2	2.1659 (13)	C1—O3	1.254 (2)
In1—O2 ⁱⁱ	2.1660 (13)	C1—C2	1.464 (3)
In1—O3 ⁱ	2.1745 (13)	C2—C2 ^{iv}	1.178 (4)
In1—O3 ⁱⁱⁱ	2.1745 (13)		

01 ⁱ —In1—O1	101.46 (6)	02—In1—O3 ⁱⁱⁱ	88.55 (6)
01 ⁱ —In1—O2	169.31 (4)	02"—In1—03"	87.57 (6)
01—In1—02	89.23 (5)	03 ⁱ —In1—O3 ⁱⁱⁱ	174.93 (7)
01 ⁱ —In1—O2 ⁱⁱ	89.23 (5)	In1 ^v —O1—In1	120.39 (10)
01—In1—O2 ⁱⁱ	169.31 (4)	In1 ^v —O1—H1	119.8
02—In1—O2 ⁱⁱ	80.09 (7)	In1—01—H1	119.8
01 ⁱ —In1—O3 ⁱ	92.58 (5)	02—C1—O3	128.58 (18)
01—In1—O3 ⁱ	90.62 (5)	O2-C1-C2	115.73 (18)
O2—In1—O3 ⁱ	87.57 (6)	O3—C1—C2	115.67 (17)
O2 ⁱⁱ —In1—O3 ⁱ	88.55 (6)	C1—O3—In1 ^v	131.96 (13)
O1 ⁱ —In1—O3 ⁱⁱⁱ	90.62 (5)	C1—O2—In1	127.61 (13)
01—In1—O3 ⁱⁱⁱ	92.58 (5)	C2 ^{iv} —C2—C1	179.58 (15)

Symmetry codes: (i) y, -x+1, z+1/4; (ii) -x+1, y, -z+1; (iii) -y+1, -x+1, -z+3/4; (iv) x, -y, -z+1/2; (v) -y+1, x, z-1/4.

Section S9: References

- 1 Y. Zhang, B. E. G. Lucier, S. M. McKenzie, M. Arhangelskis, A. J. Morris, T. Friščić, J. W. Reid, V. V. Terskikh, M. Chen and Y. Huang, *ACS Appl Mater. Interfaces*, 2018, **10**, 28582.
- 2 C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, *J. Appl. Crystallogr.*, 2020, **53**, 226.
- T. J. Matemb Ma Ntep, H. Reinsch, B. Moll, E. Hastürk, S. Gökpinar, H. Breitzke, C. Schlüsener, L.
 Schmolke, G. Buntkowsky and C. Janiak, *Chemistry*, 2018, 24, 14048.
- 4 T. J. Matemb Ma Ntep, H. Reinsch, J. Liang and C. Janiak, *Dalton Trans.*, 2019, **48**, 15849.
- 5 T. J. Matemb Ma Ntep, H. Reinsch, C. Schlüsener, A. Goldman, H. Breitzke, B. Moll, L. Schmolke, G. Buntkowsky and C. Janiak, *Inorg. Chem.*, 2019, **58**, 10965.
- 6 Y. Wang, S. Yuan, Z. Hu, T. Kundu, J. Zhang, S. B. Peh, Y. Cheng, J. Dong, D. Yuan, H.-C. Zhou and D. Zhao, *ACS Sustainable Chem. Eng.*, 2019, **7**, 7118.
- 7 P. Brandt, S.-H. Xing, J. Liang, G. Kurt, A. Nuhnen, O. Weingart, C. Janiak, ACS Appl Mater Interfaces 2021, **13**, 29137–29149.
- 8 B. C. Camacho, R. P. Ribeiro, I. A. Esteves and J. P. Mota, Sep. Purif. Technol., 2015, 141, 150.
- 9 Z. Huang, P. Hu, J. Liu, F. Shen, Y. Zhang, K. Chai, Y. Ying, C. Kang, Z. Zhang and H. Ji, Sep. Purif. Technol., 2022, 286, 120446.
- 10 J. Pei, H.-M. Wen, X.-W. Gu, Q.-L. Qian, Y. Yang, Y. Cui, B. Li, B. Chen and G. Qian, *Angew. Chem. Int. Ed.*, 2021, **60**, 25068.
- 11 D. Shade, B. Marszalek and K. S. Walton, *Adsorption*, 2021, **27**, 227.
- D. Damasceno Borges, P. Normand, A. Permiakova, R. Babarao, N. Heymans, D. S. Galvao, C. Serre,G. de Weireld and G. Maurin, *J. Phys. Chem. C*, 2017, **121**, 26822.
- C. Jansen, N. Tannert, D. Lenzen, M. Bengsch, S. Millan, A. Goldman, D. N. Jordan, L. Sondermann,N. Stock and C. Janiak, *Z. Anorg. Allg. Chem.*, 2022, 648, e202200170.
- 14 Y. E. Cheon and M. P. Suh, *Chem. Commun.*, 2009, 2296.
- 15 W. Zhou, H. Wu and T. Yildirim, *J. Am. Chem. Soc.*, 2008, **130**, 15268.
- 16 B. Chen, X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher and K. M. Thomas, *J. Am. Chem. Soc.*, 2008, **130**, 6411.
- 17 3P INSTRUMENTS, 3P sim, Version 1.1.0.7, Simulation and Evaluation Tool for mixSorb, 3P INSTRUMENTS 2018.
- 18 Spek, A.L. PLATON A Multipurpose Crystallographic Tool (Utrecht University, Utrecht, The Netherlands) 2008; Farrugia, L.J. Windows implementation, Version 270519 (University of Glasgow, Scotland) 2019.
- 19 A. L. Spek, Acta. Crystallogr. D Biol. Crystallogr., 2009, 65, 148.
- 20 M. J. Turner, J. J. McKinnon, D. Jayatilaka and M. A. Spackman, *CrystEngComm*, 2011, **13**, 1804.
- J. J. McKinnon, M. A. Spackman and A. S. Mitchell, Acta Crystallogr. B, 2004, 60, 627.
- E. V. Alexandrov, A. P. Shevchenko and V. A. Blatov, *Cryst. Growth Des.*, 2019, **19**, 2604.
- 23 V. A. Blatov and D. M. Proserpio, *Acta Crystallogr. A Found Crystallogr.*, 2009, **65**, 202.
- V. A. Blatov, A. P. Shevchenko and D. M. Proserpio, *Cryst. Growth Des.*, 2014, **14**, 3576.
- E. V. Alexandrov, V. A. Blatov, A. V. Kochetkov and D. M. Proserpio, *CrystEngComm*, 2011, **13**, 3947.