Supplementary Information

Modified preparation of Si@C@TiO2 porous microspheres as anodes

for high-performance lithium-ion batteries

Jian Luo^a, Peng Xiao^{*a,b}, Yangjie Li^a, Jiangzhi Xiong^a, Peng Zhou^a, Liang Pang^a, Xilei

Xie^a, and Yang Li^{a,b}

^a Powder Metallurgy Research Institute, Central South University, Changsha 410083,

P. R. China.

^b National Key Laboratory of Science and Technology for National Defence on High-

strength Structural Materials, Central South University, Changsha 410083, P. R. China.

* Corresponding author.

E-mail address: xiaopeng@csu.edu.cn (Peng Xiao)

Tel: +0086-13337311638

Figure S1. SEM and TEM images of the Al-Si powders.

Figure S2. Particle size distribution of the Al-Si powders.

Figure S3. SEM images of the Al-Si@RF microspheres.

Figure S4. SEM images of the PSi@RF microspheres.

Figure S5. SEM images of the PSi@C microspheres.

Figure S6. SEM and TEM images of the PSi@C@TiO₂ microspheres.

Figure S7. The pore size distribution diagrams of the PSi, PSi@C and PSi@C@TiO2

microspheres.

Table S1. Geometric parameters of sample. (Total surface: SBET; Volume of pores in

Samples	$S_{\rm BET} ({ m m}^2{ m g}^{-1})$	V _{1.7-300nm} (cm ³ g ⁻¹)	P _{BJH} (nm)	
PSi	68.7	0.293	10.7	
PSi@C	143.2	0.268	16.8	
PSi@C@TiO ₂	125.3	0.255	12.5	

the range of 1.7–300 nm in diameter: $V_{1.7-300 \text{ nm}}$; Average pore size: P_{BJH}).

Figure S8. XPS survey of the PSi@C@TiO₂ microspheres.

Figure S9. The cycling performance of the $PSi@C@TiO_2$ electrode at 0.1 A g⁻¹ for the first three cycles and 1 A g⁻¹ for the subsequent cycles.

Figure S10. Nyquist plots and equivalent circuits of the PSi@C electrode at different

cyclic states.

Cycle number	Resistance	PSi	PSi@C	PSi@C@TiO ₂
Before cycle	$R_{\rm s}(\Omega)$	1.245	1.328	1.093
	$R_{\rm ct}(\Omega)$	141.5	177	92.08
After 100 cycles	$R_{\rm s}(\Omega)$	5.284	2.615	2.175
	$R_{ m f}(\Omega)$	35.38	26.19	7.909
	$R_{\rm ct}(\Omega)$	159.9	124.4	26.05

Table S2. Electrode kinetic parameters calculated by fitting the EIS curves in Fig. 5f

and Fig. S10.

Materials	Content of Si (%)	Cycling performance (mAh g ⁻¹)	Rate capacity (mAh g ⁻¹)	ICE (%)	Electrode thickness swelling	Refs.
Porous Si sponge	40	570 after 1000 cycles at 1 A g ⁻¹	410 at 4.2 A g ⁻¹	56	30%	1
TC-SiO	-	674.5 after 100 cycles at 0.14 A g ⁻¹	~800 at 1.4 A g ⁻¹	71.9	-	2
SiO _X -TiO ₂ @C	70.6 (SiO _X)	910 after 200 cycles at 0.1 A g ⁻¹	542 at 3.2 A g ⁻¹	62.5	-	3
Hollow Si@TiO ₂ @C	67.2	1270 after 250 cycles at 1 A g ⁻¹	730 at 8 A g ⁻¹	86.0 6	45.6%	4
Compacted SiOx/G/C granules	31	487 after 500 cycles at 0.3 A g ⁻¹	610 at 3 A g ⁻¹	84.3	13.7%	5
Si@TiO ₂	~95	1580 after 50 cycles at 0. 42A g ⁻¹	-	80.8	-	6
Si@TiO ₂ /NC	-	1070 after 100 cycles at 0.2 A g ⁻¹	627 at 3 A g ⁻¹	75.9	-	7
p-SiO _x @ TiO ₂ @C	~44	801 after 100 cycles at 0.28 A g ⁻¹	414 at 7 A g ⁻¹	67	20%	8
Si/C@TiO ₂	53	1077 after 100 cycles at 0.2 A g ⁻¹	749.4 at 5 A g ⁻¹	75	-	9
PSi@C@ TiO ₂	65.2	1041 after 250 cycles at 0.5 A g ⁻¹	745 at 5 A g ⁻¹	73	35.3%	In this work

Table S3. The electrochemical performance of the PSi@C@TiO2 microspheres and

other reported Si-based materials as anodes for LIBs.

Figure S11. SEM images of the pristine $PSi@C@TiO_2$ electrode.

Figure S12. SEM images of the PSi@C electrode after 100 cycles (a-b). Cross-

sectional SEM image of the PSi@C electrode: before cycling (c) and after 100 cycles

(d) at 0.5 A g⁻¹.

References:

- X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M. J. Sailor, J.-G. Zhang and J. Liu, *Nat. Commun.*, 2014, 5, 4105.
- 2. F. Dou, L. Shi, P. Song, G. Chen, J. An, H. Liu and D. Zhang, Chem. Eng. J., 2018, 338, 488-495.
- 3. Z. Li, H. Zhao, P. Lv, Z. Zhang, Y. Zhang, Z. Du, Y. Teng, L. Zhao and Z. Zhu, Adv. Funct. Mater., 2018, 28.
- 4. B. Lu, B. Ma, X. Deng, B. Wu, Z. Wu, J. Luo, X. Wang and G. Chen, *Chem. Eng. J.*, 2018, **351**, 269-279.
- 5. G. Li, J.-Y. Li, F.-S. Yue, Q. Xu, T.-T. Zuo, Y.-X. Yin and Y.-G. Guo, *Nano Energy*, 2019, **60**, 485-492.
- 6. Y. Bai, D. Yan, C. Yu, L. Cao, C. Wang, J. Zhang, H. Zhu, Y.-S. Hu, S. Dai, J. Lu and W. Zhang, J. Power Sources, 2016, 308, 75-82.
- 7. R. Fang, W. Xiao, C. Miao, P. Mei, Y. Zhang, X. Yan and Y. Jiang, *Electrochim. Acta*, 2019, **317**, 575-582.
- 8. F. Dou, Y. Weng, G. Chen, L. Shi, H. Liu and D. Zhang, Chem. Eng. J., 2020, 387.
- 9. Z. Yi, N. Lin, T. Xu and Y. Qian, Chem. Eng. J., 2018, 347, 214-222.