Factors controlling the structure of alkylzinc amidinates: On the role of N-substituents

Supporting information

Michał Terlecki,^a Iwona Justyniak,^b Michał K. Leszczyński,^{a,b} Piotr Bernatowicz,^b Janusz Lewiński*^{a,b}

^aFaculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland. ^bInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. *E-mail:* lewin@ch.pw.edu.pl

Table of Contents

1. NMR spectra	S2
2. DOSY NMR analysis	S8
3. X-Ray Crystallography Data	S22

1. NMR spectra

Fig. S1. ¹H NMR spectrum of $\mathbf{1}^{Me}$ in C₆D₆.

Fig. S2. ¹³C NMR spectrum of $\mathbf{1}^{Me}$ in C₆D₆.

Fig. S3. ¹H NMR spectrum of $\mathbf{1}^{Et}$ in C₆D₆.

Fig. S5. ¹H NMR spectrum of 2 in C_6D_6 .

Fig. S6. 13 C NMR spectrum of 2 in C₆D₆.

Fig. S7. ¹H NMR spectrum of the methylzinc derivative of *bza* in d₈-tol.

Fig. S8. ¹³C NMR spectrum of the methylzinc derivative of *bza* in d_8 -tol.

Fig. S9. ¹H NMR spectrum of the ethylzinc derivative of *bza* in d₈-tol.

Fig. S10. ¹³C NMR spectrum of the ethylzinc derivative of *bza* in d_8 -tol.

Fig. S11. ¹H NMR spectrum of 3 in d_8 -tol.

Fig. S12. ¹³C NMR spectrum of 3 in d_8 -tol.

2. DOSY NMR analysis

DOSY ¹H NMR spectra were acquired on Bruker AVANCE II (300 MHz) spectrometer. The molecular weights (*MW*) of analyzed compounds were estimated utilizing an external calibration curve (ECC) approach with normalized diffusion coefficients exploiting 1,2,3,4-tetraphenylnaphtalene (TPhN) as an internal reference.¹ The molecular masses calculated for considered alkylzinc complexes were corrected by a correction factor χ_{cor} for molecules with a high van-der Waals density (MDw) [note, that due to the lack of reference data for χ_{cor} in d₈-tol, χ_{cor} calculated for C₆D₆ where used].²

2.1. Equimolar reaction of *dipf*-H with ZnMe₂

Analysis of the DOSY ¹H NMR spectra obtained from a 1:1 reaction of $ZnMe_2$ with *dipf*-H in d₈-toluene indicates the presence of two components with the estimated *MW* of about 762 and 66 g·mol⁻¹ (Fig. S15), which fit well to the *MW_{cor}* of about 746 and 49 g·mol⁻¹ calculated for [Me₂Zn₃(*dipf*)₄] (**1**) and ZnMe₂, respectively (Table S1). Furthermore, analysis of the relative intensity of the signals in the ¹H NMR spectrum indicates a 1:1 molar ratio of both components.

Fig. S13. ¹H NMR spectrum from the 1:1 reaction of ZnMe₂ with *dipf*-H in d₈-toluene.

Fig. S14. ¹³C NMR spectrum from the 1:1 reaction of ZnMe₂ with *dipf*-H in d₈-toluene.

Fig. S15. 2D DOSY-NMR spectrum from the 1:1 reaction of $ZnMe_2$ with *dipf*-H in d₈-toluene (signals used to estimate *MW* are marked with asterisks).

Table S1. Calculated molecular weights (MW), van-der Waals densities (MD_W), and corrected molecular weights (MW_{cor}) of respective compounds.

Compound	<i>MW</i> [g·mol⁻¹]	<i>MD</i> _W [g·mol ⁻¹ ·m ⁻³]	χcor	<i>MW_{cor}</i> [g⋅mol ⁻¹]
[Me ₂ Zn ₃ (<i>dipf</i>) ₄]	1006	6.17·10 ²⁹	1.35	746
ZnMe₂	95	9.95·10 ²⁹	1.94	49

Table S2. Determined diffusion coefficients *D* and estimated molecular weights *MW* based on analysis of DOSY ¹H NMR spectrum from the 1:1 reaction of $ZnMe_2$ with *dipf*-H in d₈-toluene.

Internal refe	erence (TPhF)	Sample			
[ppm]	$D [m^2 \cdot s^{-1}]$	[ppm]	[ppm] <i>D</i> [m ² ·s ⁻¹] <i>N</i>		
7.78-7.83	6.09·10 ⁻¹⁰		Complex		
6.62-6.69	6.13·10 ⁻¹⁰	8.18-8.22	4.85·10 ⁻¹⁰	733	
Average	C 11 10 ⁻¹⁰	7.86-7.89	4.69·10 ⁻¹⁰	773	
Reference D	0.11.10	7.49-7.56	4.67·10 ⁻¹⁰	780	
		6.38-6.47	4.73·10 ⁻¹⁰	762	
		5.70-5.76	4.70·10 ⁻¹⁰	771	
		-0.41-(-0.35)	4.77·10 ⁻¹⁰	753	
		Average Est	imated MW	762	
			Dialkylzinc		
		-0.72-(-0.67)	2.11·10 ⁻⁹	66	
		Toluene			
		2.15-2.05	1.77·10 ⁻⁹	87	

2.2. Equimolar reaction of *dipf*-H with ZnEt₂

Analysis of the DOSY ¹H NMR spectra obtained from a 1:1 reaction of $ZnEt_2$ with *dipf*-H in d₈-toluene indicates the presence of two components with the estimated *MW* of about 761 and 117 g·mol⁻¹ (Fig. S18), which fit well to the *MW_{cor}* of about 776 and 79 g·mol⁻¹ calculated for $[Et_2Zn_3(dipf)_4]$ (1) and ZnMe₂, respectively (Table S3). Furthermore, analysis of the relative intensity of the signals in the ¹H NMR spectrum indicates a 1:1 molar ratio of both components.

Fig. S16. ¹H NMR spectrum from the 1:1 reaction of ZnEt₂ with *dipf*-H in d₈-toluene.

Fig. S17. ¹³C NMR spectrum from the 1:1 reaction of ZnEt₂ with *dipf*-H in d₈-toluene.

Fig. S18. 2D DOSY-NMR spectrum from the 1:1 reaction of $ZnEt_2$ with *dipf*-H in d₈-toluene (signals used to estimate *MW* are marked with asterisks).

Table S3. Calculated molecular weights (MW), van-der Waals densities (A	MD _W), and corrected
molecular weights (<i>MW_{cor}</i>) of respective compounds.	

Compound	<i>MW</i> [g·mol⁻¹]	<i>MD</i> _W [g·mol ⁻¹ ·m ⁻³]	χcor	<i>MW_{cor}</i> [g⋅mol ⁻¹]
[Et ₂ Zn ₃ (<i>dipf</i>) ₄]	1034	6.07·10 ²⁹	1.33	776
ZnEt ₂	123	7.44·10 ²⁹	1.56	79

Internal refe	rence (TPhF)	Sample		
[ppm]	<i>D</i> [m ² ·s ⁻¹]	[ppm]	<i>D</i> [m ² ⋅s ⁻¹]	<i>MW</i> [g·mol⁻¹]
7.16-7.28	6.83·10 ⁻¹⁰		Complex	
6.80-6.86	6.28·10 ⁻¹⁰	8.33-8.36	5.01·10 ⁻¹⁰	777
Average Reference D	6.55·10 ⁻¹⁰	7.85-7.89	5.28·10 ⁻¹⁰	713
		7.48-7.55	4.89·10 ⁻¹⁰	809
		6.39-6.48	5.19·10 ⁻¹⁰	735
		5.69-5.75	5.06·10 ⁻¹⁰	766
		0.37-0.47	5.07·10 ⁻¹⁰	763
		Average Est	imated MW	761
			Dialkylzinc	
		0.07-0.16	1.59·10 ⁻⁹	117
		Toluene		
		2.15-2.05	1.92·10 ⁻⁹	86

Table S4. Determined diffusion coefficients D and estimated molecular weights MW based on analysis of DOSY ¹H NMR spectrum from the 1:1 reaction of ZnEt₂ with *dipf*-H in d₈-toluene.

2.3. Equimolar reaction of *bza*-H with ZnMe₂

The ¹H and ¹³C NMR spectra obtained from the 1:1 reaction of ZnMe₂ with *bza*-H in d₈-toluene indicate the presence of several various forms of methylzinc *bza* complexes (Fig. S19 and S20). Thus, a significant discrepancy of estimated *MW* based on resonances from the organic ligand and alkylzinc group (Fig. S21 and Table S5) is likely due to the former being collective signals from all *bza* complexes while the latter represents the individual methylzinc derivatives. Analysis of resonances from the methyl groups indicates the presence of two main components with *MW* of about 609 and 86 g·mol⁻¹, and at least two other compounds with *MW* of about 735 and 567 g·mol⁻¹ in a significant minority. The two former masses fit well to the *MW*_{cor} of about 610 and 49 g·mol⁻¹ calculated for [Me₃Zn₄(*bza*)₅] and ZnMe₂, respectively. The other two signals may be associated with [Me₄Zn₅(*bza*)₆] and [MeZn₃(*bza*)₅] with the corresponding *MW*_{cor}, their analysis using the DOSY technique was hindered by the low intensity of signals.

Fig. S19. ¹H NMR spectrum from the 1:1 reaction of ZnMe₂ with *bza*-H in d₈-toluene.

Fig. S20. ¹³C NMR spectrum from the 1:1 reaction of ZnMe₂ with *bza*-H in d₈-toluene.

Fig. S21. 2D DOSY-NMR spectrum from the 1:1 reaction of $ZnMe_2$ with *bza*-H in d₈-toluene (signals used to estimate *MW* are marked with asterisks).

Table S5. Calculate	d molecular wei	ghts (<i>MW</i>),	van-der \	Waals d	lensities ((<i>MD</i> _w), a	nd c	corrected
molecular weights	(<i>MW_{cor}</i>) of respe	ctive comp	ounds.					

Compound	<i>MW</i> [g·mol⁻¹]	<i>MD</i> _W [g·mol ⁻¹ ·m ⁻³]	χcor	<i>MW_{cor}</i> [g⋅mol ⁻¹]
[Me ₃ Zn ₄ (<i>bza</i>) ₅]	902	6.93·10 ²⁹	1.48	610
[Me₄Zn₅(<i>bza</i>) ₆]	1101	6.96·10 ²⁹	1.48	741
[MeZn ₃ (<i>bza</i>) ₅]	806	6.69·10 ²⁹	1.44	561
ZnEt ₂	95	9.95·10 ²⁹	1.94	49

Internal refe	rence (TPhF)		Sample	
[ppm]	$D [m^2 \cdot s^{-1}]$	[ppm]	<i>D</i> [m ² ⋅s ⁻¹]	<i>MW</i> [g⋅mol ⁻¹]
7.78-7.83	6.90·10 ⁻¹⁰		Complex	
6.74-6.82	6.62·10 ⁻¹⁰	7.37-7.44	5.58·10 ⁻¹⁰	677
6.62-6.70	6.58·10 ⁻¹⁰	7.27-7.34	5.64·10 ⁻¹⁰	665
Average Reference D	6.70·10 ⁻¹⁰	6.06-6.18	5.56·10 ⁻¹⁰	681
		5.02-5.09	5.67·10 ⁻¹⁰	659
		4.53-4.60	5.53·10 ⁻¹⁰	687
		4.43-4.52	5.47·10 ⁻¹⁰	698
		Average		678
		Estimated MW		
		-0.29-(-0.27)	5.30·10 ⁻¹⁰	<u>735</u>
		-0.38-(-0.33)	5.95·10 ⁻¹⁰	<u>609</u>
		-0.43-(-0.41)	6.21·10 ⁻¹⁰	<u>567</u>
			Dialkylzinc	
		-0.74-(-0.63)	1.96·10 ⁻⁹	<u>86</u>
			Toluene	
		2.12-2.06	2.00·10 ⁻⁹	83

Table S6. Determined diffusion coefficients *D* and estimated molecular weights *MW* based on analysis of DOSY ¹H NMR spectrum from the 1:1 reaction of $ZnMe_2$ with *bza*-H in d₈-toluene.

2.4. Equimolar reaction of *bza*-H with ZnEt₂

DOSY-NMR spectrum from 1:1 reaction of $ZnEt_2$ with *bza*-H in d₈-toluene (Fig. S24 and Table S8) shows, like in the case of methylzinc derivative, the significant discrepancy of estimated *MW* based on signals from the organic ligand and alkylzinc groups, which is likely the result of the presence of several various *bza* complexes in the post-reaction mixture. Analysis of the ethyl signals indicates the presence of two main components of the post-reaction mixture with *MW* of about 653 and 124 g·mol⁻¹, which fit well to the *MW_{cor}* of about 655 and 79 g·mol⁻¹ calculated for [Et₃Zn₄(*bza*)₅] and ZnEt₂, respectively. The analysis of other potential minor products is hampered due to the low intensity of signals.

Fig. S22. ¹H NMR spectrum from the 1:1 reaction of ZnEt₂ with *bza*-H in d₈-toluene.

Fig. S23. ¹³C NMR spectrum from the 1:1 reaction of $ZnEt_2$ with *bza*-H in d₈-toluene.

Fig. S24. 2D DOSY-NMR spectrum from the 1:1 reaction of $ZnEt_2$ with *bza*-H in d₈-toluene (signals used to estimate *MW* are marked with asterisks).

Table S7. Calculated	l molecular weights (I	MW), van-der Waals (densities (MD _W), and	correct	ed	
molecular weights (<i>MW_{cor}</i>) of respective compounds.						
Companya	$\Lambda 414/[a = a = a = 1^{-1}]$	$\Lambda 4D$ [a mod ⁻¹ mo ⁻³]		A 414/	[

Compound	<i>MW</i> [g·mol⁻¹]	<i>MD_W</i> [g·mol ⁻¹ ·m ⁻³]	χcor	<i>MW_{cor}</i> [g·mol ⁻¹]
[Et ₃ Zn ₄ (<i>bza</i>) ₅]	944	6.71·10 ²⁹	1.44	655
ZnEt ₂	123	7.44·10 ²⁹	1.56	79

		=		
Internal refe	rence (TPhF)		Sample	
[ppm]	<i>D</i> [m ² ⋅s ⁻¹]	[ppm]	<i>D</i> [m ² ⋅s ⁻¹]	<i>MW</i> [g·mol ⁻¹]
7.76-7.84	6.68·10 ⁻¹⁰		Complex	
6.74-6.83	6.81·10 ⁻¹⁰	7.42-7.49	5.31·10 ⁻¹⁰	767
6.62-6.70	7.16·10 ⁻¹⁰	7.30-7.38	5.42·10 ⁻¹⁰	742
Average Reference D	6.88·10 ⁻¹⁰	6.10-6.28	5.66·10 ⁻¹⁰	690
		5.03-5.17	5.56·10 ⁻¹⁰	710
		4.54-4.63	5.47·10 ⁻¹⁰	731
		Average Est	imated MW	706
		1.57-1.70	5.81·10 ⁻¹⁰	662
		0.46-0.60	5.91·10 ⁻¹⁰	642
		Average Est	imated MW	<u>653</u>
			Dialkylzinc	
		1.07-1.23	1.59·10 ⁻⁹	127
		0.05-0.23	1.59·10 ⁻⁹	120
		Average Estimated MW 124		
			Toluene	
		2.15-2.05	1.92·10 ⁻⁹	93

Table S8. Determined diffusion coefficients *D* and estimated molecular weights *MW* based on analysis of DOSY ¹H NMR spectrum from the 1:1 reaction of $ZnEt_2$ with *bza*-H in d₈-toluene.

2.5. Solution of complex 3

¹H and ¹³C NMR spectra of **3** in d₈-toluene indicate the presence of various forms of bza complexes after dissolution (Fig. S11 and S12). Like in the case of methyl- and ethylzinc derivatives of *bza*, the ¹H DOSY spectrum of **3** exhibits a significant discrepancy in estimated *MW* based on signals from the organic ligand and alkylzinc groups (Fig. S26). Analysis of the ^tBu signals indicates three main components with *MW* of about 696, 748, and 158 g·mol⁻¹, which fit well to the *MW_{cor}* of about 706, 744, and 139 g·mol⁻¹ calculated for [^tBuZn(*bza*)]₄, [^tBu₃Zn₄(*bza*)₅], and Zn^tBu₂, respectively (Table S10). Other signals of aliphatic groups are also visible, but their analysis is hampered due to the low intensity.

Fig. S25. ¹H NMR spectrum of **3** in d₈-toluene.

Fig. S26. 2D DOSY-NMR spectrum of **3** in d_8 -toluene (signals used to estimate *MW* are marked with asterisks).

0 1	661)			
Compound	<i>MW</i> [g·mol⁻¹]	<i>MD</i> _W [g·mol ⁻¹ ·m ⁻³]	χcor	<i>MW_{cor}</i> [g⋅mol ⁻¹]
[^t BuZn(<i>bza</i>)] ₄	966	6.28·10 ²⁹	1.37	706
[^t Bu₃Zn₄(<i>bza</i>)₅]	1028	6.36·10 ²⁹	1.38	744
Zn ^t Bu ₂	179	5.86·10 ²⁹	1.29	139

Table S9. Calculated molecular weights (MW), van-der Waals densities (MD_W), and corrected molecular weights (MW_{cor}) of respective compounds.

Table S10. Determined diffusion coefficients *D* and estimated molecular weights *MW* based on analysis of DOSY ¹H NMR spectrum of **3** in d_8 -toluene.

Internal refe	rence (TPhF)		Sample	
[ppm]	<i>D</i> [m ² ·s ⁻¹]	[ppm]	<i>D</i> [m ² ·s ⁻¹]	<i>MW</i> [g·mol⁻¹]
7.76-7.84	7.07·10 ⁻¹⁰		Complex	
6.74-6.83	7.06.10-10	7.40-7.50	5.59·10 ⁻¹⁰	733
6.62-6.70	7.04·10 ⁻¹⁰	7.33-7.38	5.57·10 ⁻¹⁰	737
Average Reference D	7.06·10 ⁻¹⁰	5.11-5.23	5.71.10-10	709
		4.56-4.63	5.65·10 ⁻¹⁰	721
		1.38-1.43	5.78·10 ⁻¹⁰	<u>696</u>
		1.24-1.29	5.53·10 ⁻¹⁰	<u>746</u>
		1.01-1.05	5.55·10 ⁻¹⁰	<u>743</u>
			Dialkylzinc	
		1.05-1.10	1.42.10-9	<u>158</u>
			Toluene	
		2.15-2.05	2.00·10 ⁻⁹	91

3. X-Ray Crystallography Data

Table S11. Crystal data and structure refinement for 1 ^{Me} .			
Empirical formula	$C_{54}H_{50}N_8Zn_3$		
Formula weight	1007.13		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>P</i> 2 ₁ /n		
Unit cell dimensions	a = 18.5634(3) Å	a= 90°.	
	b = 24.5535(4) Å	b= 107.018(2)°.	
	c = 22.3642(4) Å	g = 90°.	
Volume	9747.2(3) Å ³		
Z	8		
Density (calculated)	1.373 Mg/m ³		
Absorption coefficient	1.509 mm ⁻¹		
F(000)	4160		
Crystal size	$0.15 \times 0.11 \times 0.07 \text{ mm}^3$		
Theta range for data collection	3.015 to 27.000°.		
Index ranges	-20<=h<=23, -31<=k<=28, -2	28<=l<=16	
Reflections collected	49944		
Independent reflections	21042 [R(int) = 0.0392]		
Completeness to theta = 25.242°	99.8 %		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	21042 / 0 / 1175		
Goodness-of-fit on F ²	1.044		
Final R indices [I>2sigma(I)]	R1 = 0.0407, wR2 = 0.0763		
R indices (all data)	R1 = 0.0640, wR2 = 0.0844		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.554 and -0.532 e.Å ⁻³		

Fig. S27. The molecular structure of $\mathbf{1}^{Me}$ with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity.

Zn1-C1	1.989(3)	Zn1-N1-C3	100.79(16)
Zn1-N1	2.261(2)	Zn1-N3-C16	128.76(19)
Zn1-N3	2.073(2)	Zn1-N5-C29	131.02(19)
Zn1-N5	2.045(2)	Zn2-N2-C3	134.0(2)
Zn2-C2	1.969(3)	Zn2-N4-C16	96.18(16)
Zn2-N2	2.073(2)	Zn2-N7-C42	131.04(19)
Zn2-N4	2.307(2)	Zn2-N4-Zn3	91.21(8)
Zn2-N7	2.045(2)	Zn3-N1-C3	120.46(19)
Zn3-N1	2.045(2)	Zn3-N4-C16	124.64(18)
Zn3-N4	2.061(2)	Zn3-N6-C29	122.62(19)
Zn3-N6	1.997(2)	Zn3-N8-C42	124.1(2)
Zn3-N8	2.004(2)		

Table S12. Selected intermolecular bond lengths [Å] and angles [°] for 1^{Me}.

Table S13. Crystal data and structure refinement for 1 ^{Et} .		
Empirical formula	$C_{56}H_{54}N_8Zn_3$	
Formula weight	1035.18	
Temperature	100(2) K	
Wavelength	0.71073 Ĺ	
Crystal system	Monoclinic	
Space group	<i>P</i> 2 ₁ /c	
Unit cell dimensions	a = 11.7300(2) Å	a= 90°.
	b = 13.4060(3) Å	b= 100.5050(10)°.
	c = 31.6940(7) Å	g = 90°.
Volume	4900.42(18) Å ³	
Z	4	
Density (calculated)	1.403 Mg/m ³	
Absorption coefficient	1.503 mm ⁻¹	
F(000)	2144	
Crystal size	0.16 x 0.11 x 0.08 mm ³	
Theta range for data collection	1.996 to 27.419°.	
Index ranges	-15<=h<=15, -17<=k<=17, -4	lo<=l<=40
Reflections collected	21718	
Independent reflections	11110 [R(int) = 0.0598]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equiva	lents
Max. and min. transmission	0.887 and 0.820	
Refinement method	Full-matrix least-squares on	F ²
Data / restraints / parameters	11110 / 0 / 606	
Goodness-of-fit on F ²	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0474, wR2 = 0.0883	
R indices (all data)	R1 = 0.0789, wR2 = 0.0957	
Largest diff. peak and hole	0.401 and -0.421 e.Å ⁻³	

Fig. S28. The molecular structure of $\mathbf{1}^{Et}$ with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity.

Zn1-C1	1.986(3)	Zn1-N1-C5	129.5(2)	
Zn1-N1	2.068(2)	Zn1-N3-C18	98.19(18)	
Zn1-N3	2.317(2)	Zn1-N5-C31	132.1(2)	
Zn1-N5	2.048(2)	Zn2-N2-C5	101.12(18)	
Zn2-C3	1.993(3)	Zn2-N4-C18	122.9(2)	
Zn2-N2	2.277(2)	Zn2-N7-C44	132.0(2)	
Zn2-N4	2.070(2)	Zn2-N2-Zn3	91.98(10)	
Zn2-N7	2.055(3)	Zn3-N2-C5	122.6(2)	
Zn3-N2	2.045(2)	Zn3-N3-C18	128.2(2)	
Zn3-N3	2.057(2)	Zn3-N6-C31	124.3(2)	
Zn3-N6	1.992(2)	Zn3-N8-C44	121.7(2)	
Zn3-N8	1.987(2)			

Table S14. Selected intermolecular bond lengths [Å] and angles [°] for 1^{Et}.

Table S15. Crystal data and structure refinement	ent for 2 .	
Empirical formula	$C_{34}H_{40}N_4Zn_2$	
Formula weight	635.44	
Temperature	100(2) K	
Wavelength	0.71073 Ĺ	
Crystal system	Monoclinic	
Space group	P 2 ₁	
Unit cell dimensions	a = 15.2257(2) Å	a= 90°.
	b = 22.1226(2) Å	b= 104.4370(10)°.
	c = 19.5545(2) Å	g = 90°.
Volume	6378.59(12) Å ³	
Z	8	
Density (calculated)	1.323 Mg/m ³	
Absorption coefficient	1.532 mm ⁻¹	
F(000)	2656	
Crystal size	0.16 x 0.09 x 0.05 mm ³	
Theta range for data collection	1.381 to 25.981°.	
Index ranges	-18<=h<=12, -24<=k<=26, -2	24<=l<=23
Reflections collected	25876	
Independent reflections	18795 [R(int) = 0.0355]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equiva	lents
Max. and min. transmission	0.926 and 0.848	
Refinement method	Full-matrix least-squares on	F ²
Data / restraints / parameters	18795 / 1 / 1466	
Goodness-of-fit on F ²	1.025	
Final R indices [I>2sigma(I)]	R1 = 0.0434, wR2 = 0.1111	
R indices (all data)	R1 = 0.0469, wR2 = 0.1148	
Absolute structure parameter	0.240(10)	
Largest diff. peak and hole	0.522 and -0.813 e.Å ⁻³	

Fig. S29. The molecular structure of **2** with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity.

	Zn1-C1	1.991(6)	Zn1-N1-C9	122.3(4)
	Zn1-N1	2.034(5)	Zn1-N1-C10	119.9(4)
	Zn1-N3	1.980(5)	Zn1-N3-C22	121.0(4)
	Zn2-C5	1.998(6)	Zn1-N3-C23	122.2(4)
	Zn2-N2	1.987(5)	Zn2-N2-C9	120.1(4)
	Zn2-N4	2.034(5)	Zn2-N2-C16	120.9(4)
			Zn2-N4-C22	116.7(4)
_			Zn2-N4-C29	123.7(4)

 Table S16.
 Selected intermolecular bond lengths [Å] and angles [°] for 2.

Table S17. Crystal data and structure re	finement for 3 .		
Empirical formula	$C_{44}H_{64}N_8Zn_4$		
Formula weight	966.51		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	/41/a		
Unit cell dimensions	a = 19.5833(3) Å	? = 90°.	
	b = 19.5833(3) Å	? = 90°.	
	c = 12.0916(3) Å	? = 90°.	
Volume	4637.20(18) Å		
Z	4		
Density (calculated)	1.384 Mg/m ³		
Absorption coefficient	2.083 mm ⁻¹		
F(000)	2016		
Crystal size	0.17 x 0.10 x 0.06 mm ³		
Theta range for data collection	3.547 to 29.148°.		
Index ranges	-20<=h<=26, -26<=k<=	25, -16<=l<=13	
Reflections collected	8268		
Independent reflections	2758 [R(int) = 0.0336]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from e	quivalents	
Max. and min. transmission	0.883 and 0.779		
Refinement method	Full-matrix least-squar	es on F ²	
Data / restraints / parameters	2758/0/130		
Goodness-of-fit on F ²	1.064		
Final R indices [I>2sigma(I)]	R1 = 0.0286, wR2 = 0.0	651	
R indices (all data)	R1 = 0.0360, wR2 = 0.0	R1 = 0.0360, wR2 = 0.0682	
Largest diff. peak and hole	0.342 and -0.454 e.Å ³		

Fig. S30. The molecular structure of **3** with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (-x+2,-y+1/2,z); (-y+5/4,x-3/4,-z+1/4); (y+3/4,-x+5/4,-z+1/4).

Zn1-C1	2.0121(19)	Zn1-N1-C5	116.50(12)
Zn1-N1	2.1653(15)	Zn1-N1-Zn1'''	105.26(6)
Zn1-N2	2.0004(15)	C1-Zn1-N1	110.72(7)
Zn1-N1"	2.0832(15)	C1-Zn1-N2	115.06(7)
		C1-Zn1-N1"	114.61(7)
		N1-Zn1-N2	100.56(6)
		N2-Zn1-N1''	104.95(6)

Table S18. Selected intermolecular bond lengths [Å] and angles [°] for 3.

Table S19. Distances between the ring planes in π - π interactions	S
measured as the distance of the center of one ring (O) from the	
plane of the other	

1 ^{Me}
3.503 Å
3.664 Å
3.670 Å
3.126 Å
1 ^{Et}
3.513 Å

Table S20. Distances of H atoms to respective ring planes in $\text{CH-}\pi$ interactions

	1 ^{Me}
	2.727 Å
	2.682 Å
1	2.709 Å
9	2.939 Å
	2.694 Å
	2.882 Å
	2.883 Å
	2.772 Å
	1 ^{Et}
	2.842 Å
	2.913 Å
	2.542 Å
_	2.425 Å
	2.674 Å

References:

- 1 R. Neufeld and D. Stalke, *Chem. Sci.*, 2015, **6**, 3354–3364.
- A. Kreyenschmidt, S. Bachmann, T. Niklas and D. Stalke, *ChemistrySelect*, 2017, **2**, 6957–6960.