Supporting information.

Salen, Salan and Salalen zinc(II) complexes in the interaction with HS⁻ : time-resolved fluorescence applications.

Maria Strianese^{*a}, Gerard Joseph D'Auria^a, Marina Lamberti^a, Alessandro Landi^a, Andrea Peluso^a, Antonio Varriale^{b,c}, Sabato D'Auria^d, Claudio Pellecchia^a.

^a Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA) Italy; ^b Institute of Food Science, CNR Italy, 83100 Avellino, Italy; ^c URT-ISA, CNR at Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; ^{db}Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy.

*Corresponding author. E-mail: mstriane@unisa.it

Contents:

Synthetic procedures for complexes 1-3	3
Figure S1, Enlargement of the MALDI of complex 1	4
Figure S2, Enlargement of the MALDI of complex 2	5
Figure S3, Enlargement of the MALDI of complex 3	6
Figure S4, ¹ H NMR spectrum of complex 1 in DMSO- d_6	7
Figure S5, ¹ H NMR spectrum of complex 1 in CD_2Cl_2	8
Figure S6, ¹ H NMR spectrum of complex 2 in DMSO- d_6	9
Figure S7, ¹ H NMR spectrum of complex 3 in DMSO- d_6	10
Figure S8, ¹ H NMR spectrum of ligand 1 in DMSO- d_6	11
Figure S9, ¹ H NMR spectrum of ligand 2 in DMSO- d_6	12
Figure S10, ¹ H NMR spectrum of ligand 3 in DMSO- d_6	13
Figure S11, MALDI spectrum of complex 1 in the presence of NaHS	14
Figure S12, MALDI spectrum of complex 2 in the presence of NaHS	15
Figure S13, MALDI spectrum of complex 3 in the presence of NaHS	16
Figure S14, ¹ H NMR spectra of complex 3 free and in the presence of NaHS	17

Figure S15, ¹ H NMR spectrum of complex 2 in DMSO- d_6 upon addition of NaHS			18
Figure S16, ¹ H NMR spectrum of complex 2 in DMSO- d_6 upon addition of	of NaHS	5	19
Figure S17, ¹ H NMR spectrum of complex 1 in DMSO- d_6 upon addition of	of NaHS	5	20
Figure S18, Emission spectra of ligand 2 and complex 2	21		
Figure S19, Optimized geometries for complex 3	2	22	
Figure S20, Time-resolved trace for complex 3	23		
Figure S21, Time-resolved trace for complex 1	24		
Figure S22, Time-resolved trace for complex 3	25		
Figure S23, Time-resolved trace for complex 3	26		
Table S1, Photophysical properties for complexes 1 and 3	27		
Table S2, Lifetime measurements for complex 3	28		
Table S3, Lifetime measurements for complex 1	29		
Table S4, Lifetime measurements for complex 3	30		
Table S5, Lifetime measurements for complex 3	31		

Complex 1: A mixture of the salen ligand (0.278 g, 0.56 mmol) and $Zn(Et)_2$ (0.070 g, 0.56 mmol) in 2 mL of dry benzene was left under stirring for 1 h at room temperature. A yellow solid was recovered by drying the reaction mixture under vacuum (yield 75 %).

Complex 2: A mixture of the salan ligand (0.28 g, 0.534 mmol) and $Zn(Et)_2$ (0.066 g, 0.534 mmol) in 2 mL of dry benzene was left under stirring for 1 h at room temperature. A white solid was recovered by drying the reaction mixture under vacuum (yield 70 %).

Complex 3: A mixture of the salalen ligand (0.284 g, 0.558 mmol) and $Zn(Et)_2$ (0.069 g, 0.558 mmol) in 3 mL of dry benzene was left under stirring for 1 h at room temperature. A pale yellow solid was recovered by drying the reaction mixture under vacuum (yield 65 %).

Figure S1. Enlargement of the MALDI spectrum of complex 1 in MeOH. The upper trace is the experimental trace whereas the lower is the theoretical one.

Generic Display Report (all)

Figure S2. Enlargement of the MALDI spectrum of complex 2 in MeOH. The upper trace is the experimental trace whereas the lower is the theoretical one.

Figure S3. Enlargement of the MALDI spectrum of complex 3 in MeOH

Figure S4. ¹H NMR spectrum of complex 1 in DMSO-d₆. [complex 1] = 5×10^{-3} M. * = benzene used for the synthesis.

Figure S5. ¹H NMR spectrum of complex 1 in CD_2Cl_2 . [complex 1] = 5×10^{-3} M. * = benzene used for the synthesis.

Figure S6. ¹H NMR spectrum of complex **2** in DMSO-d₆. [complex **2**] = 5×10^{-3} M. * = benzene used for the synthesis.

Figure S7. ¹H NMR spectrum of complex **3** in DMSO-d₆. [complex **3**] = 5×10^{-3} M. = benzene used for the synthesis.

Figure S8. ¹H NMR spectrum of ligand 1 in CD_2Cl_2 . [ligand 1] = 5×10^{-3} M.

Figure S9. ¹H NMR spectrum of ligand 2 in DMSO-d₆. [ligand 2] = 5×10^{-3} M.

Figure S10. ¹H NMR spectrum of ligand **3** in DMSO-d₆. [ligand **3**] = 5×10^{-3} M.

Generic Display Report (all)

Figure S11. Enlargement of the MALDI spectrum of complex 1 in the presence of NaHS in THF. The upper trace is the experimental trace whereas the lower is the theoretical one.

Generic Display Report (all)

Figure S12. Enlargement of the MALDI spectrum of complex **2** in the presence of NaHS in MeOH. The upper trace is the experimental trace whereas the lowers are the theoretical ones.

Figure S13. Enlargement of the MALDI spectrum of complex **3** in the presence of NaHS in MeOH. The upper trace is the experimental trace whereas the lower is the theoretical one.

Figure S14. ¹H NMR spectrum of complex **3** in DMSO-d₆ (red trace), ¹H NMR spectrum of complex **3** in DMSO-d₆ after the addition of an excess of HS⁻ (black trace). [complex **3**] = 5×10^{-3} M; [NaSH] = 0.01 M.

Figure S15. ¹H NMR spectrum of complex 2 in DMSO-d₆ after the addition of an excess of HS⁻. [complex 1] = 5×10^{-3} M; [NaSH] = 0.01 M.

Figure S16. ¹H NMR spectrum of complex **2** in DMSO-d₆ after the addition of an excess of HS⁻ (black trace), ¹H NMR spectrum of ligand **2** in DMSO-d₆ (red trace). [complex **1**] = 5×10^{-3} M; [NaSH] = 0.01 M.

Figure S17. ¹H NMR spectrum of complex **1** in DMSO-d₆ after the addition of an excess of HS–. [complex **1**] = 5×10^{-3} M; [NaSH] = 0.01 M. * = benzene used for the synthesis.

Figure S18. Emission spectra of ligand 2 and complex 2 in DMSO. $\lambda_{exc} = 300 \text{ nm}$

Figure S19. Optimized geometry for complex 3 (top) and its adduct with HS⁻ (bottom).

Figure S20. Frequency domain lifetime measurements of complex 3 in absence (A) and in the presence of an excess of NaSH (B).

Figure S21. Frequency domain lifetime measurements of complex 1 in absence (A) and in the presence of excess of NaSH (B).

Figure S22. Frequency domain lifetime measurements of complex **3** in absence (A) and in the presence of an excess of GSH (B).

Figure S23. Frequency domain lifetime measurements of complex **3** in absence (A) and in the presence of an excess of L-Cys (B).

	$\Phi_{\rm F}$	A _{max}	F _{max}
Complex 1	0.4	$A_{372} = 0,22$	$F_{478} = 538$
Complex 1_HS	0.09	$A_{328} = 0,48$	$F_{472} = 114$
Complex 3	0.06	$A_{392} = 0,10$	$F_{483} = 30,5$
Complex 3_HS	0.13	$A_{330} = 0,03$	$F_{478} = 122$

 Table S1. Photophysical features of complexes 1 and 3.

NaSH	Average lifetime (ns)	Fit model	χ ²
0µg /ml	2,51	$f_1 = 0,8580$	2.51
		$\tau_1 = 0,3934 \text{ ns}$	
		$\tau_2 = 15,32 \text{ ns}$	
		Bi-exponential discrete	
10 µg /ml	4.08	$f_1 = 0,7490$ $f_1 = 0,1720$	3,58
		$\tau_1 = 0,4032 \text{ ns}$	
		$\tau_2 = 10,22 \text{ ns}$	
		$\tau_3 = 25,51 \text{ ns}$	
		Three-exponential discrete	

 Table S2. Lifetime measurements for complex 3

NaSH	Average lifetime (ns)	Fit model	χ ²
0 μg /ml	5,08 ns	$f_1 = 0.5$	0,49
		$\tau_1 = 4,086 \text{ ns}$	
		$\tau_2 = 6,068 \text{ ns}$	
		Bi-exponential discrete	
10 µg /ml	3,36 ns	f ₁ = 0,4610	1,08
		$\tau_1 = 0,1469 \text{ ns}$	
		$\tau_2 = 4,997 \text{ ns}$	
		Bi-exponential discrete	

 Table S3. Lifetime measurements for complex 2

Glutathione	Average Lifetime (ns)	Fit Model	Chi-Square
0 μg/ml	2,1	f1=0,8851	1,83
		τ1 = 0,3710	
		f2 =0,1326	
		τ2 = 14,88	
10 μg/ml	2,75	f1=0,8616	3,4
		τ1 = 0,3876	
		f2 =0,1378	
		τ2= 17,54	

Table S4. Lifetime measurements for complex 3

Cysteine	Average Lifetime (ns)	Fit Model	Chi-square
0 μg/ml	1,98	f1=0,9111	2,37
		τ 1 = 0,3664	
		f2 =0,0919	
		τ2 = 17,19	
10 μg/ml	2,19	f1=0,8860	2,5
		τ 1 = 0,3638	
		f2 =0,1215	
		τ2 = =15,34	

Table S5. Lifetime measurements for complex 3